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INTRODUCTION

As it was shown in [1], variations of the 

 

I

 

–

 

V

 

 charac-
teristic of the Josephson junction affected by broadband
incoherent electromagnetic radiation are related to the
spectrum of this radiation by the Hilbert transforma-
tion. Based on this relation, the submillimeter spectros-
copy technique was proposed. It was later called Hil-
bert-transform spectroscopy [2]. Since 1980, most
studies in this area have dealt with the selection of the
type of a Josephson junction and quasi-optical elements
coupling it with the radiation that are the most suitable
for this spectroscopy (see, for example, [3–6]). The Hil-
bert-transform spectroscopy technique has recently
been extended from the gigahertz to terahertz band due
to the advent of Josephson junctions based on high-
temperature superconductors (HTSCs), which are sen-
sitive to radiation in this band [7]. However, the theory
has not been noticeably developed, and numerical and
purely spectroscopic aspects of the new spectral mea-
surement method have not been comprehensively ana-
lyzed. The purpose of this work is to fill this gap to
some extent.

Hilbert-transform spectroscopy was incited by the
similarity between an odd-resonance shape of the
selective response of the Josephson junction to the
monochromatic irradiation as a function of the bias
voltage and the frequency dependence of the refraction
index observed in the anomalous dispersion region,
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which is well-known in optics. Qualitative analysis
shows that the Hilbert transformation applied to the
curve of such a shape yields a peak whose position on
the bias axis depends on the frequency of the radiation
incident on the junction. However, the quantitative
description of the result of this transformation and sub-
stantiation of Hilbert-transform spectroscopy became
possible only on the basis of formula (6.49) derived
in [8]. In this case, it turned out that insensitivity of the
radiation spectrum obtained using the Hilbert transfor-
mation to a discrepancy of the real junction from a
resistive model is only ensured after the voltage
response found in [8] is transformed into the current
response used in [1] to derive the basic relationship of
Hilbert-transform spectroscopy. These problems are
described in detail in Section 1. Here, we only note that,
for the determination of the spectrum of the external
radiation affecting the junction, the details omitted
in [1] are not important. However, the growing ten-
dency to use the Hilbert-transform spectroscopy for
determining the self-radiation spectrum of Josephson
structures requires to introduce clarity into its basic
relationships of Hilbert-transform spectroscopy (Sec-
tion 1).

The discrete Fourier transformation (DFT) is one of
the routine numerical methods of applying the Hilbert
transformation to measured curves. However, without
taking into account specific features of function classes
including a measured response and sought spectrum,
the direct DFT results in qualitative distortions and
quantitative errors of both recovered spectra and calcu-
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Abstract

 

—The limitations of the Hilbert-transform spectroscopy theory involving a resistive–shunted model
of the Josephson junction are considered. It is noted that these limitations are especially important when Hil-
bert-transform spectroscopy is used to analyze the spectrum of Josephson oscillations. Formulas extending the
original expressions of Hilbert-transform spectroscopy to a non-Lorentzian form of the Josephson oscillation
spectrum are presented. The computational technique applied in Hilbert-transform spectroscopy to recover the
radiation spectrum under study from the input data (hilbertogram) via the discrete Fourier transform is ana-
lyzed. A method of measured data treatment is stated, in which the Hilbert transformation is considered as an
integral equation of the first kind for the radiation spectrum. The integral equation is solved using the maximum
likelihood method (one of the methods applied to solve ill-posed problems), which allows one to attain the max-
imum possible resolution enhancement at a given signal-to-noise ratio. The possibility to resolve spectral pecu-
liarities in the measured spectrum with a typical scale less than the Josephson oscillation linewidth is shown via
simulation and measurement of the frequency-modulated (FM) radiation spectrum produced by a backward-
wave oscillator (BWO).
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lated (in the process of simulation) responses of a junc-
tion to the radiation with a given spectrum. The sources
of these difficulties and possible workaround are
described in the first part of Section 2.

The Hilbert transformation, like the Fourier or
Laplace transformations, is a one-to-one integral trans-
formation. However, when the finite linewidth of the
Josephson oscillation is taken into account, the decon-
volution problem in Hilbert-transform spectroscopy can
be considered most comprehensively by means of solu-
tion methods developed for integral equations of the first
kind treating spectrum recovering as an ill-posed prob-
lem. The second part of Section 2 describes the deriva-
tion of the integral equation for the incident radiation
spectrum. To solve this equation, we use the maximum-
likelihood method realized in the RECOVERY software
package [9], which makes it possible to obtain the max-
imum possible resolution enhancement for a given sig-
nal-to-noise ratio and even to attain superresolution, as
shown in [10, 11] (Section 3).

In Section 4, using numerical simulation and a mea-
sured response of a Josephson HTSC junction, we show
that the solution of the integral equation allows one to
recover the sought spectrum at a resolution exceeding
the natural limit, i.e., to attain superresolution in accor-
dance with the definition and criterion formulated
in [10].

It is worthwhile to define more exactly the terms of
deconvolution and superresolution with reference to the
case considered. Since the effect of the point spread
(instrumental) function of a spectroscopic instrument is
usually described by the convolution integral (see, for
example, [13]), the deconvolution procedure means the
elimination of distortions of the measured spectrum
caused by the point spread function. These distortions
can be eliminated using various methods, but we pre-
serve the deconvolution term for procedures which
recover measured details that are distorted during mea-
surements. It is possible to characterize these details
using, for example, the known Raileigh resolution cri-
terion for the original spectrum or the effective spectral
width of its Fourier transform. Superresolution can be
defined as a procedure of recovering details which
appear to be invisible or suppressed below a noise level
due to the spectrum transformation by the point spread
function [10–12].

For Hilbert-transform spectroscopy, we call as a
deconvolution any method which allows one to mini-
mize spectrum distortions due to a limited measure-
ment interval. By our definition, superresolution is a
procedure eliminating to some extent the influence of
the finite linewidth of the Josephson oscillation. The
results of this work show that, in Hilbert-transform
spectroscopy, the approach to the spectrum-recovering
problem involving the integral equation makes it possi-
ble to simultaneously solve two problems: deconvolu-
tion and superresolution.

1. PRINCIPLES
OF THE HILBERT-TRANSFORM 

SPECTROSCOPY

 

Josephson Effect 

 

The detailed description of the Josephson effect can
be found in [8, 14, 15]. We give only the basic relation-
ships, which are required in the subsequent text. The
superconducting state is characterized by a complex
order parameter (the wave function of a superconduct-
ing condensate):

where 

 

∆

 

 is related to an energy gap for normal quasi-
particle excitations and 

 

ϕ

 

 is the phase of the order
parameter. The Josephson effect arises when two super-
conductors are separated by a thin layer (barrier), in
which 

 

∆

 

 is suppressed, but tunneling remains still pos-
sible for Cooper pairs, i.e., the condensate wave func-
tion leaks by tunneling from one superconductor into
the other. In this case, the superconducting current 

 

I

 

(supercurrent) of Cooper pairs through the barrier can
be written as

 

(1)

 

where 

 

ϕ

 

 is now the phase difference of the left and right
superconductors and 

 

I

 

c

 

 is the critical current of the d.c.
Josephson effect. As long as 

 

I

 

 < 

 

I

 

c

 

, i.e., the current of an
external source does not exceed the critical one, there is
no voltage drop across the Josephson junction and the
charge is transferred through the junction only by the
superconducting current component.

In addition to the superconducting current produced
by spatial phase nonuniformity, there are cases when
the phase difference depends on time. In this case, volt-
age drop 

 

V

 

 across the Josephson junction is observed
and we can employ the known Josephson relationships

 

(2)

(3)

 

At time-independent 

 

V

 

, formulas (1) and (2) imply that
the superconducting current oscillates at Josephson fre-
quency 

 

Ω

 

V

 

. This self-sustained Josephson oscillation
serves as a basis of all spectroscopic applications of the
Josephson effect. Nonlinearly interacting with an exter-
nal time-dependent excitation, these oscillations cause
changes in the d.c. 

 

I

 

–

 

V

 

 characteristic of the junction or
produce a response at intermediate frequencies.

An elementary model of the Josephson junction is
the so-called model of a resistive–shunted junction
(RSJ) or resistive model. In this case, the total junction
current is represented as a sum of the superconducting

Ψ ∆ iϕ( ),exp=

I Ic ϕ , ϕsin ϕL ϕR,–= =

�
dϕ
dt
------ 2eV ,=

ΩV 2eV /�.=
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current and the current of normal quasi-particle excita-
tions (electrons):

where 

 

R

 

 is the resistance of the junction in the normal
(non-superconducting) state. This equation together
with the Josephson equation (2) comprises the system
which describes all features of small-sized junctions. It
is conventional to use dimensionless units which are
determined by the relationships:

Then, it is possible to rewrite the set of equations in
the dimensionless form:

 

(4)

 

If the d.c. bias voltage on the junction is ensured, the
d.c. (time-averaged current) 

 

I–V

 

 characteristic will be
the simple linear relation 

 

 = 

 

v

 

, since, in this case, the
supercurrent is a purely harmonic function of time.
With the direct current through the junction (current-
driven mode), the solution to Eqs. (4) gives a nonlinear

 

I–V

 

 characteristic, which can be written as

 

(5)

 

where  is the time-averaged bias voltage and the
overbar means the time averaging. It should be noted
that, in this case, the voltage across the junction is a
periodic (but not harmonic) function of time. Its funda-
mental frequency is determined by Josephson relation-
ship (3) for the time-averaged bias voltage 

 

 = 

 

.

Now, let an additional monochromatic external cur-

rent 

 

(

 

τ

 

)

 

 at an angular frequency 

 

ω

 

 be supplied to the
junction. Then, the 

 

I

 

–

 

V

 

 characteristic changes. The cor-
responding expression describing the current response
at a given voltage  = const was obtained by Kanter
and Vernon [16] in a quadratic approximation:

 

(6)

 

It is clear that this expression is invalid in the vicin-
ity of the “resonance” bias, where 

 

 = 

 

ω

 

. Detailed anal-
ysis shows that a current step (Shapiro step) is formed
at this point on the 

 

I

 

–

 

V

 

 characteristic. Its value linearly

depends on the first degree of the AC amplitude 

 

(

 

ω

 

)

 

.
In this d.c. interval, the frequency of the Josephson
oscillation at the step remains synchronized with the
external frequency (see, for example, [8]).

V /R Ic ϕsin I ,= =

i I/Ic, V c IcR, v V /V c,= = =

Ωc 2eV c/�, ω Ω/Ωc, τ Ωct.= = =

dϕ /dτ ϕsin+ i, dϕ /dτ v .= =

i

i v v
2 1+ ,sgn=

v

ωv v

ĩ

v

∆ i v ω,( ) 1
4 i
----- ĩ

2

v
2 ω2–

------------------.=

v

ĩ

Let us consider Kanter–Vernon relationship (6) and
analyze whether it can generate the Hilbert transforma-
tion. At first glance, its right-hand side looks like the
kernel of the Hilbert transformation. If we could
describe the junction response to the a.c. current with
continuous spectrum Si(ω) by the formula

where P.V. is the Cauchy principal value of the integral,
we might hope to obtain spectrum S(ω) of the radiation
incident on the junction via the inverse Hilbert transfor-
mation. However, the response becomes linear rather
than quadratic with respect to the a.c. amplitude in the
vicinity of the resonance voltage  = ω. Therefore, the
situation should be considered in more detail.

Theory of Hilbert-Transform Spectroscopy 

Kanter–Vernon relationship (6) is obtained by
neglecting fluctuation currents if(τ) in the junction. In
practice, these fluctuations are always present and must
be included into the expression for the current. Let us
rewrite the first equation of system (4) as

(7)

A solution to Eq. (7) yields a finite width for all har-
monics of the Josephson oscillation spectrum and elim-
inates divergence in formula (6) [8]. The analytical
expression for the response to a monochromatic signal
has the form [1]:

(8)

Here, it is assumed that the fluctuation current is δ-cor-
related in time and the conditions , ω � γ are met,
where γ is the fluctuation-induced linewidth of the
Josephson oscillation. Formula (8) for the current
response follows from formula (6.49) in [8] for the volt-
age response (the latter was divided by an expression
for the differential junction resistance calculated within
the framework of the resistive model). Certainly, if real
junctions were exactly described by the resistive model,
both of the expressions would be absolutely equivalent
in respect to Hilbert-transform spectroscopy. However,
formula (8) is less sensitive to deviations of the behav-
ior of I–V characteristics of real junctions from the ideal
one described by (5). One reason for this is the insignif-
icant contribution of variations of the quasi-particle
current to the total response as compared to that of vari-
ations of the supercurrent at the zero frequency at a
given d.c. junction voltage .

∆ i v( ) P.V . ωSi ω( )∆ i v ω,( ),d

0

∞

∫∝

v

dϕ /dτ ϕsin+ i i f .+=

∆ i v ω,( )
ĩ

2 ω( )
8 iv
------------ v ω+

v ω+( )2 γ2+
-------------------------------- v ω–

v ω–( )2 γ2+
--------------------------------+ .=

v

V
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Now, we can find that the a.c. current with spectral
density Si(ω) leads to the response described by the for-
mula [2]

(9)

It is necessary to note that various types of antennas
are usually used to couple radiation with the Josephson
junction. Thus, the following relationship between a.c.
current spectrum Si(ω) and the spectrum of electromag-
netic radiation affecting a Josephson junction holds:

where K(ω) is the transfer function of the antenna. To
determine the true signal spectrum, it is necessary to
take into account this function.

It can be seen that the expression in brackets in
Eq. (9) is the Hilbert transform of function Si(ω) as the
limit γ  0 is taken. By introducing the function

(10)

and applying to it the Hilbert transformation in the form

(11)

we obtain (see also [2])

(12)

The spectrum Si(ω) estimate is designated in

expressions (11) and (12) as (ω). In formula (12), it
is easy to recognize the convolution of the spectral den-
sity of the induced alternating current with the Lorentz
distribution. The latter is the positive-frequency part
J(ω – , ) of the spectrum of intrinsic Josephson
oscillations (see [8, formula (6.63)])

(13)

which was obtained theoretically in the resistive model
with δ-correlated thermal noise. If Si(ω) slowly varies
over a frequency interval of order of γ, the Lorentz dis-

∆ i v( ) ω∆i v ω,( )d

0

∞

∫=

=  
π

8 iv
---------- 1

π
--- ωSi ω( ) ω v–

ω v–( )2 γ2+
--------------------------------d

∞–

∞

∫– .

Si ω( ) K ω( ) 2S ω( ),=

g v( ) 8
π
---iv∆ i v( )=

Ŝ ω( ) Hv ω→ g v( )[ ] 1
π
---P.V . v

g v( )
v ω–
--------------,d

∞–

∞

∫≡=

Ŝ ω( ) 1
π
--- ω'Si ω'( ) γ

ω' ω–( )2 γ2+
---------------------------------.d

∞–

∞

∫=

Ŝ

v v

SJ ω v,( ) γ v( )
ω v–( )2 γ2

v( )+
-----------------------------------------

γ v( )
ω v+( )2 γ2

v( )+
------------------------------------------+∝

≡ J ω v– v,( ) J ω v+ v,( ),+

tribution in the integrand can be replaced by πδ(ω' – ω),

and obtained function (ω) becomes equal to sought
spectrum Si(ω). This procedure formally corresponds to
the passage to the limit γ  0 in expressions (9) and
(12). At the same time, if the function Si(ω) is more nar-
rowband than the spectrum of the Josephson oscillation
and one can assume that it is proportional to δ(ω – ω0),
the latter expression yields intensity of the Josephson
oscillations J(ω0 – , ) at frequency ω0 as a function
of bias voltage .

It is important to note that the linewidth of the
Josephson oscillation actually depends on the bias volt-
age. This fact is explicitly shown in Eq. (13) by the sec-
ond argument of function J(ω0 ± , ). Within the
framework of the resistive model, fluctuation current
if (τ) originates from equilibrium thermal fluctuations in
normal resistance R of the junction and, in accordance
with [8], the oscillation linewidth is expressed (in the
dimensional form) as follows:

Here, Rd = d /d  is the differential resistance of the
junction. It can be seen that Γ depends on the bias volt-
age. This circumstance makes the transfer from (9)
to (12) via Hilbert transformation (11) questionable
even within the scope of the resistive model. Below, we
explain under what conditions the dependence of γ on

 does not hinder applying Hilbert-transform spectro-
scopy.

We should also note that the characteristics of real
Josephson junctions may differ from those of the ideal
resistive model. On the one hand, it is known that the
resistive model adequately describes certain Josephson
junctions. Its applicability for junctions made of low-
temperature superconductors is discussed in [14]. In the
case of HTSC junctions, the application of the RSJ
model to description of junction high-frequency and
noise characteristics [4, 6, 17, 18] and squids [19] has
been successfully tested in experiments.

On the other hand, it is important to know to what
extent the results obtained by the Hilbert-transform
spectroscopy method depend on the fact that the
Josephson junction is not ideal. This problem is the
subject of current studies, especially investigations of
HTSC junctions or more intricate Josephson structures,
such as coherent chains of Josephson junctions. In par-
ticular, it was only supposed in [2] that expression (12)
is suitable for measuring the spectrum of the Josephson
oscillation. However, it had been already applied to the
quantitative analysis of the Josephson oscillation spec-
trum [4, 6] without any justification.

Solving Eq. (7) for a noisy junction exposed to the
monochromatic radiation by the method similar to that

Ŝ

v v
v

v v

Γ V( ) γ v( )Ωc≡ 1
π
--- 2e

�
------ 

 
2 Rd

2 V( )
R

---------------kT 1
Ic

2

2I
2

V( )
----------------+

 
 
 

.=

V I

v
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used in [20], it is possible to derive the generalization
of Eq. (9), which allows one to eliminate limitations of
Hilbert-transform spectroscopy by the Lorentz shape of
the Josephson oscillation spectrum. It can be easily
seen that, taking into account Eq. (13), (9) can be rep-
resented as

(14)

In turn, expression (14) is modified to the form

(15)

When  � 1 over the entire essential bias
voltage range, the second argument of spectral density
J in (15) does not prevent us from calculating the Hil-
bert transformation in accordance with Eq. (11) for an
arbitrary (but smooth) dependence of γ on . This
statement can be proved by using the Bedrosyan theo-
rem about “freezing” slow factors involved in the Hil-
bert transformation [21] (see also [22, 23]). As a result,
we generalize the convolution in expression (12) in the
form

(16)

It follows from (16) that Hilbert-transform spectros-
copy can be used to measure both the spectrum of the
radiation incident on a junction and the spectrum of the
Josephson oscillation itself, regardless of the actual
spectral distribution of the latter, if one of the spectral
distributions involved is considerably narrower than the
other. The proof of this statement is similar to those
used in optical and noise spectroscopy (see, for exam-
ple, [24, 25]). Expression (16) allows one to find the
conditions such that Hilbert-transform spectroscopy
can be used to experimentally measure the Josephson
oscillation spectrum or the dependence of H on  and
to determine the scheme of these experiments. If the
radiation spectrum of an external source is measured
and it is necessary to take into account a finite linewidth
of the Josephson oscillation, expressions (15) and (16)
make it possible to solve the deconvolution problem in
the functional space of either measured or Hilbert-
transformed functions.

Measurements in Hilbert-Transform Spectroscopy 

For clarity of the following data transformations
involved in calculations, let us briefly describe the mea-

∆ i v( )

=  
π

8 iv
---------- 1

π
--- ωSi ω( ) 1

π
---P.V . ω'

J ω' v– v,( )
ω' ω–

------------------------------d

∞–

∞

∫ 
 
 

d

∞–

∞

∫ .

∆ i v( )

=  
π

8 iv
---------- 1

π
--- ωSi ω( ) 1

π
---– P.V . v '

J ω v '– v,( )
v ' v–

------------------------------d

∞–

∞

∫ 
 
 

d

∞–

∞

∫ .

γ v( )/v

v

Ŝ ωv( ) 1
π
--- ωSi ω( )J ω ωv– v,( ).d

∞–

∞

∫=

V

surement procedure. Function g( ) in Eq. (10) must be

formed of measured data. To this end,  character-

istic and response  must be measured as func-

tions of bias voltage . The bias voltage sweep range

must include the interval [0– ] with sufficiently

high maximum voltage  in order to provide for
effectively infinite limits of integration with respect to
voltage in expression (11). We introduce the term hil-
bertogram for function g( ) by analogy with the term
interferogram in Fourier spectroscopy.

Resolution in Hilbert-transform spectroscopy
depends on linewidth of the Josephson oscillation γ, the
length of the voltage sweep interval, and the spacing of
voltage sampling points disposed usually equidistantly.
The linewidth depends on intrinsic voltage fluctuations
in the junction and the external noise level. The latter
should be suppressed to values as low as possible over
a wide frequency range: from the line frequency to TV-
station frequencies. The experimental setup must make
it possible to modulate the input radiation and measure
the phase  of response using a lock-in amplifier.
Function g( ) determined by Eq. (10) can be
obtained from the measured data by a straightforward
procedure [26]. The simplest case takes place for the
d.c. voltage-driven junction, when two curves (the cur-
rent and response) should be measured as functions of
the bias voltage. For the current-driven junction, it is
necessary to calculate the current response from the
measured voltage response using the known expression

(17)

Differential resistance Rd( ) can be directly mea-
sured or numerically calculated from the measured I–V
characteristic. The need for expression (17) was dis-
cussed after formula (8). Figure 1 illustrates all neces-
sary input data for Hilbert-transform spectroscopy. The
hilbertogram was obtained from these data using
expressions (10) and (17). The sample was an HTSC
Josephson junction irradiated by a backward-wave
oscillator (BWO) at 410 GHz.

2. DATA PROCESSING
IN HILBERT-TRANSFORM SPECTROSCOPY

Discrete Fourier Transformation
and Hilbert-Transform Spectroscopy 

Due to the simplicity of the Hilbert transformation
of trigonometric functions,

(18)

v

I V( )
∆I V( )

V

Vmax

Vmax

v

∆I
v

∆I ∆V /Rd.–=

V

Hx y→ axcos[ ] ay,sin–=

Hx y→ asin x[ ] acos y, a 0;>=

Hx y→ iax( )exp[ ] i a( ) iay( ),expsgn=
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it can be readily analytically applied to functions repre-
sented by the Fourier series or integral.

A measured (at discrete points) hilbertogram can be
represented by a truncated Fourier series whose coeffi-
cients are calculated via the DFT. After that, the Hilbert
transform of this series can be found. However, for this
method could provide for a satisfactory representation
of the spectrum of the studied radiation, it proved nec-
essary to continue the bias voltage sweep until mea-
sured values of the hilbertogram decrease to the mea-
surement noise level. Because of a slow (as 1/ ) fall-
off of the response outside the region where the major
intensity of the measured spectrum was concentrated,
we had to increase the voltage up to values significantly
exceeding Vc, which resulted in a substantial increase in
current noise, or a damage of the junction by large cur-
rents, and, in any case, reduced the upper boundary of
spectroscopy operating range for the given junction.

We can process the curve, whose measurement is
stopped, when it still has noticeably nonzero values.
Due to the periodic continuation of the function by its
discrete Fourier series, a discontinuity of the first kind
arises at the boundaries of periods, which, as a result of
the Hilbert transformation, is converted into the loga-
rithmic divergence slowly decreasing from the point of
discontinuity and yielding a large error even far from
the period (measurement interval) boundaries. Since
the response function is odd with respect to the change
of the bias voltage sign, it is possible to reduce this dis-
continuity effect by odd-extending the response mea-
sured on the positive bias voltage section to the negative
bias voltages. This method is equivalent to applying the
discrete sinus Fourier transformation on the positive
bias. However, in this case, the constant component of
the recovered spectrum is lost and, in certain regions,
the spectral density has inadmissible negative values.
The trace of these processing defects often occurs in the
literature. A typical illustration can be seen, for exam-
ple, in [26, Fig. 1c].

Transfer to the Integral Equation 
with the Hilbert Kernel 

This work proposes another approach. By applying
the inverse Hilbert transformation, we can invert
Eq. (11) and rewrite it as a convolution integral of

sought spectrum estimate (ω) with the Hilbert kernel

(19)

which yields a singular integral equation for (ω).

Measured radiation spectrum S(ω) and its estimate

(ω) usually belong to the class of functions with a
compact support and finite energy; i.e., they are equal

V

Ŝ

Hω v→
1– Ŝ ω( )[ ] 1

π
---P.V . ω Ŝ ω( )

ω v–
--------------d

∞–

∞

∫–≡ g v( ),=

Ŝ

Ŝ

to zero above a certain frequency and the integrals of
them are finite. On the contrary, the Hilbert transform
of these functions has long tails and slowly falls as 1/
as   ∞. The integral equation makes it possible to
use a relative locality of the sought solution and avoid
hilbertogram measurements in the voltage region dis-
tant from the spectrum existence domain. The measure-
ments can be restricted to the voltage region where the
hilbertogram value still exceeds noise (for further infor-
mation see Section 4).

To solve convolution integral equation (19) with the
Hilbert kernel, the RECOVERY software package [9]
was used. It is based on the maximum-likelihood
method. As was shown in [10], this algorithm allows
one to attain superresolution for a nonsingular kernel of
the integral equation. This work demonstrates that this
is also true for a singular kernel of the Hilbert transfor-
mation.

Discrete Hilbert Transformation
and Hilbert-Transform Spectroscopy 

In the communications theory and digital signal pro-
cessing, as a rule, periodic or almost periodic functions
with a bounded spectrum are applied. This spectrum
can be described with a sufficient accuracy by the DFT
coefficients if we correctly select a sampling frequency
and avoid aliasing (see, for example, [27]). In this case,
the Hilbert transformation can be analytically applied

V
v

–100

0

I, µA; Rd, Ω; ∆V, arb. units; g( ), arb. units

V, µV

500 1000 1500

100

200

0

1

2
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4

V

Fig. 1. An example of input experimental data as functions
of the bias voltage: (1) current I, (2) differential resistance
of the junction Rd, (3) voltage response ∆V, and (4) hilber-

togram g( ).V
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to a finite trigonometric series representing a measured
function.

When the Kramers–Kronig relation is used in optics
to find absorption bands from the refractive index spec-
tra or expression (11) is employed in Hilbert-transform
spectroscopy, one has to deal with nonperiodic func-
tions represented by the Fourier integral. In these cases,
to eliminate contributions of periodic continuation of
the measured function, one could try to follow the rec-
ommendations proposed in [23] (to complete the set of
measured values with zeros until the measured interval
doubles). However, if the measurements were stopped
at a nonzero response value, it is impossible to avoid by
this trick a discontinuity in the original function and,
respectively, a logarithmic singularity in its Hilbert
transform.

However, in the case of Hilbert-transform spectros-
copy, it is possible to make the following modification
in the described method. If we extend the measured
function beyond the right end as an even function, the
function obtained in the double interval is continuous
and vanishes at both ends, since, at the zero bias voltage

 = 0, the function g( ) vanishes by its definition (10).
Then, applying the discrete sinus Fourier transforma-
tion and using the obtained coefficients in the inverse
cosine Fourier transformation, we find the sought spec-
trum accurate to the constant component. The latter can
be determined via extrapolation of the first several har-
monics of the calculated DFT coefficients to the zero
frequency. Certainly, this procedure ensures adequate
results when the input function is measured in the entire
interval where the sought function is nonzero. How-
ever, in this case, it is not necessary to measure the
input function values up to the noise level.

The procedure proposed cannot be applied for the
inverse process, namely, for calculating function g( )

from spectrum (ω) when solving integral equation (19),
since errors of calculated values g( ) at the interval
end are always large and slowly decrease as the interval
increases. Therefore, the convolution in (19) is calcu-
lated using the discrete Hilbert transformation with the
kernel digitized at half-integer argument values, i.e., at
the points located in the middle between the points

where g( ) and (ω) are calculated (see, for example,
[28, 29]). In this case, the convolution integral can be
calculated using the fast DFT.

3. DEFINITION OF SUPERRESOLUTION
IN HILBERT-TRANSFORM SPECTROSCOPY

There is a natural connection of Eq. (19) with the
Kramers–Kronig relations in electrodynamics and
optics [20], and there are algorithms and computer pro-
grams which are specially intended for that kind of cal-
culations [31–34]. All methods used in these works can
be referred to as linear methods, since they involve a
linear data expansion in various sets of basis functions.

v v

v

Ŝ
v

v Ŝ

According to [10], any linear restoration method can
only modify the amplitudes of Fourier harmonics rather
than generate new ones, which are absent in initial data
or lost in input noise. Therefore, the linear methods
cannot guarantee superresolution.

Now, let us define superresolution coefficient SR as
the ratio of the Fourier spectrum width of the output
signal to the Fourier spectral width of the input signal:

(20)

Quantity ∆ω for any signal is determined by the for-
mula

(21)

where S(ω) is the spectral signal intensity on the posi-
tive frequency semiaxis and Smax(ω) is its maximum
value. It should be noted that definition (20) does not
formally coincide with that from [10], since the kernel
of the Hilbert transformation

(22)

has an infinite bandwidth both in the direct x-space and
in the Fourier-transform ω-space. However, new defini-
tion (22) can be equally used both for the kernel of the
Hilbert transform and ordinary Lorentz or Gaussian
kernels.

As it was shown in [10], the maximum possible
superresolution is mainly determined by the experi-
mental signal-to-noise ratio and can be readily pre-
dicted using the simple formula

where Es is the energy of the measured signal, En is the
input noise energy, and dB = 10  is the input
signal-to-noise ratio.

By virtue of well-known formulas (18), the Hilbert
transformation retains the values of the harmonics of
any function. Hence,

and, according to our definition of superresolution (20),
we should always obtain SR = 1 for the Hilbert transfor-
mation. This is a very important general conclusion. At
first glance, we cannot obtain SR > 1 in Hilbert-trans-
form spectroscopy. In fact, this is not the case. Actually,

SR ∆ω( )out/ ∆ω( )in.=

∆ω 1
Smax ω( )
------------------- S ω( ) ω,d

0

∞

∫=

K x y–( ) 1
x y–
-----------=

SRmax
1
3
--- 1

Es

En
-----+ 

 
2log

dB
10
-------,≈=

Es/En( )log

∆ω( )out ∆ω( )in,=
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we always have a finite bandwidth of Josephson oscil-
lation J(ω – , ) in Eqs. (14)–(16), so, in addition to
the Hilbert transformation in (11), we deal with the
convolution integrals of input spectrum Si(ω) either
with the Hilbert transform of the spectrum of Josephson
oscillations in (14) or with J(ω – , ) itself in (16).
As a result, the spectral bandwidth of an actual kernel
in the integral equations for Si(ω) is always finite, and
the concept of superresolution in Hilbert-transform
spectroscopy is well defined. This circumstance
enables one to increase the bandwidth of the output sig-
nal via the recovering procedure.

In contrast to methods that involve the direct calcu-
lation of the Hilbert transform of the input experimental
data, in this work, we propose to solve convolution inte-
gral equation (19). In the calculations, we used the
Dconv2_n program, which is a modification (for details
see [35]) of the Dconv2 program from the RECOVERY
package [9] based on the maximum-likelihood method.
This is a nonlinear method ensuring superresolution
[10]. A detailed description of the recovery procedure is
given in [9–11].

Work [12] describes the frequency-domain analysis
of superresolution for the mean-maximization algo-
rithm, which virtually coincides with our algorithm, the
latter being a modification of the Tarasko algorithm
[36]. We should also mention the work [37] devoted to
infrared spectroscopy, in which the Kramers–Kronig
relation is also reduced to a system of integral equations
of the first kind solved by the nonlinear minimization
method.

4. EXAMPLES OF DATA PROCESSING
IN HILBERT-TRANSFORM SPECTROSCOPY

Numerical Simulation 

Before applying the Dconv2_n program to actual
experimental data, we tested the method using numeri-
cal simulations. As a rule, we can use only a finite
(rather than infinite) bias interval over which hilberto-
gram g( ) is measured. This interval has to be matched
with the finite frequency band ω1 ≤ ω ≤ ω2, ω2 < ∞ (usu-
ally ω1 = 0) where the measured spectrum Si(ω) is
located. We define this aspect as data limitation. Figure 2
illustrates the effect of such a limitation on the final
result for various methods of the Hilbert transformation
implementation. In one case, the method is based on the
fast DFT combined with optimal filtering [38]. In
another one, the nonlinear method realized in the
Dconv2_n program is used. Figure 2a shows the origi-
nal spectrum (curve 1), which is to be obtained using
the Hilbert-transform spectroscopy technique, and the
input hilbertogram with the 20-dB signal-to-noise ratio
calculated from it (curve 2). The hilbertogram is trun-
cated at about half its maximum value. The transforma-
tion results are illustrated in Fig. 2b. A drastic differ-
ence between the results yielded by both methods at

v v

v v

v

high-frequency spectrum edge can be seen. The imple-
mentation of the Hilbert transformation in accordance
with formula (11), where the hilbertogram was repre-
sented by its own Fourier series using the fast DFT, led
to a large deviation of this result from the correct
behavior of the spectrum near the point ω ≈ ω2 . At the
same time, the solution to integral equation (19) did not
exhibit such deviation, and the noise remained approx-
imately at the same level as in the original signal. The
false tail of the spectrum obtained by the DFT is the
trace of the logarithmic divergence of the Hilbert trans-
form at the interval end point where a discontinuity
occurs. This discontinuity is due to the periodic repeti-
tion of the hilbertogram represented by the Fourier
series.

It is useful to note that the application of the even–
odd extension trick to the hilbertogram (see Section 2)
gives a spectral curve which virtually coincides with
the curve 1 (Fig. 2b). We have failed to obtain, using the
same method, hilbertogram 2 from Lorentz distribu-
tion 1 (Fig. 2a). The reason is the localizability of the
spectrum (the tail of the Lorentz distribution drops as
1/ω2) and the extension of the hilbertogram obtained
from it (decreases as 1/ω). In addition, due to the one-
to-one correspondence of the direct and inverse Hilbert
transformations, the repeated application of the Hilbert
transformation to g( ) is equivalent to the convolution
of Si(ω) with the delta function.

One more example of simulation is the test of Hil-
bert-transform spectroscopy using the spectrum of fre-
quency-modulated (FM) oscillations. This case gives
us an opportunity to simulate the effect of intricate radi-
ation with a continuous spectrum on the junction. The
time-dependent function describing oscillations with
the harmonic frequency modulation can be written as

(23)

The Fourier expansion of this almost periodic
function can be found in many textbooks (see, for
example, [39]), but, in our case, it is more convenient
to deal with covariation f(t) and its spectral density.
Using the definition of covariation function Φ(τ) and its
spectral decomposition, which is suitable for periodic
or almost periodic functions

(24)

v

f t( ) ω0t
∆
Ω
---- Ωtsin+ 

  .cos=

Φ τ( ) 1
T
--- tf t( ) f t τ+( ),d

T /2–

T /2

∫T ∞→
lim=

SΦ ω( ) 2
T
--- τΦ τ( ) ωτ( ),cosd

0

T /2

∫T ∞→
lim=

Φ τ( ) SΦ ωk( ) iωkτ–( ),exp
ωk ∞– ∞,( )∈

∑=
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we obtain the following expression in the case of func-
tion (23):

(25)

Here, Jk(x) is the Bessel function with an integer index;
ω0, Ω > 0; ω ∈  (–∞, ∞); k = 0, 1, 2, …; the elements of
set {ωk} are determined as solutions to equations

Φ τ( ) 1
2
---J0

2∆
Ω
------- Ωτ

2
-------sin 

  ω0τ( ),cos=

SΦ ωk( ) 1
4
---Jk

2 ∆
Ω
---- 

  δmk δnk+[ ] .=

|ω ± ω0| = kΩ; the integer parameters are

and δmn is the Kronecker delta:

We consider the case of a very low modulation fre-
quency, when

(26)

m
ωk ω0–

Ω
---------------------, n

ωk ω0+
Ω

---------------------= =

δmn

1, m n=

0, m n.≠



=

ω0/Ω � ∆/Ω � 1.
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Fig. 2. Data limitation effect in measurements: (a) (1) input Lorentz peak S(ω) with the half-width D = 60 and (2) inverse Hilbert
transformation g( ) of the Lorentz peak with the normal noise added to the original signal at a signal-to-noise ratio of 20 dB (the

curve simulates the measured response) and (b) (1) original Lorentz distribution S(ω), (2) distribution (ω) recovered via calcula-
tion using formula (11) and the fast DFT with optimum filtering in calculations of the Hilbert transformation, and (3) distribution

(ω) obtained by solving integral equation (19) using the Dconv2_n program (thin noisy curve).
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Thus, the sum over ωk in (24) can be approximated by
the integral with respect to ω as follows:

(27)

Expression (27) determines the continuous approxi-
mation of the spectral density of an FM oscillation:

(28)

Under conditions (26), this formula can be simpli-
fied by using Langer’s uniform asymptotic representa-
tion for Bessel functions ([40, Section 7.4.4]). Passing
to the limit Ω  0 in (28) and neglecting the second,
exponentially small, term in brackets, we obtain

(29)

It can be easily seen that spectrum (29) of FM oscil-
lations is exponentially small beyond the region |ω –
ω0| < ∆, and below we employ the following expression
for the spectral density of FM oscillations:

(30)

Expression (30) can be derived by time averaging of
the oscillating spectral component of the harmonic
signal:
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Figure 3a shows the Lorentz-profile line of Joseph-
son oscillations, convolution of the Lorentz distribution
with FM spectrum (30), and simulated experimental data
(hilbertogram) at the 40-dB signal-to-noise ratio.

In Fig. 3b, curve 1' is the spectrum of FM oscilla-
tions recovered in two stages from hilbertogram 3
(Fig. 3‡). At the first stage, integral equation (19) with
this hilbertogram serving as g( ) is solved. The result
is curve 2 (Fig. 3a), which does not demonstrate any
signs of a complicated structure of the FM oscillation
spectrum. Then, Eq. (16) is solved for Si(ω). As the
kernel of the integral equation, the Lorentz profile is
used (curve 1, Fig. 3a); as the right-hand side, we use
the result of the previous stage (curve 2). After 50 iter-
ations, the superresolution SR = 1.955 is achieved.

Measurement Results 

To practically test the integral equation approach,
we studied the spectrum of an FM BWO, which was

v
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Fig. 3. Simulation of FM oscillation spectrum measure-
ments: (a) (1) the Josephson oscillation line with the
Lorentz profile and half-width D = 50, (2) convolution of
FM spectrum S(ω) (shown by curve 2') with the Lorentz dis-
tribution 1, and (3) hilbertogram g( ) obtained using the
inverse Hilbert transformation of curve 2 (normal noise is
added to obtain the 40-dB signal-to-noise ratio) and

(b) (1') spectrum (ω) of the FM signal recovered using
Eq. (16) and (2') original spectrum S(ω) of FM oscillations
given by the formula (30).
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measured using the Hilbert-transform spectroscopy
method. In the measurements, we employed high-tem-
perature Josephson junctions manufactured by the laser
ablation of YBaCuO on MgO, Yttrium Stabilized Zir-
conia (YSZ), and sapphire bicrystal substrates and inte-
grated with log-periodic broadband antennas. The typ-
ical characteristics of submicron-wide junctions mea-
sured in liquid helium are as follows: the normal
resistance is as large as 20 Ω, the critical current is
~100 µA, and the typical voltage is as high as 2 mV.
Samples with Josephson junctions and antennas were
placed on the flat surface of an extended hypersemi-
spherical sapphire lens in a cryostat with an optical
window.

The detector response was measured using a chop-
per for amplitude modulation of the input signal and a
lock-in amplifier for extraction of the detector
response. The BWO was used as a source of radiation
in a range of 200–550 GHz. The intrinsic linewidth of
the BWO radiation does not exceed 1 MHz. Therefore,
for producing a broadband radiation, we used the har-
monic modulation of the cathode voltage of the BWO.
A deviation amplitude of 100 V corresponds to a fre-
quency deviation of about 6 GHz at a central frequency
of 410 GHz. The total frequency deviation from the
minimum to maximum was about 12 GHz.

Figure 4a shows sequential stages of data processing
in Hilbert-transform spectroscopy: hilbertograms of
current-driven Josephson junction correspond to the
incident radiation generated by a BWO without (curve 1)
and with (curve 2) frequency modulation. The Hilbert
transforms are obtained by solving integral equation (19)
whose right-hand side contains hilbertograms 1 and 2
(Fig. 4). At first glance, the results demonstrate nothing
interesting.

Spectral curves 1' and 2' (Fig. 4b) correspond to the
left-hand side of Eq. (16) for the BWO monochromatic
and FM spectra. Due to a large linewidth of the Joseph-
son oscillation measured in the modulation-free mode
of the BWO, one does not observe the expected compli-
cated dependence of the original spectrum in modula-
tion mode, which is in agreement with the convolution
integral in (16).

In order to recover an FM spectrum with superreso-
lution, i.e., to eliminate, if possible, the influence of a
large linewidth of the Josephson oscillation, one can
use the measured spectrum of Josephson oscillations
(BWO without frequency modulation, curve 1', Fig. 4b)
as the kernel in convolution integral equation (16).
However, the result (curve 3, Fig. 4b) proves to be more
successful if we use the hilbertogram measured with
the monochromatic radiation (curve 1, Fig. 4a) as the
kernel in integral equation (15) and substitute the hil-
bertogram for the FM BWO (curve 2, Fig. 4a) on the
left-hand side of Eq. (15) (after its respective transfor-
mation from  to g( )).

It makes sense to present the results above in a more
conventional way. We can recover an invisible structure
(from curve 2, Fig. 4a) using curve 1 as a point spread
function and curve 2 as an input signal of the standard
Dconv2_n program. The spectrum recovery result is
represented by a forked peak at the center of Fig. 4b.
The distance between two maximum values is 11 GHz.
This is in good agreement with an estimate of 12 GHz
from the BWO calibration described above.

CONCLUSIONS

The problems of Hilbert-transform spectroscopy
application are discussed that are caused by using the
resistive model of the Josephson junction as its founda-
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Fig. 4. Experiment with an FM BWO: (a) (1) input hilber-
togram g( ) of the BWO spectrum at 410 GHz without fre-
quency modulation; (2) the same with frequency modula-
tion. The signal-to-noise ratio of the original signal is

39 dB. (b) Curve 1' is Hilbert transform (ω) of curve 1a,

curve 2' is Hilbert transform (ω) of curve 2, and double
peak at the center of curve 3 is the FM oscillation spectrum
obtained using the Dconv_n program after 200 iterations
(superresolution is 1.23).
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tion. The generalization of basic relationships is sug-
gested, which makes it possible to study the Josephson
oscillation spectrum in structures whose I–V character-
istic has features not described by the resistive model.
One should bear in mind that the Josephson oscillation
linewidth depends on the bias voltage and the most accu-
rate results of Josephson oscillation spectrum measure-
ments can be obtained only with the external radiation
frequency scan at a fixed bias voltage (see formula (16)
and in [1, formulas (7) and (8)]). The computational
methods of the spectrum recovery in Hilbert-transform
spectroscopy are analyzed. To improve spectrum mea-
surement resolution and accuracy, it is proposed to
apply the integral equation method rather than the DFT.
The solution of the integral equation using the maxi-
mum-likelihood method is implemented in the
RECOVERY program package. The efficiency of the
proposed technique is illustrated by the example of the
numerical simulation and spectrum measurements of
the BWO FM radiation in the 400-GHz range. We
attained the superresolution SR = 2 in the simulation
and SR = 1.23 in the experiment.

It should be noted that a number of fundamental
problems arising in practical implementation of Hil-
bert-transform spectroscopy as a routine measurement
method call for further studies, but they do not give
grounds for doubts in its potentialities.
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