ОПТИКА И СПЕКТРОСКОПИЯ, 2006, том 100, № 5, с. 798-802

УДК 535.331

ПОГЛОЩЕНИЕ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ ТЕРАГЕРЦОВОГО ДИАПАЗОНА В СТРУКТУРЕ МЕТАЛЛ–ПОКРОВНЫЙ СЛОЙ–ВОЗДУХ

© 2006 г. Г. Н. Жижин*, А. К. Никитин*, Г. Д. Богомолов**, В. В. Завьялов**, Джонг Юнг Ук***, Ли Банг Чол***, Сеонг Хи Пак***, Чёк Джин Ча***

Научно-технологический центр уникального приборостроения РАН, 117342 Москва, Россия
** Институт физических проблем им. П.Л. Капицы РАН, 117973 Москва, Россия
***Korea Atomic Energy Research Institute, P.O. Box 105, Yousong, Taejon 305–600, Respublic of Korea Поступила в редакцию 11.05.2005 г.

Экспериментально и численным расчетом исследовано влияние тонкослойного покрытия металла на поглощение поверхностных плазмонов (ПП) терагерцового (ТГц) диапазона. Установлено, что с увеличением длины волны излучения затухание ПП, обусловленное покрытием, может превышать поглощение ПП на невозмущенной границе металл–воздух в ~10⁴ раз. Результаты экспериментов, выполненных на алюминиевых образцах с германиевым покрытием с использованием ТГц лазера на свободных электронах ($v = 90 \text{ см}^{-1}$), подтвердили возрастание поглощения ПП при нанесении на поверхность металла покровного слоя.

PACS: 73.20.M

ВВЕДЕНИЕ

Поверхностные плазмоны (ПП) представляют собой связанное образование волны плотности свободных носителей в проводнике и неоднородной р-поляризованной электромагнитной волны, поле которой максимально на границе раздела проводник-окружающая среда и экспоненциально затухает как при удалении от границы в обе стороны, так и в направлении распространения ПП [1, 2]. ПП используют в оптометрии для повышения чувствительности измерений, поскольку возбуждение ПП зондирующим излучением сопровождается усилением напряженности его поля в приповерхностной области и увеличением длины взаимодействия с поверхностью [3]. Наиболее эффективная область применения ПП в оптометрии - спектроскопия поверхности металлов, позволяющая получать спектры поглощения субмономолекулярных слоев [4].

До сих пор спектральная область применений ПП была ограничена видимым и средним инфракрасным (ИК) диапазонами, где длина распространения ПП (L) не превышает 10³ длин волн (λ) и имеются достаточно мощные перестраиваемые источники излучения. Попытки же освоения дальней области ИК диапазона, называемой также терагерцовой (ТГц), с частотой от 0.1 до 10 ТГц было затруднено из-за отсутствия плавно перестраиваемых по частоте лазеров и огромной длины распространения ПП, достигающей 10⁵ λ , т.е. ~10 метров [5].

Актуальность освоения ТГц диапазона обусловлена перспективой применения излучения ТГц частот в космической связи, в оптоэлектронных

устройствах обработки информации, в оптической спектроскопии [6, 7]. Создание в середине 1980-х годов лазеров на свободных электронах (ЛСЭ) [8] – плавно перестраиваемых источников когерентно-го излучения всего оптического диапазона – явилось важной предпосылкой для выполнения этой задачи. Открылась возможность экстраполяции на ТГц диапазон различных методов когерентной оптики, в том числе и оптики металлов.

Однако, как известно, металлы в ИК диапазоне вследствие большой проводимости имеют коэффициент отражения, близкий к единице, в результате чего традиционные оптические методы контроля их поверхности малоэффективны. Это, в частности, подтверждается отсутствием в самых современных справочниках экспериментальных данных об оптических постоянных металлов в ТГц области спектра [9].

Поводом для исследования возможности зондирования поверхности металлов ТГц излучением посредством ПП является тот факт, что характеристики ПП (фазовая скорость, длина распространения, распределение поля) и на ТГц частотах остаются, как и в более высокочастотных областях оптического диапазона, чрезвычайно чувствительными к свойствам металлической поверхности и ее переходного слоя [5]. К сожалению, точность измерения характеристик ПП в ТГц диапазоне низка (десятки процентов) вследствие больших значений L и малого отличия фазовой скорости (v) от скорости света в окружающей среде.

В этой связи возникла необходимость создания таких условий, при которых поглощение ПП

ПОГЛОЩЕНИЕ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ

λ, мкм	п	k	ε'_	ε"	к'	κ"	<i>L</i> , см	δ ₁ , мкм	δ ₂ , мкм
0.6	1.4	7.65	-56.6	21.4	1.007808	0.003	0.002	0.76	0.012
1.0	1.35	9.6	-91.3	26.1	1.005100	0.001467	0.005	1.57	0.016
5.0	8.67	48.6	-2287	843	1.000193	0.000071	0.561	40.5	0.017
10.0	25.3	89.8	-7424	4544	1.000049	0.000030	2.65	160	0.018
20.0	60.7	147	-17925	17845	1.000014	0.000014	11.4	602	0.022
32.0	103	208	-32655	42848	1.000006	0.000007	34.5	1521	0.024
110.0	-	-	-31902	231622	$1.0 + 10^{-7}$	0.000002	413	20701	0.040

Таблица 1. Дисперсия характеристик ПП на границе алюминий-вакуум

ТГц диапазона существенно больше, а фазовая скорость меньше по сравнению с соответствующими характеристиками ПП на чистой поверхности металла. В этом случае точность измерения L и v может быть повышена до единиц процентов (как в среднем ИК диапазоне), что позволит осуществлять исследование переходного слоя проводящей поверхности в ТГц диапазоне посредством метода ПП-спектроскопии.

КРАТКАЯ ТЕОРИЯ И ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Для достижения поставленной цели нами был выбран метод нанесения на поверхность металла (в общем случае материала с отрицательной действительной частью диэлектрической проницаемости $\varepsilon_2 = \varepsilon'_2 + i\varepsilon''_2$, где *i* – мнимая единица) прозрачного слабо поглощающего слоя толщиной d с показателем преломления n_l. Этот метод воздействия на характеристики ПП широко практикуется в видимом диапазоне [3] и апробирован в среднем ИК диапазоне [10]. Авторами [10] показано, что с ростом *d* фазовая скорость ПП монотонно уменьшается, а эффективный показатель преломления ПП $\kappa = \kappa' + i\kappa''$ асимптотически стремится к значению к для ПП на невозмущенной границе металл-материал слоя. Длина же распространения $L = \lambda/(2\pi\kappa'')$ ведет себя с ростом *d* неоднозначно: резко уменьшается от L_0 (значение L при d = 0), до-

стигает минимума L_{\min} при $d_c = \lambda/(4\sqrt{n_l^2 - 1})$, а затем по мере увеличения d возрастает, асимптотически стремясь к значению L_{∞} для ПП на невозмущенной границе металл–материал слоя.

Для оценки влияния тонкослойного покрытия на поглощение поверхностью алюминия нами было выполнено компьютерное моделирование зависимостей L и к' от толщины d слоя Ge в видимой и ИК областях спектра. Комплексные значения к определяли путем численного решения дисперсионного уравнения ПП для трехслойной структуры [1]. Оптические постоянные (показатель преломления n и показатель поглощения k) алюминия и германия брали из справочника [9]. Показатель преломления германия n_l полагали равным четырем при всех λ (величина n_l при возрастании λ от 10 до 110 мкм варьируется лишь в третьем знаке после запятой: от 4.004 до 4.006; а значение k для Ge равно 10⁻⁵ при $\lambda = 10$ мкм и 2×10^{-3} при $\lambda = 110$ мкм).

Для удобства анализа полученных результатов сравним вначале характеристики ПП, распространяющихся по невозмущенной границе раздела алюминий-вакуум в различных областях оптического диапазона (табл. 1, где δ_1 и δ_2 – глубины проникновения поля ПП в вакуум и металл соответственно, а значения ε'_2 и ε''_2 при $\lambda = 110$ мкм рассчитаны по модели Друде из-за отсутствия экспериментальных данных). Видно, что с увеличением λ ПП приобретают все более выраженный фотонный характер: показатель преломления к' стремится к единице, глубина проникновения поля в вакуум δ_1 возрастает до сантиметров, а длина распространения L достигает нескольких метров. Определить L в этом случае с точностью хотя бы 10% при размере образца 10-15 см практически невозможно¹.

На рис. 1 и 2 изображены расчетные зависимости длины распространения L от толщины dпокровного слоя Ge для ПП, генерируемых на поверхности алюминиевого образца, расположенного в воздухе, излучением с $\lambda = 10.0$ мкм и $\lambda = 110$ мкм соответственно. Из сравнения гра-

¹ Кроме того, из зависимости к'(λ) следует, что при определении к' в естественных условиях по методу фазовой ППспектрометрии [11] в ИК диапазоне следует учитывать зависимость к' от показателя преломления воздуха n_{air} . При $\lambda > 1$ мкм n_{air} отличается от единицы в четвертом знаке после запятой (плавно уменьшается от 1.0002741 при $\lambda = 1$ мкм до 1.0002726 при $\lambda = 50$ мкм [12]) и становится сравнимым с к'. Но для корректного применения метода фазовой ППспектрометрии необходимо добиться по крайней мере десятикратного превышения $\Delta \kappa' = (\kappa' - 1)$ над $n_{air} - 1$, иначе точность определения $\Delta \kappa'$ по регистрируемой интерферограмме становится неприемлемо низкой. Наиболее простой способ увеличения $\Delta \kappa'$ – нанесение на поверхность металла слоя диэлектрика с известными толщиной и диэлектрической проницаемостью.

Рис. 1. Расчетная зависимость длины распространения L поверхностных плазмонов в структуре алюминий–слой германия–воздух от толщины слоя d для излучения с длиной волны $\lambda = 10$ мкм.

фиков видно, что при большей λ эффект уменьшения *L* при $d \approx d_c$ более выражен.

В табл. 2 приведены результаты расчетов экстремальных значений длины распространения ПП в структуре Al–слой Ge–воздух на некоторых λ оптического диапазона (значения *n*, *k* и ε_2 такие же, как в табл. 1). Видно, что с ростом λ поглощение ПП вследствие наличия на металле слоя диэлектрика становится более выраженным (колонка L_0/L_{\min}). Отметим также, что учет слабого селективного поглощения в слое Ge приводит к уменьшению значения *L* не более чем на 1%.

ЭКСПЕРИМЕНТЫ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Эксперименты были выполнены в НИИ атомной энергии Республики Корея (Korea Atomic Energy Research Institute – KEARI) с использованием излучения ЛСЭ, недавно введенного в строй при техническом содействии Института ядерных исследования им. Г.И. Будкера СО РАН [13]. ЛСЭ генерирует излучение в виде макроимпульсов длительностью 3 мкс (мощностью 10 Вт) с периодом 1 с.

Рис. 2. Расчетная зависимость длины распространения *L* поверхностных плазмонов в структуре алюминий–слой германия–воздух от толщины слоя *d* для излучения с длиной волны $\lambda = 110$ мкм.

Схема установки, на которой выполнялись эксперименты по измерению поглощения ПП на частоте v = 90 см⁻¹, приведена на рис. 3.

Исследуемые образцы представляли собой непрозрачные зеркала с алюминиевым покрытием, нанесенным по методу термического испарения в вакууме на оптически полированные подложки $(30 \times 150 \times 5 \text{ мм})$. Образцы устанавливались на подвижную платформу, прецизионно перемещаемую в горизонтальной плоскости вдоль хода луча электромеханическим приводом с шагом 1 мм. Дифракционным элементом возбуждения ПП ("апертурный" метод) служило лезвие обычной бритвы 2. Бритва крепилась неподвижно, а режущий край лезвия фиксировался над поверхностью образца на расстоянии 1-2 мм. Пучок (диаметром около 20 мм) линейно поляризованного излучения ЛСЭ направлялся на образованную таким образом щель полиэтиленовой линзой *l* с фокусным расстоянием 15 см, наклоненной на $5^{\circ}-10^{\circ}$ по отношению к плоскости образца главной оптической осью (во избежание прямого попадания излучения ЛСЭ на детектор). Дифрагируя на крае бритвы, падающее излучение с небольшой эффективностью (единицы процентов) преобразо-

λ, мкм	d_c , мкм	<i>L</i> ₀ , мм	L_{\min} , мм	L_{∞} , мм	$L_0/L_{\rm min}$	L_{∞}/L_{\min}
0.63	0.029	0.0167	0.00008	0.00018	208.75	92.78
1.0	0.049	0.0531	0.00025	0.00064	212.40	82.97
5.0	0.311	5.6055	0.00762	0.08683	735.63	64.56
10.0	0.600	26.5330	0.02072	0.41366	1280.55	64.14
32.0	2.100	344.9640	0.09730	5.38871	3545.36	64.01
110.0	7.20	4131.950	0.47500	64.56080	8698.84	64.00

Таблица 2. Дисперсия экстремальных значений длины распространения ПП L в структуре Al-слой Ge-воздух

ОПТИКА И СПЕКТРОСКОПИЯ том 100 № 5 2006

Рис. 3. Схема установки для измерения длины распространения ПП. Пояснения в тексте.

Рис. 4. Измеренные зависимости интенсивности поля поверхностных плазмонов с частотой v = 90 см⁻¹ от пройденного ими расстояния Δa при различной толщине d покровного слоя германия: d = 0 (1), 0.5 (2), 1.0 (3), 2.0 мкм (4).

вывалось в ПП, распространяющиеся в том же направлении по поверхности образца (стеклянная подложка 3, непрозрачная металлическая пленка 4). Пройдя расстояние *a*, поверхностная волна срывалась с торца образца, преобразуясь в объемную волну, интенсивность которой регистрировалась детектором 5, помещенным в криостат 6 с хладагентом и защищенным от паразитных засветок горизонтальной диафрагмой 7 шириной 2 мм. В качестве детектора излучения использовался охлаждаемый жидким гелием Ge:Ga-фоторезистор. Сигнал с детектора 5 поступал в блок накопления и обработки информации 8.

Затухание ПП вдоль образца измерялось по сигналу детектора при последовательно фиксированных положениях образца (расстояние *a*) отно-

ОПТИКА И СПЕКТРОСКОПИЯ том 100 № 5 2006

сительно неподвижного источника возбуждения ПП. Как изменение, так и определение расстояния *а* проводилось с точностью 1 мкм. Интенсивность детектируемого излучения (нормированная на независимо измеренную интенсивность входного пучка) при каждом значении *а* усреднялась по восьми последовательным импульсам ЛСЭ и запоминалась цифровым осциллографом.

Отношение сигнал/шум выдерживалось на уровне 100, а расстояние между неподвижным детектором и торцом образца изменялось в ходе измерений от 5 до 15 см по мере продвижения образца под лезвием. Учет изменения расстояния от образца до детектора в ходе данного измерения осуществлялся путем пересчета сигнала в предпо-

Таблица 3. Зависимости коэффициента затухания α и длины распространения *L* ПП в структуре Al–слой Ge–воздух от толщины слоя *d*

<i>d</i> , мкм	0	0.5	1.0	2.0
$\alpha_{_{ ЭКСП}}, cm^{-1}$	0.07	0.10	0.12	0.19
$\alpha_{\rm reop},$ cm ⁻¹	0.0024	0.02	0.09	0.22
L _{эксп} , см	14.3	10.0	8.3	5.3
$L_{\text{теор}},$ см	413	52	10.9	4.5

ложении обратноквадратичной зависимости интенсивности объемной волны от расстояния.

На рис. 4 представлены экспериментальные зависимости I/I_0 от расстояния Δa , пройденного ПП по образцу с покровным германиевым слоем различной толщины d. Здесь I_0 – сила фототока при $a_0 = 50$ мм, I – сила фототока при $a = a_0 + \Delta a$.

Последовательность точек, полученных при измерении образцов с различными d, хорошо аппроксимируется экспоненциальной функцией (сплошные кривые) с тем или иным коэффициентом затухания α . Располагая такими графиками, можно рассчитать как величину α ,

$$\alpha = \frac{\ln(I/I_0)}{\Delta\alpha},$$

так и длину распространения $\Pi \Pi L = 1/\alpha$.

В табл. З сведены результаты расчетов значений α и L по кривым на рис. $4 - \alpha_{\operatorname{эксп}}$ и $L_{\operatorname{эксп}}$, а также гипотетические значения этих величин – $\alpha_{\operatorname{теор}}$ и $L_{\operatorname{теор}}$, извлеченные из графика L(d) на рис. 2. Расхождение между экспериментальными и расчетными значениями α и L при $d \leq 0.5$ мкм очень велико (примерно в 30 раз при d = 0), но при d = 1 и 2 мкм экспериментальные результаты вполне удовлетворительно согласуются с расчетными.

Таким образом, мы, как и авторы более ранних работ по изучению распространения ПП в ТГц диапазоне с использованием излучения лазеров на парах метанола и воды [14-17], вынуждены констатировать необычно большое поглощение чистой (не возмущенной покровным слоем) поверхностью металла. В наших экспериментах это могло иметь место по следующим причинам: наличие на поверхности алюминия поглощающей окисной пленки; 2) методические погрешности при измерении слабого затухания, в частности не вполне корректный учет реальной зависимости интенсивности объемной волны от расстояния, 3) различие плазменных и столкновительных частот напыленного и массивного алюминия, используемых в модели Друде при оценке поглощения ПП.

Хорошее совпадение результатов экспериментов с расчетными данными при $d \ge 1.0$ мкм свиде-

тельствует о существенном влиянии слоя германия на поглощение ПП в этом случае².

ЗАКЛЮЧЕНИЕ

Таким образом, в работе установлено, что реальное поглощение поверхностных плазмонов алюминиевым образцом на ТГц частотах значительно больше рассчитанного с использованием модели Друде. Кроме того, нанесение на поверхность алюминия прозрачного слоя германия позволяет управлять как поглощением, так и фазовой скоростью ПП, что открывает перспективу применения спектроскопии поверхностных плазмонов в дальнем ИК диапазоне.

СПИСОК ЛИТЕРАТУРЫ

- Поверхностные поляритоны. Поверхностные электромагнитные волны на границах сред / Под ред. Аграновича В.М. и Миллса Д.Л. М.: Наука, 1985. 525 с.
- 2. Никитин А.К., Тищенко А.А. // Зарубеж. радиоэлектроника. 1983. № 3. С. 38.
- Никитин А.К. Автореф. докт. дис. М.: НТЦ УП РАН, 2002.
- Zhizhin G.N., Yakovlev V.A. // Phys. Rep. 1990. V. 194. № 5/6. P. 281.
- Schlesinger Z., Webb B.C., Sievers A.J. // Sol. St. Commun. 1981. V. 39. P. 1035.
- 6. Siegel P.H. // IEEE Transactions on Microwave Theory and Techniques. 2002. V. 50. № 3. P. 910.
- Csurgay A.I., Porod W. // Int. J. Circuit Theory and Applications. 2004. V. 32. P. 339.
- 8. *Marshall T.C.* Free-electron Lasers. N.Y.: MacMillan, 1985. 240 p.
- Handbook of Optical Constants of Solids / Ed. by Palik E.D. San Diego: Academic Press, 1998. 804 p.
- 10. Schlesinger Z., Sievers A.J. // Phys. Rev. B. 1982. V. 26. № 12. P. 6444.
- Silin V.I., Voronov S.A., Yakovlev V.A., Zhizhin G.N. // Int. J. Infrared & Millimeter Waves. 1989. V. 10. № 1. P. 101.
- 12. Справочник. Физические величины. М.: Энергоатомиздат, 1991. 575 с.
- 13. Jeong Y.U., Kazakevitch G.M., Lee B.C., Kim S.K., Cho S.O., Gavrilov N.G., Lee J. // Nuclear Instruments and Methods in Phys. Res. A. 2002. V. 483. P. 195.
- 14. Begley D.L., Alexander R.W., Ward C.A., Miller R., Bell R.J. // Surf. Sci. 1979. V. 81. P. 245.
- 15. *Koteles E.S., McNeill W.H.* // Int. J. Infrared and Millimeter Waves. 1981. V. 2. № 2. P. 361.
- 16. *Stegeman G.I., Seymour R.J.* // Sol. St. Commun. 1982. V. 44. № 9. P. 1357.
- 17. *Steijn K.W., Seymour R.J., Stegeman G.I.* // Appl. Phys. Lett. 1986. V. 49. № 18. P. 1151.

² Например, при d = 2.0 мкм в слое переносится 85%, в металле – 0.6%, в воздухе – 14.4% энергии поля ПП; при d = 0 последние две величины составляют 0.011 и 99.988% соответственно.