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INTRODUCTION

Calculation of various elements of optical and
microwave circuits and, in particular, designing of
radiators, sensors, excitation elements, and resonance
structures often involve the problem of scattering of
guided modes (GMs) by the end of a dielectric
waveguide. When a simple geometry is used (i.e., a
waveguide’s end without additional elements) the
characteristics of such a structure can be varied within
a relatively small range (see below). Therefore, more
complex structures are often used for practical appli�
cations. For example, multilayer dielectric coatings
are deposited on the plane of the waveguide end [1, 2].
These coatings can provide for the strong frequency
dependence of the mode reflection coefficient. The
ends with chamfered and tapered geometries [3], and
structures with the hemispherical shape of a
waveguide’s end are applied; moreover, lenses are
placed at the output of a waveguide [4]. In all of such
structures, the values of reflection and transmission
coefficients can be varied within rather wide ranges (as
compared to the case of a simple geometry).

In this study, the integral equation method (IEM)
and the variational method (VM) are applied to ana�
lyze the problem of the lowest order GM reflection
from the end of a planar dielectric waveguide (PDW)
loaded with an infinitely thin perfectly conducting
diaphragm, i.e., a metal plane with a slot. These or
similar structures are used in various optical sensors
[5, 6] as well as for releasing radiation from Cherenkov
generators or amplifiers [7, 8]. In this study, we con�

sider the symmetrical geometry
1
 displayed in Fig. 1.

Below, we investigate the TE problem, where all of the

1 The figure displays the special geometry with the PDW thickness
smaller than the dimension of the slot. The general case will be
considered below.

waves have only one nonzero component of the elec�
tric field, Ex. A single�mode PDW is considered, and it
is assumed that the fundamental TE0 GM travels
towards its end.

1. THE INTEGRAL EQUATION

The thickness of the center layer is 2d (Fig. 1). It is
assumed that the permittivities and permeabilities are
step functions: these are ε1 and μ1 in the substrate and
coating (for |y| > d) and ε2 and μ2 inside the center layer
(for |y| < d). As usual, the time factor  (where− ωexp( )i t
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ω = kc, k is the wavenumber, and c is the velocity of
light in free space) will be omitted. Let εf and μf denote
the permittivity and permeability of the right half�
space, respectively. A metal diaphragm with a slot of
dimension 2a is located in the plane of the PDW end.
We assume that all of the media are nonmagnetic, i.e.,

 = 1, and that the dielectric loss can be
neglected. For the problem to have a single solution,
we assume that wavenumber k has a vanishingly small
imaginary part, Imk = +0.

Approaches based on the decomposition of fields in
the eigenmode fields of open waveguides are applied to
derive integral equations (IEs) and variational formu�
las. These approaches are similar to methods widely
used in the theory of metal waveguides [9, 10] and to
methods used for the analysis of the problem of scat�
tering of GMs propagating along an infinite open
PDW loaded with a metal diaphragm located in the
transverse plane [11, 12].

Let us decompose unknown function  = Ex in the
end plane z in the eigenmode fields of the free half�
space and waveguide [13, 14]. The expression for the
field in the right half�space (for z ≥ 0) has the form

(1)

where  are the radiation eigenmode
fields in the region z > 0,  are unknown coefficients,
and κ is the transverse wavenumber (a continuous
parameter for this problem) ranging over all values κ > 0.
The indices q = 0 and q = 1 mark even (symmetric)
and odd modes, respectively. With allowance for the
symmetry condition, only even (symmetric) modes
should be retained in all of the decompositions for the
problem under study. The radiation modes (RMs) of
the right half�space can easily be constructed in an
explicit form. For example, the fields of even RMs
(q = 0) have the form

(2)

where  is the amplitude coefficient. For these
modes, the longitudinal wavenumber is γ

κ
=

System of functions  is orthogonal [15, 16].
The normalizing factor for the modes of the right half�

space is  =  Note that, in this problem,
the root branch such that Imγ

κ
 > 0 when Imk > 0 is

chosen in the expression for γ
κ
.

On the left of the waveguide’s end (at z ≤ 0), we
have

(3)
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where R is the reflection coefficient of the TE0 funda�
mental GM and  are the unknown amplitudes of
the RM fields of the waveguide. In formula (3),

 denotes the fields of GMs (modes of
the discrete spectrum) and  denotes
the fields of RMs (modes of the continuous spectrum)
that propagate away from the end. Later, as for the
expansion of the fields for z ≥ 0, we retain only the even
RMs (i.e., the terms with q = 0) in the expressions for
the fields in the waveguide region.

The general approach that can be applied for con�
structing eigenmodes of regular PDWs is described in
[15, 17]. Note that the fields of the eigenmodes of a
waveguide with piecewise constant parameters can be
represented as sums of exponential functions. The
coefficients of these functions are determined from the
conditions on the medium interfaces y = ±d and the
condition at infinity, which is derived with the help of
the S�operator method [15]. The introduction of this
operator makes it possible to identify RMs that are
pairwise degenerate for the planar geometry. The fields
of the symmetrical RMs of the waveguide have the
form

 (4)

where  In formula (4), the
eigenvalue of the S operator is

(5)

The eigenmodes of the discrete spectrum can be con�
structed with the help of a standard technique with
allowance for the fact that their fields vanish at infinity
(as 

System of functions  is orthogonal. The
orthogonality conditions have the form

(6)

where N0 is the GM norm,  is the normalizing fac�
tor of the waveguide RMs,  is the identity tensor,
and  is the Dirac delta function. Here and
below, the following notation for the integral of the
product of arbitrary functions  and  over the
plane z = 0 is used:

(7)

Equating in the plane z = 0 tangential field compo�
nents Ex and Hy, we obtain an IE of the first kind [10,
12, 14] that, for the considered geometry, has the form

(8)
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where  is the unknown function (see above) and 
is the integral operator determined by the relationship

(9)

Note that, in contrast to the end of a PDW without a
diaphragm, in the problem considered, coordinate y
changes within a finite interval, |y| < a.

The above IE is solved by means of the collocation
method [11, 12]. The electric field in the diaphragm’s
slot is approximated with a finite series of even Cheby�
shev polynomials with the weighting function

(10)

where Cm are unknown coefficients and M is the num�
ber of terms. This representation of the field takes into
account the field singularities [18] on sharp metal
edges of an infinitely thin perfectly conducting dia�
phragm. Next, we equate the left� and right�hand sides
of Eq. (8) at the points

(11)

As a result, we obtain the system of linear algebraic
equations (SLAE) for the decomposition coefficients
of (10)
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The main steps of the calculation of matrix elements
Qjm are the same as those used in [12]. The algorithm
of the calculation of the integrals determining Qjm is
described in detail in Section 3. Being rather bulky, the
expressions for Qjm are not presented here. After the
SLAE is solved, the coefficients Cm are found, and,
then, the aperture field is determined from formula
(10). The reflection coefficient is calculated from the
formula

(13)

which follows from the orthogonality conditions.
Note that Eq. (8) is an IE of first kind. As is known,

instabilities may arise in the process of solution of such
equations; i.e., a solution may start oscillating with an
increasing amplitude as the number of terms taken
into account in the decomposition for the sought field
grows. However, in the case under consideration,
instabilities practically are not manifested. This cir�
cumstance follows from the fact that the kernel of this
IE is singular (has a logarithmic singularity) and, the
process of solution involves the self�regularization
effect (see, e.g., [19, 20]). In addition, for weakly guid�
ing structures (see below) the series (10) rather rapidly
converges, and, therefore, the instability does not have

enough time to develop.
2
 For the aforementioned rea�

sons, no additional regularization algorithms are
applied in this analysis.

2. COMPUTATION RESULTS

In all of the examples considered below, it is
assumed that the parameters of the right half�space
correspond to the parameters of free space: εf = μf = 1
(i.e., nf = 1). In addition, it is assumed that the wave�
length in free space is λ = 0:86 μm (here, λ = 2π/k).

The squared absolute value of reflection coefficient

 is shown in Fig. 2 as a function of the ratio a/d. It
is assumed that the PDW thickness is 2d = 0.25 μm,
the permittivity of the center layer is ε2 = 12.96, and
the permittivity of the exterior of the slab is ε1 =
11.664. Curves 1–3 are plotted for the numbers of
terms in the field representation M = 2, 4, and 6,
respectively. Curve 3 graphically coincides with the
curve calculated at M = 8. The meaning of curve 4 is
explained below. Note that, when a/d ∼ 1, there is a dip
in the plotted curves. This dip is apparently related
with a slot resonance of small Q�factor. As should have
been expected, the absolute value of the reflection
coefficient approaches unity when aperture dimension
2a is small.

For the aforementioned PDW parameters and for

the value of a/d that is not very large, quantity  is
graphically stabilized even for M ≥ 6. For wide slots

2 This case slightly resembles the situation occurring in a calcula�
tion using asymptotic decompositions.
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Fig. 2. Squared absolute value of the reflection coefficient
for the TE0 modes vs. the ratio a/d for the constant thick�
ness of a weakly guiding waveguide.
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(when a/d > 3 in our case), the effect of the diaphragm
is insignificant. This conclusion is illustrated in Fig. 2,

where, for comparison, straight line 5 shows value 
in the structure without a diaphragm (i.e., when

 This value is calculated with the help of the
accelerated iteration method [14]. It is seen that curve 3
approaches curve 5 when a/d ∼ 3.

Thus, this technique, which is based on the repre�
sentation of the solution in the form of the series of
Chebyshev polynomials with weighting function (10),
can be applied to calculate the coefficient of GM
reflection from a simple waveguide end (without a dia�
phragm) when the value of the ratio a/d is chosen
rather large. However, it should be taken into account
that, in order to retain the acceptable accuracy of the
computation results, it is necessary to increase number
M of terms in the decomposition for field (10) as the
ratio a/d grows (see Fig. 4 below). Rough estimation
shows that number M should satisfy the condition

 where w0 is the half transverse dimen�
sion of the GM field (in the order of the quantity

 where p1 is the GM external transverse

wavenumber).
3
 

Let us analyze the convergence of the series for the
aperture field as number M of terms in decomposition
(10) grows. The computation results are presented in
Fig. 3. The permittivities and permeabilities of the
PDW layers are the same as those from Fig. 2, the
thickness of the waveguide layer is fixed at the value
2d = 0.25 μm, and the dimension of the slot is a = 1 μm
(i.e., a/d = 4). Curves 1–4 are plotted for the numbers
of terms in the field representation M = 2, 4, 6, and 8,
respectively. Note that the results obtained for M = 10
graphically coincide with the data obtained for M = 8.
The field of the incident TE0 mode is shown with
curves 5. The presented data demonstrate the good
convergence of decomposition (10).

In Fig. 4, the squared absolute value of reflection

coefficient  is shown as a function of dimensionless
waveguide thickness 2d/λ for a wide slot. It is assumed
that the permittivity of the center layer is ε2 = 12.96,
and the permittivity of the exterior of the layer is ε1 =
11.664. The computation is performed for 2a = 4 μm.
Curves 1–4 are plotted for the numbers of terms in the
field representation M = 10, 15, 20, and 30. The

squares are the values of  calculated with the help
of the accelerated iteration method [14] for the case

 (i.e., in the absence of a diaphragm). Note that,
in this example, when 2d/λ > 0.05, the transverse
dimension of the GM field is small as compared to a;
i.e, the GM field is small when |y| > a. Therefore, the
diaphragm affects the process of reflection of the TE0

mode from the PDW end only slightly.

3 This estimate is valid only for weakly guiding PDW, and it
becomes rough for very large a.
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It is reasonable to represent the solution in the form
of polynomial series (10) in the case when the PDW is
a weakly guiding one (when the contrast of permittiv�
ities is low:  ∼ 1). When the contrast of permittiv�
ities is high, then, the effect of the singularities of fields
(or of their derivatives) can be pronounced near the
edge points with the coordinates z = 0, y = ±d [18].
Therefore, decomposition (10) for the aperture field
converges slowly. As has been mentioned above,
numerical instabilities may occur in this case. The
analysis of structures with a high contrast of refractive
indexes necessitates decompositions that take into
account the field behavior near edge points.

Let us discuss in brief the structure of the scattered
field in the far zone (i.e., the field of a cylindrical
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wave). In the right half�space, the expression for this
field can be obtained from integral representation (1)
with the help of the stationary phase method. In cylin�

drical coordinates  where r =  and ϕ =
 the pattern is

(14)

as r → ∞. In this formula, the notation τ0κ = 
where  is the aperture field (see above), is introduced
and parameter κ is determined by angle ϕ according to
the relationship 

Simple estimates of pattern f(ϕ) can be obtained by
substituting approximate expressions for field  into
(14), i.e., using the physical optics method. The pat�
terns calculated with the help of this method are pre�
sented in Fig. 5 for two limit cases. When , the
aperture field is approximately described by the first
term from decomposition (10). In this case, after some

algebra, we obtain  Curve 1 is the pat�
tern for the waveguide end with a small slot in the dia�
phragm. Here and below, the fields are normalized so
that f(0) = 1. Note that, for a narrow slot, the shape of

( )r,ϕ ,
2 2,y z+
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2 2
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0 ,V
κ
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sin( )p fknκ = κ = ϕ .

�

a d�
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the pattern is independent of the waveguide parame�
ters in the first approximation.

In the other case, when the dimension of the slot is
large, i.e.,  and the waveguide is a weakly guiding
one, the aperture field is approximately described by
the function  This approximation
becomes inaccurate only near the diaphragm edges
(i.e., in the neighborhood of the points y = ±a). Under
this condition, the integral that determines function

 is calculated in terms of elementary functions.
Being bulky, the corresponding expression is not pre�
sented here. Curve 2 is the pattern in the right half�
space in this case. The waveguide parameters are as
follows: ε1 = 11.664, ε2 = 12.96, and 2d = 0.25 µm. The
case when there is no diaphragm is thoroughly studied
in [14]. It is not efficient to change the shape of the
pattern of radiation from the PDW end with help of a
diaphragm; in particular, a substantial change in the
transmitted power level cannot be avoided under the
variation of the slot dimension. Therefore, here, we do
not consider the characteristics of the radiation field in
more detail.

3. THE VARIATIONAL METHOD

We also apply a method based on the variational
principle to solve the problem in question. This tech�
nique is rather universal. It has been used for investiga�
tion of various irregularities of both planar and, more
general, 3D structures [13, 21]. It should be taken into
account that simple VM versions are approximate and
that their accuracy often cannot be determined. At
present, the VM error has been estimated only for a
small number of problems solved in an analytical form
(see, e.g., [21, 22]). Using the results obtained with the
help of the IEM, we can determine the accuracy of the
VM for the geometry under consideration.

With the help of standard techniques [9, 10, 13], we
can obtain stationary functionals for the main charac�
teristics of the problem using the IE derived above. For
TE0 mode reflection coefficient R, the stationary
functional has the form

(15)

where

(16)
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Recall that, owing to the stationarity property, for�
mula (15) yields the results whose error is the next�
order infinitesimal relative to that of a trial (approxi�
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Fig. 5. Radiation field patterns for the (curve 1) small and
(curve 2) large aperture dimensions.
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mate) field  which is substituted into equation (15).
The following function is used as such a distribution:

(18)
where Сe is a certain constant. Note that this constant
is cancelled out on the right�hand side of (15), and,
therefore, the value of reflection coefficient R depends
only on the shape of the distribution of the aperture
field rather than its amplitude. The aforementioned
test field takes into account the singularities on the
diaphragm edges but disregards the field structure near
the axis, especially, in the case when the mode incident
on the waveguide end is extremely slow. Therefore, it is
evident that this distribution can be suitable for com�
paratively small slots whose dimension usually does
not exceed wavelength λ. The exact boundary of the
applicability and the error of formula (15) are deter�
mined below with the help of simulation.

Let us describe in brief the method of calculation of
the reflection coefficient from formula (15). Note that
the integrands in integrals I1 and I2 comparatively
slowly approach zero as . Therefore, the main
task of the calculation is accelerating their conver�
gence.

First, consider second term I2. For an arbitrary
value of κ, the inner integral from I2 can be calculated
analytically:

(19)

where  is the Bessel function (m = 1). Thus, we
obtain

(20)

For , we have  Next,
taking into account the formula

(21)

for the tail of integral I2, we obtain the following esti�
mate:

(22)

where  is a certain intermediate large value of
the argument. The integral is calculated numerically
over the interval  and, according to the above for�
mula, over the semi�infinite interval . Partition
point κb is chosen such that the omitted terms of the

order  are small.
An analytical representation in the above form can�

not be obtained for integral I1. Nevertheless, the tail of
this integral can be estimated rather accurately when it
is taken into account that, for , the waveguide
RM fields are close to the RM fields of a homogeneous

a�
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space where the refractive index is n1. This conclusion
can readily be drawn from formulas (2), (4), and (5) if

it is taken into account that, for ,  =

 and, hence  and
 Note that waveguide RMs especially rapidly

become the modes of the homogeneous space when

the PDW is weakly guiding
4
, i.e., when  In this

case, the second term from the expression for  is
small within a wide range of number κ. Thus, the tail
of integral I1 can be estimated from formula (22),
where εf should be replaced by ε1. As a rule, the accu�
racy necessary for the calculation of I1 is provided
when the value of partition point κb is larger than that
for integral I2.

The variational principle can be applied to obtain a
series of analytical relationships. For example, under
the conditions  1 and , the following esti�

mate can be derived: , where the propor�
tionality coefficient is dropped to simplify the repre�
sentation. The above relationship can be derived if it is
taken into account that, for small a, the quantities I1

and I2 approach finite limits and that the quantity

 from the denominator of formula (15) is pro�
portional to a2. This estimate can be obtained with the
help of a quasi�static method. However, since the per�
mittivities of the media on the left and right of the dia�
phragm slot are different, apparently, its polarizability
can be calculated only numerically.

Now, we present results obtained with the help of
the VM. First, we return to the example analyzed with
the help of the IEM. In Fig. 2, curve 4 is the depen�

dence of  on the ratio a/d for the waveguide with the
parameters indicated in the foregoing. It is seen that the
results obtained by means of the VM and IEM are in
good agreement when a/d < 1.5. Obviously, for larger
values of a/d, it is necessary to apply other test functions

 substituted into variational relationship (15). For
example, we can use the function that coincides with
the GM field when |y| < a and is zero when |y| > a. For
this distribution, the values of integrals I1 and I2 can
readily be estimated. The analysis of this problem is
beyond the framework of this study; therefore, we
restrict ourselves to the above remarks.

In the considered example, the PDW is a weakly
guiding one, i.e., having a small contrast of permittiv�
ities,  ∼ 1. The VM can also be applied for analyz�
ing structures with rather a high contrast of these

parameters. As an example, the dependence of  on
the ratio a/d for such a problem is shown in Fig. 6
(curve 1). The structure parameters are as follows: ε1 =

4 Note that this property was earlier successfully used in the devel�
opment of the free space radiation mode (FSRM) method
[2, 23], which was widely applied for solution of various prob�
lems of wave scattering.
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1.0, ε2 = 2.1092 (n2 = 1.4523), 2d = 0.8 µm, and λ =
0.86 µm.

Curve 2 shows the same dependence for a

waveguide with ε1 = 1.0, ε2 = 12.96 (n2 = 3.6)
5
, and

2d = 0.12 µm. Note that, for the considered problems,
when a/d > 1, the magnetic fields at the edge points
z = 0, y = ±d can have noticeable singularities that are
disregarded in simplified representation (18). Never�
theless, the analysis of similar problems [10] shows
that these singularities do not substantially affect the
calculation of integral characteristics.

CONCLUSIONS

In the study, a PDW loaded with a thin metal dia�
phragm in the plane of the waveguide end has been con�
sidered. For the fundamental TE mode the coefficients
of reflection from the PDW end have been calculated by
means of the IEM and VM. The computation has
shown that the reflection coefficient of GMs can be var�
ied within a wide range with the help of the diaphragm.

The IEM makes it possible to develop rather a sim�
ple algorithm for the numerical solution of the prob�
lem. The calculation has shown that, when the PDW is
weakly guiding, the solutions, including field distribu�
tions, converge rather rapidly within a wide range of
the problem parameters. In particular, this method
can be applied to analyze even the case of wide slots for
a single�mode waveguide.

The VM used in the study is an approximate tech�
nique. Nevertheless, as has been shown, this method
provides for a good accuracy of the reflection coeffi�
cient calculation. This approach is universal. In par�

5 The values of n2 used in these examples are close to the refractive
indexes of sintered quartz and gallium arsenide.

ticular, it can be generalized to the case of a PDW
whose core is formed by several dielectric layers and to
the case of anisotropic structures.
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Fig. 6. Squared absolute value of the reflection coefficient
for the TE0 modes vs. the ratio a/d for various values of the
permittivity of the waveguiding layer.


