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Abstract: The possibility of an equilibrium state of a gravitating scalar field (describing ordinary
matter) inside a black hole, compressed to the state of boson condensate, in balance with a longitudinal
vector field (describing dark matter) from the outside, is considered. Analytical analysis, confirmed
numerically, shows that there are regular static solutions to the Einstein equations with no limitation
on the mass of a black hole. The metric tensor component grr(r) changes sign twice. The behavior
of the gravitational field and material fields in the vicinity of these two Schwarzschild radii were
studied in detail. The equality of the energy–momentum tensors of the scalar and longitudinal vector
fields at the interface supports the phase equilibrium of a black hole and dark matter. Considering the
gravitating scalar field as an example, a possible internal structure of a black hole and its influence on
the dark matter at the periphery of a galaxy are clarified. In particular, the speed on the plateau of a
galaxy rotation curve as a function of a black hole’s mass is determined.
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1. Introduction

Astrophysical observations indicate the existence of super-massive objects at the centers of galaxies.
In our Milky Way, there is an invisible object located in the same place as the radio source “Sagittarius
A”. According to the orbital motion of stars, astronomers estimate its mass to be 4.3 × 106 Mò, and its
radius to be less than 0.002 light years [1]. The mass of the Sun is Mò = 1.989 × 1033 g. If the mass of
an object in the center of a galaxy is six orders of magnitude greater than the maximum equilibrium
mass of a neutron star, then it is natural to consider black holes as the most likely candidates for
super-massive objects in the centers of galaxies.

According to modern concepts, a black hole is a process of unlimited compression (collapse) of
matter under the action of dominant forces from its own gravitational field. In this case, the density
grows indefinitely, and the energy per particle inevitably reaches and exceeds the binding energy of
“elementary” particles in neutrons, or in their composite components.

The time of existence of galaxies (and, consequently, of black holes in their centers) is of the order of
lifetime of the universe. With a very slow evolution of a black hole, the local equilibrium concentrations
of particles, transforming one into another via “chemical reactions”, depend on temperature and
pressure, and do not depend on specific reaction channels (Reference [2], Section 101). One of the most
important issues, that is not yet clarified, is the reverse effect of mutual transformations of particles on
the process of gravitational self-compression. The fact that the lifetime of a galaxy with a collapsing
object in the center is of the order of the universe’s lifetime suggests that the mutual transformation of
particles one into another can slow down the compression process, or even stop it. This is the main
reason for searching and analyzing static configurations of gravitating objects in the general theory
of relativity.

In the macroscopic theory of dark sector [3], the contribution to the galaxy rotation curves by
dark matter, described by a longitudinal vector field, is expressed in terms of the non-zero covariant
divergence ϕM

;M(0) ≡ ϕ′0 of the field at the center. ϕ′0 is a free parameter of the theory [3]. In fact,
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the non-zero value ϕ′0 depends on the interaction of dark matter with a black hole in the center of a
galaxy. To establish this connection, it is necessary to analyze the internal structure of a black hole in
balance with the dark matter outside of it. In a vacuum (with no stabilizing action by dark matter) an
equilibrium state of a super-heavy black hole would be impossible.

In the process of gravitational collapse, the density of matter increases continuously. The stage of
compression, when massive Bose particles (Z bosons, W bosons, Higgs scalar bosons, and/or boson
pairs of fermions) are dominating, is inevitable. At low temperatures, a degenerate boson gas is
energetically more favorite than a degenerate fermion gas. At zero temperature, bosons are located on
the ground level. This state of boson matter is named Bose–Einstein condensate. Its wave function is a
scalar field (Reference [4], Section 26). At the border of a super-massive scalar field, the energy density
vanishes, but the pressure does not. If a degenerate Fermi gas is considered as the ordinary matter of a
black hole, then both the energy density and pressure are zeros on the surface. Therefore, a realization
of phase equilibrium on the interface of a super-massive black hole and dark matter is more likely at
the stage of domination of boson matter in a collapsing black hole.

The main properties of a gravitating Bose–Einstein condensate in an equilibrium state are
summarized in my review article [5], published in an issue of the Journal of Experimental and
Theoretical Physics (JETP), dedicated to the 85th anniversary of academician Pitaevskii. Applying a
homogeneous Klein–Gordon equation, we deal with a nonlinear eigenvalue problem. At a slightest
deviation of parameters from eigenvalue, the integral curves go into the signature area of the opposite
sign, which is tacitly considered to be “non-physical”. With a restriction of a constant signature,
it is not possible to find static solutions that adequately describe the equilibrium state of gravitating
super-massive objects.

A possible equilibrium structure of a gravitating scalar field in the region of space of a black hole
with the signature changing sign (within the Schwarzschild sphere, where grr > 0) is considered in
this article. Instead of representing the metric tensor component grr = −e−λ, which fixes the sign,
I use a less rigorous condition of regularity. A change in the metric signature does not lead to logical
contradictions, since it occurs beyond the event horizon in an inaccessible area to a remote observer.

The condition of phase equilibrium at the interface between a scalar field (black hole) and
a longitudinal vector field (dark matter) determines the covariant divergence ϕM

;M(0) ≡ ϕ′0 of the
longitudinal vector field. It becomes possible to establish a connection between the plateau velocity of
a galaxy rotation curve and the black hole’s mass (see Equation (68) below).

2. Space-Time, Strongly Curved Up to Changing the Signature of Metric Tensor

In the framework of the standard approach, a static space-time metric,

ds2 = g00
(
dx0

)2
+ grrdr2

− r2
(
dϑ2 + sin2 ϑ dφ2

)
, (1)

with a spherically symmetric distribution of matter, is considered.
In the general theory of relativity, one can introduce a local Galilean coordinate system at any

point of a smoothly curved space-time. In a curved space-time, a transition from one coordinate system
to another, and back, is unambiguous if the Jacobean j of transformation is non-zero. The Jacobean of a
transition from coordinates x′i to xi can be expressed in terms of the determinants of metric tensors g′ik

and gik:
j2 = g′/g, (2)

where g = detgik (Reference [6], Section 83). The signature of a Galilean coordinate system is (+, −,
−, −). The Jacobean of transition from Galilean coordinates x′i, where g′ = −1, to curved ones xi is
j = 1/

√
−g.

In our case of interest, the metric tensor in Equation (1) is diagonal, and there is a Schwarzschild’s
sphere r = rh inside a gravitating object, where the component grr changes sign, while g00 does not.
When only grr changes sign, the signature of metric tensor (1) becomes (+, +, −, −). Accordingly,
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j = 1/
√

g. On the Schwarzschild radius, the Jacobean j(rh) = 0. Due to different signatures on the
opposite sides, the space-time can be either locally flat, or locally non-flat on the hyper-sphere r = rh.

Formally, derivation of Einstein equations at r > rh, and at r < rh should be carried out separately,
with j = 1/

√
−g where grr < 0, and j = 1/

√
g in the area with grr > 0. For both sides, the static

gravitational field, created by a spherically symmetric distribution of matter, satisfies the same
Einstein equations (see Equations (100.4) and (100.6) in Reference [6]). We write them down in the
following form:

(grr)′ +
1 + grr

r
= κrT0

0, (3)

grr
(1

r
+ ν′

)
+

1
r
= κrTr

r. (4)

Gravitational constant κ = (8πk)/c4 = 2× 10−48 sec2 /g× cm, k = 6.67× 10−8cm3/g× sec2, ν = ln g00.
The general solution of Equation (3) is

grr(r) =
κ
r

∫ r

r0

T0
0(x)x

2dx− 1. (5)

r0 is a constant of integration, and grr(r) is a regular function, provided that the integral in Equation (5)
converges. The convergence of this integral means that the mass within the layer (r0, r),

M(r0, r) =
4π
c2

∫ r

r0

T0
0(x)x

2dx, (6)

(with account of gravitational mass-defect) is finite. If the total mass M = M(0,∞) is finite, the metric
component grr(r) is a continuous function within the whole space 0 < r < ∞. The regularity of grr(r)
follows from the finiteness of the total mass of matter, regardless of its physical nature.

A static solution to Einstein’s equations for a gravitating point-size body was found by
Schwarzschild back in 1916 [7].

grr(r) = −1 + rh/r. (7)

Actually Equation (7) is applicable outside a gravitating body, including its boundary, provided
that, on the surface, T0

0 = 0. At r >> rh Newton’s law is applicable, and the Schwarzschild radius rh is
proportional to the total mass M of a gravitating point-like object in the center.

M =
c2

2k
rh. (8)

In a vacuum, outside a gravitating body, there is no physical reason for the existence of irregularities.
Naturally, the determinant of a Schwarzschild’s static metric (Equation (100.14) in Reference [6]), as well
as the determinant of a stationary Kerr’s metric (Equation (104.2) in Reference [6]), does not change
signs. In a vacuum, metric signatures remain unchanged, and the space-time on the hyper-surface
r = rh is locally flat.

Analyzing the equilibrium states of spherically symmetric gravitating matter, it is usually assumed
that the energy density at the center is finite, and the metric tends to the Galilean metric at infinity.
Bearing in mind a regular solution in the whole space, people choose two equations,

grr(0) = −1, g00(∞) = 1, (9)

as boundary conditions for the Einstein Equations (3) and (4). These kinds of solutions exist only if the
total mass of matter does not exceed a critical value Mcr. Critical mass is of the order of the Sun mass
in case of a degenerate neutron Fermi gas. For a Bose–Einstein condensate (see Reference [5]),

Mcr ∼M2
Pl/m. (10)
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Plank mass MPl =
√

c}/k = 2.177× 10−5g. For bosons with a mass m ∼ 100 GeV/c2, the critical mass
Mcr is about one million tons. In the solutions with boundary conditions from Equation (9) and total
mass M < Mcr, the metric component grr does not change sign at all.

Formally, at the absolute zero temperature in a vacuum, there could exist static states of boson
condensate having an arbitrarily large mass with grr not changing sign. However, these states are
metastable. An aggregate of numerous isolated centers, each containing a condensate with the
maximum possible mass of the order of Equation (10), is energetically more advantageous [5].

As applied to the gravitating Bose–Einstein condensate, the Klein–Gordon Equation (16) for
the condensate wave function, together with Einstein Equations (3) and (4), form a complete set of
equations. Equation (16) is a homogeneous second-order equation. We face a nonlinear eigenvalue
problem [5]. If the total mass M is less than the critical Mcr, then, starting from −1, the function
grr(r) grows with increasing r, achieves its maximum value, and decreases back to −1 as r→∞ .
With M < Mcr the function grr(r) remains negative within the whole interval 0 < r < ∞.

At the slightest deviation from an eigenvalue, the integral curve grr(r) grows monotonically and
inevitably changes sign at some r = r∗. Note that g00(r∗) , 0. If the total mass M < ∞, then the
integral in Equation (6) converges at the upper limit, and the energy density T0

0(r) decreases faster than
r−3 as r→∞ . Looking at Equation (3), one can see that, in the region of changed signature grr > 0,
the derivative (grr)′ becomes negative when (1 + grr)/r exceeds κrT0

0 with growing r. It means, that
there may exist (and does exist, see below) a solution where, with increasing r, the metric component
grr(r) gets into the region of violated signature, passes through a maximum, and returns back into the
region of the Galilean signature. grr(r) intersects the x-axis twice.

Suppose that the metric signature is changed to (+, +,−,−) within a spherical layer rg < r < rh. Then,

grr
(
rg

)
= grr(rh) = 0. (11)

If g00
(
rg

)
, 0, then detgik and the Jacobean in Equation (2) are zeros at r = rg, and at r = rh. The area

rg < r < rh of the modified metric signature is tacitly considered “non-physical”. I do not see a reason
why (unlike the Schwarzschild’s and/or Kerr’s metrics in a vacuum) a super-massive gravitating object
cannot curve the space-time very strongly, up to changing the signature of the metric tensor inside a
material medium.

Yes, there can exist selected regions, like hyper-spheres r = rg and r = rh, where space-time is not
locally flat. As a rule, it happens, if there is a physical reason. In our case, the radial function ψ(r)
of the gravitating Bose–Einstein condensate satisfies the Klein–Gordon Equation (19). grr(r) is the
coefficient at the highest derivative. At r = rg, rh, Equation (19) is not defined, since the coefficient at
the highest derivative is zero. I used a standard approach to the problem of a small parameter at the
highest derivative in Section 3.

From the general solution in Equation (5) to Equation (3), we get the identity

rh − rg = κ

∫ rh

rg

T0
0(r)r

2dr. (12)

If, in the region rh < r < ∞, the metric signature (+, −, −, −) remains unchanged, then rh is the
event horizon for a remote observer. In the Schwarzschild solution in Equation (7), turning grr(r) to
zero can happen at any radius outside the gravitating body. However, in a vacuum, the determinant
of metric tensor is non-zero, and the metric signature remains unchanged. Turning grr(r) to zero,
followed by the change of the metric signature, can take place inside a body, or on its surface, or on the
interface of two gravitating objects.

As it follows from the identity in Equation (12), in the presence of a layer with a different signature,
the radius rh is not connected with the whole mass of a gravitating object, but only with its part inside
the layer. The total mass M is connected with the horizon rh by Equation (8) only if the integral in
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Equation (12) converges at rg → 0 . In this case the relation in Equation (7) takes place for r ≥ rh.
At r = rh, we have

grr′(rh) = −1/rh . (13)

In view of Equation (13), it follows from Einstein Equations (3) and (4) that

T0
0(rh) = 0, Tr

r(rh) = 1/κr2
h. (14)

Turning the energy density T0
0 to zero at r = rh means that the surface of a gravitating body

can be an event horizon. However, since Tr
r(rh) , 0, the pressure on the surface does not disappear.

It means that (without taking into account interactions of a non-gravitational nature) there can be no
static equilibrium state of a gravitating body in a vacuum with a broken signature of the metric tensor.
Nevertheless, one cannot exclude a possibility that the event horizon rh takes place on the interface
between two gravitating objects, for instance, if the inside pressure of a black hole is balanced by the
pressure of dark matter from outside.

According to modern concepts, the amount of dark matter in the universe is several times larger
than the amount of the ordinary (baryonic) matter. The presence of dark matter opens up a possibility
for existence of static solutions to the Einstein equations describing the gravitational field of spherically
symmetric matter with no limitation of mass. An example of such a solution, in which the metric
component grr(r) changes sign twice (firstly, inside a black hole and, secondly, on the interface with
dark matter), is investigated below. The equilibrium state of a super heavy black hole becomes possible
due to the presence of dark matter. The balance of pressures at the interface of a black hole and dark
matter is able to support a static equilibrium of these two phases. Let us demonstrate this considering
a gravitating scalar field as an example of ordinary (not dark) matter inside a black hole.

3. Gravitating Scalar Field behind the Horizon

The Lagrangian of a complex scalar field ψ in a curved space-time with the metric tensor gik
(Equation (1)) has the form

L = gikψ∗,iψ,k −U(ψ∗ψ) (15)

In accordance with the least action principle, ψ and ψ* satisfy the Klein–Gordon equation.

1
√
−g

(√
−ggikψ,i

)
,k
= −

∂U

∂
∣∣∣ψ∣∣∣2ψ, g = detgik. (16)

From the point of view of equilibrium in its own gravitational field, it is implied that the number of
quanta of the field is large, and all interactions, except the gravitational one, are not significant. Today,
the interaction of dark and ordinary matter is observed through the curvature of space-time only.

The main characteristic determining the gravitational properties of a scalar field is the mass of a
quantum m. In the power series of the potential,

U
(∣∣∣ψ∣∣∣2) = U(0) +

∂U

∂
∣∣∣ψ∣∣∣2

∣∣∣ψ∣∣∣2 + λ
∣∣∣ψ∣∣∣4 + . . . , (17)

term λ
∣∣∣ψ∣∣∣4 and higher degrees are corrections for collisions of particles and/or interactions of

non-gravitational nature. Omitting these corrections, ∂U/∂
∣∣∣ψ∣∣∣2 in Equation (16) is a constant having

the dimension cm−2. It is related to the mass of the quantum m: ∂U/∂
∣∣∣ψ∣∣∣2 = (mc/})2.

Time is a cyclic coordinate in a static field. The energy of a single quantum E = }ω is the integral
of motion. In a flat space-time, the Klein–Gordon Equation (16) is a linear one. Its solution is a
plane wave ψ

(
xi
)
= ψ0 exp

{
i(pr− Et)/}

}
, describing the motion of a particle with relativistic spectrum
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E2 = p2c2 + m2c4. In a curved space-time, E is the conserved energy of the field per one quantum.
A scalar field in the state of definite energy E has the form

ψE
(
xi
)
= e−iEx0/}cψ(r). (18)

Radial function ψ(r) obeys the equation

grrψ′′ +

(
(grr)′ +

g′grr

2g

)
ψ′ =

1
}2c2

(
g00E2

−m2c4
)
ψ, g = detgik. (19)

Note that grr is the coefficient at the highest derivative in Equation (19). Since grr(rh) = 0,
the Klein–Gordon equation is not determined on the hyper-sphere r = rh.

The Lagrangian (15) of a scalar field does not depend on the derivatives of the metric tensor.
The energy–momentum tensor is derived by the formula

Tik =
2
√
−g

∂

∂gik
(
√
−gL). (20)

For the components of the mixed energy–momentum tensor, operating in the Einstein Equations (3)
and (4), we find

T0
0 =

1
}2c2

(
g00E2 + m2c4

)
− grr

∣∣∣ψ′∣∣∣2, Tr
r =

1
}2c2

(
−g00E2 + m2c4

)
+ grr

∣∣∣ψ′∣∣∣2. (21)

The relation

ν′ + λ′ = −
κr
grr

(
T0

0 − Tr
r

)
= −

2κr
grr

(
g00E2

}2c2 − grr
∣∣∣ψ′∣∣∣2), λ′ = g′rr

grr
(22)

follows from Equation (21). Using the relations in Equations (21) and (22), it is convenient to present the
set of field and Einstein Equations (19), (3) and (4) in the normal form. In the dimensionless variables
x = (mc/})r,

u(x) =
√
κψ(r), w(x) =

}
√
κ

mc
grrψ′(r), g(x) = grr(r), h(x) =

E2

m2c4
g00(r), (23)

we have a system of four first-order equations, resolved with respect to derivatives:

u′ = w/g, (24)

w′ = (h− 1)u−
2w
x

+
x
g

(
u2h−

w2

g

)
w, (25)

g′ = x
(
(1 + h)u2

−
w2

g

)
−

1 + g
x

, (26)

h′ =
h
x

(
1 +

1
g

)
−

xh
g

(
(1− h)u2 +

w2

g

)
. (27)

The set of Equations (24)–(27) contains no parameters. In Equation (23) and below, g(x) is the
component grr(r) of the metric tensor. Please do not confuse it with the determinant g = detgik in the
previous formulas.

Denote a dimensionless gravitational radius xg = (mc/}) rg. At x = xg the component of metric
tensor g

(
xg

)
≡ grr

(
rg

)
= 0. Equations (24)–(27) are determined at x < xg, and at x > xg separately.

They are not determined at x = xg because, at this point, the coefficient at the highest derivative in the
scalar field Equation (19) is zero.
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It follows from Equation (27) that, at x→ xg ± 0 , (+0 means from above, and−0 means from below)(
w2

g

)
x→xg±0

→
1
x2

g
− u2

g±

(
1− hg±

)
. (28)

Here, ug± = lim
x→xg±0

u(x), and hg± = lim
x→xg±0

h(x) are one-sided limits either from above or from below.

Substituting Equation (28) into Equation (26), we obtain:

g′(xg) =
2
xg

(
x2

gu2
g − 1

)
. (29)

Note that the derivative g′(xg) does not depend on the behavior of w(x) and h(x) at x→ xg .
The assumption of linearity for g(x) at x→ xg is not required in advance. The linearity of g(x) at x→ xg

follows directly from Equation (3) provided that T0
0(r) is a regular function. Energy density T0

0(r) is a
continuous function inside a homogeneous medium and, therefore, one can put ug+ = ug− ≡ ug in
Equation (29).

The sign of g′(xg) depends on the difference u2
g − x−2

g . If u2
gx2

g = 1, then the function itself g = 0,
and its derivative g′ = 0 at x = xg. If u2

g − x−2
g > 0, the derivative g′(xg) > 0 and g(x) is a growing

function in the vicinity of xg. In the case x→ xh > xg , we have u2
h < x−2

h , and g(x) is a decreasing
function in the vicinity of the horizon xh.

It follows from Equations (28) and (29) that

w2 =
{
x−2

g − (1− hg±)u2
g

}
g′(xg)(x− xg) at x→ xg ± 0. (30)

On the left-hand side w2 > 0; thus, the right-hand side of Equation (30) is also a positive quantity.
The derivative g′(xg) in Equation (29) is a non-zero constant. The factor (x − xg) in Equation (30)
changes sign at x = xg. Therefore, the combination x−2

g − (1− hg±)u2
g has different signs at x < xg and

x > xg. In the case when g′(xg) > 0, Equation (30) makes sense if hg+ ≥ 1 − (xgug)
−2 at x > xg, and

hg− ≤ 1− (xgug)
−2 at x < xg.

3.1. Regular Gravitational Radius

In the case of exact connection between the parameters,

hg− = hg+ ≡ hg = 1− (xgug)
−2, (31)

all four functions, u(x), w(x), g(x), h(x), as well as their derivatives, are continuous at x = xg.
In accordance with Equation (28), w2/g = 0 at x = xg. From Equations (25) and (27), we find

w′(xg) = −
2

x2
gug

, ν′ =
2(2− x2

gu2
g)

xg(x2
gu2

g − 1)
. (32)

With the exact connection in Equation (31), we have a regular solution of Equations (24)–(27), continuous
on the boundary x = xg between the regions of different signatures of the metric tensor:

u(x) = ug +
x−xg

ugxg(x2
gu2

g−1)
, w(x) = −

2(x−xg)

x2
gug

, g(x) = g′(xg)(x− xg),

h(x) = 1− 1
(xgug)

2 −
2

xg

(
2

(xgug)
2 − 1

)
(x− xg),

∣∣∣∣ x
xg
− 1

∣∣∣∣ << 1.
(33)

It is convenient to use these relations as boundary conditions for numerical integration. There are two
free dimensionless parameters xg and ug.
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In the absence of the relation in Equation (31), function h(x) would have a gap at x = xg. Without
a physical reason, just like in a vacuum, there should be no discontinuity of the metric component
g00(r) inside a homogeneous medium.

3.2. Horizon

A sphere, where g(xh) = 0 and h(xh) , 1 − (xhuh)
−2, can be the surface of a gravitating body.

In this case, w(x) ∼
√

xh − x at x→ xh . The scalar field terminates at x = xh in a square-root manner.
It is the event horizon for a remote observer. In order to avoid confusion, the event horizon where
w(x) tends to zero as a square root we denote xh. We leave the notation xg for a regular gravitational
radius inside a black hole. The horizon xh with a root feature is the upper border of the region x < xh
occupied by the scalar field.

Solutions with the metric function g(x), changing signs twice deserve attention: once inside a
black hole at a regular gravitational radius xg and the second time at the horizon xh > xg.

The area xg < x < xh is a layer with a violated signature of the metric tensor. g(x) is positive in this
zone. Intervals 0 < x < xg and xh < x < ∞, where the metric function g(x) < 0, are ordinary space-like
zones. In the region 0 < x < xh (from the center to the horizon xh) the scalar field is a regular function
of the radius. In this region, the unknowns u(x), w(x), g(x), h(x) satisfy Equations (24)–(27) with the
boundary conditions in Equation (33) in the close vicinity of xg.

At the boundary of the scalar field, the energy density vanishes (Equation (14)). Comparing
g′(xh) = −1/xh in Equation (13) with Equation (29), valid for both cases x = xg and x = xh, we find
that, at the termination point (on the horizon x = xh), the scalar field uh is non-zero: u2

h = 1/2x2
h. In the

vicinity of the horizon, we get

u(x) = ±
1
√

2xh
∓

√
2(1 + hh)

(
1−

x
xh

)
, w(x) = ±

√
(1 + hh)(xh − x)

2x3
h

, x→ xh − 0. (34)

The series expansion near the horizon goes in powers of
√

xh − x. Determining h′(x) and ν′(x) at
x→ xh from Equation (27), we see that the main contribution comes from the combination (1− h)u2.
In accordance with Equation (28), x−2

h − (1− hh)u2
h − (w

2/g)x=xh
= 0. The main term of expansion is

ν′(x) = −
h′(x)

hh
=

2(1− hh)√
(1 + hh)(1− x/xh)

, 1−
x
xh
<< 1. (35)

Inside the horizon sphere x < xh the derivative ν′ > 0 (see Equation (35)). If a test body is at
rest, then the force acting on it is directed toward the center (Reference [6], problem 1 at the end of
Section 88).

4. Numerical Analysis

4.1. Strip of Regular Solutions

Numerical analysis confirms that, in accordance with Equation (32), within the area of parameters,

1 < x2
gu2

g < 2, xg < xg max = 1.4285, (36)

there are finite-mass solutions, continuous at the regular gravitational radius x = xg, and terminating
in a root manner at the horizon x = xh > xg. These solutions are of physical interest. In the plane of
parameters (xg, u2

g), the region in Equation (36) is the strip between blue and red lines in Figure 1.
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Figure 1. The blue line u2
g = x−2

g in the plane of parameters xg, u2
g (Equation (36)) is the lower boundary

of the area of existence of regular solutions with finite mass M. The denominator of ν′(xg) (Equation (32))
is zero on the blue line. The red line u2

g = 2x−2
g is the upper limit. At x2

gu2
g → 2 , the total mass M→∞ .

ν′(xg) (Equation (32)) is zero on the red line.

On the bottom blue line, u2
gx2

g = 1. On the upper red line, u2
gx2

g = 2. If the parameters xg and ug in
the boundary conditions in Equation (33) are inside the strip between the blue and red lines in Figure 1,
then the corresponding solution to Equations (24)–(27) is regular and smooth in the domain 0 < x < xh,
including the interval xg < x < xh with the violated signature of the metric tensor.

4.2. Example of a Regular Solution behind the Horizon

An example of a regular solution is shown in Figure 2.
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Figure 2. An example of a regular solution to the set of Equations (24)–(27) with boundary conditions
in Equation (33). xg = 1, ug =

√
2− 0.01. In accordance with Equation (31), hg = 0.492853. The horizon

radius xh = 13.78581985 is found numerically.

On the interval 1 < x < 13.78585, the metric component g(x) > 0. This is the region of changed
signature. Its left (regular) boundary is xg = 1. On the right boundary xh = 13.78585, the scalar field
u(x) terminates with a non-zero value. On enlarged scales, this solution in the vicinity of the horizon xh
is shown in Figure 3.

The wave function u(x) (green line) terminates at the horizon xh = 13.78585 with a non-zero value
and a root feature. In the very close vicinity of xh (Figure 3, right graph), one can see that w(x) (blue line)
vanishes at x = xh in a square-root form.
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4.3. In the Vicinity of the Upper Boundary

The behavior of all four functions in the vicinity of the upper boundary ugxg =
√

2 of the strip in
Equation (36) is presented in Figure 4.
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Figure 4. Functions u(x) green, w(x) blue, g(x) red, and h(x) brown in the vicinity of the upper border of
the strip in Equation (36).

At the border xg = 1, ug =
√

2 (Figure 4, left graph), g(x) tends to a constant value through
damping oscillations. Below the border, the horizon radius xh and total mass M are finite. An example
is shown in Figure 4, middle graph: xg = 1, ug =

√
2− 0.0005, the horizon xh = 108.5238956. Above

the upper boundary of the strip in Equation (36) (xg = 1, ug =
√

2 + 0.0005, see Figure 4, right graph),
there are no configurations with a finite mass M.

The band of existence of regular solutions in the plane (xg, ug) has a restriction from the right:
xg < xg max = 1.4285. This limitation is due to the fact that, at xg = 1.4285, the first left minimum of the
red curve g(x) in Figure 5 touches the horizontal axis at the point x = 2.87. After that, g(x) remains
positive and grows indefinitely with x.Universe 2019, 5, x FOR PEER REVIEW 12 of 21 
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4.4. Core of a Black Hole

In the domain x < xg, the metric component g(x) < 0. The dimensionless scalar field diverges
logarithmically as x→ 0 .

u(x) = C(xgug) ln x, x→ 0. (37)

It is clear from Figure 6a, where x× u′(x) (dashed green line) terminates at x = 0 with a constant
value C(xgug) depending on the product xgug. Dependence C(xgug) is shown in Figure 6b.
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The logarithmic divergence of the wave function in the center takes place because, in view
of dominating gravity, interactions of other physical natures are not taken into account. At zero
temperature in a static state, the equilibrium concentration of particles involved in the processes of decay
and synthesis depends on pressure and does not depend on the specific reaction channel (Reference [2],
Section 101). In particular, we ignored the fact that, in “chemical” reactions, the equilibrium
concentration of bosons of the standard model falls down in the limits of very low and extremely high
density. It is highly likely that this circumstance “cuts off” the logarithm in Equation (37) so that the
wave function of bosons in the center u(0) becomes finite. In this case, the mass M(0, xg) (inside the
regular gravitational radius xg) also remains finite. However, the contribution of M(0, xg) to the total
mass is not determined by the value of xh because of the large logarithm, whose value depends on the
non-gravitational interactions of particles.

Corrections caused by non-gravitational interactions can be taken into account using the term λ
∣∣∣ψ∣∣∣4

in the power series of the potential in Equation (17). It is argued in the article [8] that an equilibrium
configuration (with no signature changing) can differ significantly from the case of non-interacting
bosons, even when λ is a small parameter. The analysis of the role of non-gravitational interaction of
bosons in the strongly compressed state is beyond the scope of this article.

According to the identity in Equation (12), the mass M(rg, rh) (Equation (6)) in the layer between
the regular gravitational radius rg and the horizon rh is

M
(
rg, rh

)
=

M2
Pl

2m

(
xh − xg

)
. (38)

The internal gravitational radius xg (in units of the de Broglie wavelength of a boson) is of the
order of unity and less. The gravitational radius xh of a black hole is larger, and even much larger,
than the gravitational radius of the Sun. Although the inequality xh >> xg has a large margin, a remote
observer does not determine the total mass of a black hole from the Newtonian asymptote

g(x) = −1 +
xh
x

, x >> xh . (39)
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He (or she) determines only the almost total mass. The core mass M(0, rg) of a black hole remains
unknown to a distant observer. Although the core mass M(0, rg) may be quite large due to the
logarithmic divergence, it does not affect the asymptote in Equation (39).

The possibility of existence of a partially hidden mass within a collapsed black hole is associated
with an extremely strong curving of space-time, up to violation of the metric signature. This can be
treated as a variant of gravitational mass defect. In this regard, it is appropriate to recall Andreev’s
prediction back in 1973 about the possible existence of macroscopic objects, whose mass is zero due to
the gravitational mass defect [9].

The behavior of the metric function g(x) (red lines) at three decreasing values of xg (0.1, 0.01,
and 0.001) with simultaneous increasing ug along the trajectory,

ug ≡ u(xg) =

√
2

xg
− 0.1, (40)

is shown in Figure 7A–C.
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black hole is, the less significant the logarithmic singularity in the center will be. 

Figure 7. Red lines in graphs A, B, and C show that, with a decrease of xg (and a simultaneous increase
of ug along the path in Equation (40)), the metric function g(x) gets closer to −1 in the center. Values of
xg are 0.1 (A), 0.01 (B), and 0.001 (C). The blue line is w(x), and the brown line is h(x).

Total mass increases sharply with a decreasing xg. In a regular center g(0) = −1. In this case, the
ratio of the circumference to diameter tends to π at x→ 0 . One can see that xg decreases with the
growth of total mass, and as the metric function g(x) gets closer to −1. The larger the mass of a black
hole is, the less significant the logarithmic singularity in the center will be.

4.5. Super-Heavy Black Hole

The greater the mass of a black hole is, the higher its density will be, and the smaller the size of
the core in the center will be. In other words, for a fixed value of the product xgug, the horizon radius
xh increases sharply with a decrease of internal regular gravitational radius xg. The dependence xh(xg)

at xgug =
√

2− 0.1 (along the dashed line in Figure 8b) is shown in Figure 8a.
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The solid line in Figure 8a is the interpolation of the numerically found points. A barely noticeable
dashed line is the approximation by the formula

xh = 0.89 exp(0.7x−3.25
g ), xgug =

√

2− 0.1. (41)

By reducing xg by half (along the dashed line xgug =
√

2 − 0.1 in Figure 8b), the horizon xh
(together with the mass M(xg, xh)) increases by six orders of magnitude (see Figure 8a). Also, by
increasing ug at a fixed value of xg, the horizon xh and mass M(xg, xh) grow and become infinitely
large when ug approaches the upper red border in Figure 1 (and/or Figure 8b). The zone of a violated
metric signature inside a black hole makes the existence of super-heavy objects (with no limitation of
mass) possible.

As an example of a massive scalar field, the metric function g(x) for xg = 0.55 and xgug =
√

2− 0.0005 (close to the upper border of the regularity strip) is shown in Figure 9.
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Figure 9. Metric function g(x): (a) linear scale, (b) log(x) scale, (c) double-log scale.

With these parameters, the horizon is xh = 6.74 × 105. It is much farther than the end of the
horizontal axis in Figure 9a. In order to see how the part of the graph that “stuck” to the vertical
axis looks like, the same function g(x) is presented in Figure 9b with a logarithmic scale along the
x-axis. The dashed line in Figure 9b is the Schwarzschild’s asymptote outside the gravitating mass
extrapolated back into the region of localization of the scalar field. The same graph g(x) is shown in
Figure 9c with logarithmic scales along both axes. It clearly demonstrates the relationship between xg

and xh.
The dimensionless metric function h(x) decreases monotonically in the interval (xg,xh). Moreover,

the longer the interval (xg,xh) is, the sharper h(x) decreases. With the same parameters xg = 0.55 and
xgug =

√
2− 0.0005, as in Figure 9, the function h(x) almost disappears at the horizon xh. h(x) does not

change sign up to xh (see Figure 10). Extrapolation to the termination point xh = 6.74× 105 gives the
estimate hh ≡ h(xh) ∼ 5× 10−11.
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Figure 10. Function h(x) in the interval (xg,xh) of broken signature. xg = 0.55, xgug =
√

2− 0.0005.

According to Equation (34), uh = ±1/
√

2xh. In the above example (xg = 0.55, xgug =
√

2− 0.0005),
the amplitude of the scalar field at the horizon xh = 6.74× 105 is |uh| = 1.05× 10−6.
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Components of the energy–momentum tensor in Equation (21), expressed in terms of dimensionless
variables in Equation (23), are as follows:

T0
0 =

1
κ

(mc
}

)2
[
(1 + h)u2

−
w2

g

]
, Tr

r =
1
κ

(mc
}

)2
[
(1− h)u2 +

w2

g

]
. (42)

By virtue of Equations (28) and (34), the energy density of a scalar field vanishes at the horizon:
T0

0(xh) = 0. The pressure at the horizon is non-zero. In accordance with Equation (21) and following
Equations (34), (42), and (28), we have

Tr
r(xh) =

1
κ

(mc
}

)2 1
x2

h

=
1
κr2

h

=
c8

32π k3M2 . (43)

The pressure at the horizon in Equation (43) is inversely proportional to the square of the mass.
For a black hole with the visible mass M(xg, xh) of the order of solar mass Mò = 2× 1033 g, the component
of the energy–momentum tensor Tr

r(xh) ≈ 4× 1036 g/(cm × sec2), that is, 4× 1030 atmospheres. A static
gravitating scalar field with a very high uncompensated pressure on the interface with a vacuum
cannot exist. But this is without dark matter. The presence of dark matter outside the gravitating scalar
field makes it possible to ensure a pressure balance at the interface of these two media.

5. Longitudinal Vector Field

The wave function of Bose–Einstein condensate, being a scalar, satisfies the Klein–Gordon Equation
(16). Its derivative is a covariant vector. In the case of a longitudinal vector field, it is the opposite
situation. The wave function ϕI is a vector, and its covariant divergence ϕM

;M, being a scalar, satisfies
the Klein–Gordon Equation (16). At the same time, the wave function ϕI itself is a gradient of the scalar
ϕM

;M [3],
∂ϕM

;M

∂xi =
(µc
}

)2
ϕi. (44)

The mass of a quantum of a longitudinal vector field is denoted by µ, so as not to be confused with
the mass m of a quantum of a scalar field. A longitudinal vector field has a potential. The covariant
derivative of the field is its potential at the same time.

Lagrangian of a longitudinal vector field ϕI,

L = a
(
ϕM

;M

)2
−V

(
ϕMϕM

)
, V

(
ϕMϕM

)
= V(0) + V′(0)ϕMϕM , −

V′(0)
a

=
(µ c
}

)2
, (45)

depends on the derivatives of the metric tensor via ϕM
;M. The energy–momentum tensor is derived

using the general Equation (94.4) in Reference [6]. The detailed derivation of the energy–momentum
tensor of a longitudinal vector field,

TK
I = TK

dark I = δK
i


(
ϕM

;M

)2
+

(µ c
}

)2
grrϕ2

r , I = r,(
ϕM

;M

)2
−

(µ c
}

)2
grrϕ2

r , I = 0
, (46)

is given in Reference [3] (Section 2.4).
For a super-heavy black hole, the inequality xh >> xg is carried out with a huge margin. The function

h(x) at x ∼ xh is negligible in comparison with unity. One can see it in Figure 10. Energy–momentum
tensors in Equations (21) and (46) have the same structure on the interface region. Only the wave
function and the derivative are swapped, and masses of quanta are different. In dimensionless variables
with }/µc as a unit of length,

√
κϕM

;M(r) =
µ c
} U(y),

√
κϕr(r) = W(y), y =

µ c
} r, (47)
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we have the following system of equations describing the longitudinal vector field and the gravitational
field outside a black hole x > xh :

dU/dy = W/g, (48)

dW
dy

= U −
(

2
y
− y

W2

g2

)
W, (49)

dg
dy

= y
(
U2 +

W2

g

)
−

g + 1
y

, (50)

dν
dy

=
y
g

(
U2
−

W2

g

)
−

1
y

(
1 +

1
g

)
. (51)

Equations (48)–(51) are similar to Equations (24)–(27), presented in Section 3 in the reference frame
with }/mc as a unit of length. Doing the same derivations as in Section 3, we get the derivative of the
metric function g,y(yh) ≡ dg/dy at the interface y = yh + 0 from the side of dark matter:

g,y(yh) =
2
y

(
U2

h y2
h − 1

)
. (52)

Equations (52) and (29) are derived in different reference systems. Turning from Equation (47) to
the reference system used inside a black hole (Equation (23)),

y = qx, qdg/dy = dg/dx, qU(y) = U(x), q = µ/m, (53)

we see that Equation (52) is invariant against this transformation:

g,x(xh + 0) =
2
xh

(
U2

hx2
h − 1

)
. (54)

Regularity of the gravitational field means that the metric function grr(r) and its derivative are
continuous at the horizon r = rh. From Equations (29), (54), and (34), it follows that

U2
h = u2

h =
1

2x2
h

. (55)

In this case, the components of the energy–momentum tensors of the scalar and vector fields coincide
at the interface

T0
0(rh) = 0, Tr

r(rh) =
1
κ r2

h

. (56)

The equality in Equation (55) provides the balance of pressures on both sides of the horizon r = rh.
This is the phase equilibrium of the scalar field inside the horizon, and the longitudinal vector field
describing dark matter outside the horizon.

6. Galaxy Rotation Curve: Dependence of Plateau Velocity on the Mass of a Black Hole

In Equations (24)–(27), the unit of length along the x-axis is the de Broglie wavelength }/mc of a
quantum of the scalar field (~10−16 cm for a quantum with the rest mass ~ 100 GeV/c2). The argument
of covariant divergence ϕM

;M and other functions in Equations (48)–(51) is y = (µc/})r. On the galactic
scale, a natural unit of length is the de Broglie wavelength }/µc of a quantum of the longitudinal
vector field. According to damped oscillations on the plateau of galaxy rotation curve (see Figure 11),
}/µc ∼ 10 kpc ≈ 3 × 1022 cm.

In References [3] and [10], the wavelength }/µc is considered as a unit of length. The argument
of the covariant divergence ϕM

;M is (µc/})r. It follows from Equations (48)–(51) that ϕr(rh) = 0 on
the horizon r = rh. Therefore, on the interface r = rh, the covariant divergence gets reduced to the
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usual one: ϕM
;M = dϕr/dr. When the scale is changed by q times, y = qx, the ordinary derivative is

transformed as dϕ/dx = qdϕ/dy. Thus,

ϕM
;M

(µc
} rh

)
= qϕM

;M

(mc
} rh

)
. (57)

The balance of forces of gravitational attraction and centrifugal repulsion determines dependence
of the velocity V(r) of a star, rotating around the center of a galaxy, on the radius. In a static spherical
gravitational field, the centripetal acceleration is− c2

2
dν
dr (Reference [6], problem 1 at the end of Section 88).

Equality of centripetal acceleration to centrifugal V2/r gives

V(r) = c

√
1
2

r
dν
dr

. (58)

In the macroscopic theory of the dark sector [3], dark matter is described by the longitudinal
vector field ϕr(r). A black hole in the center is considered as a point-like object due to the small size
of its radius when compared to the large size of a galaxy. The derivative dν/dr is expressed in terms
of the covariant divergence of the field in the center ϕM

;M(0) ≡ ϕ′0 (see Reference [3], Equation (86).
This non-zero phenomenological parameter indicates the presence of a connection of dark matter with
a black hole. Earlier, it was not possible to determine this connection without knowing what was going
on inside a black hole. Now, the condition of phase equilibrium in Equation (55) at the interface r = rh
between the longitudinal vector field (dark matter) and the gravitating scalar field (black hole) allows
us to connect the covariant divergence ϕM

;M(rh) of the longitudinal vector field to the parameters of a
black hole. In particular, it allows us to express the velocity of rotation on the plateau as a function of
the mass of a black hole.

Figure 9b,c show that, in the case of xh >> xg, the metric function g(x) (red curve) practically
coincides with the Schwarzschild asymptote (dashed line) at x ∼ xh. It means that, at the interface
x = xh the gravitational field is weak. At x ≥ xh, metric function grr = −e−λ = −1 + λ, λ << 1.
The gravitational field is described by linearized Einstein equations,

ν′ = κr
[(µc

} ϕ
r
)2
+

(
ϕM

;M

)2
]
+
λ
r

, (59)

λ′ = κr
[(µc

} ϕ
r
)2
−

(
ϕM

;M

)2
]
−
λ
r

. (60)

Divergence ϕM
;M of the longitudinal vector field obeys a linear Klein–Gordon equation,

1
r

d
dr

r2
dϕM

;M

dr
+

(µc
}

)2
ϕM

;M = 0. (61)

In accordance with Equation (44),

ϕr = −

(
}
µc

)2 dϕM
;M

dr
. (62)

The condition of phase equilibrium in Equation (55) at the interface r = rh between a scalar
field and a longitudinal vector field determines the value ϕM

;M(rh). In the macroscopic theory [3],
ϕ′0 = ϕM

;M(0) is a free parameter. In view of insignificance of the gravitational radius of a black hole
rh ∼ 105

↔ 1010cm in the scale of a galaxy ∼1022 cm, the value ϕM
;M(rh) can be used as a boundary

condition at (µc/})r << 1. The solution to Equations (61) and (62) is

ϕM
;M = 1

√
2κrh

}
µcr sin

(µc
} r

)
,

ϕr = 1
√

2κrhr2

(
}
µc

)3[
sin

(µc
} r

)
−
µcr
} cos

(µc
} r

)]
, r

rh
− 1 >> q .

(63)
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Equations (8) and (63) determine the dependence of the dark matter wave function on the black
hole mass: ϕr

∼M−1. Local dark matter density is proportional to M−2.
Substituting Equation (63) into Equation (60), and using the identity,

d
dr

(
sin(2ar)

2a
−

sin2(ar)
a2r

)
=

sin2(ar)
a2r2 −

sin(2ar)
ar

+ cos(2ar), (64)

we find

λ(r) =
}2

2µ2c2r2
h

 }
2µcr

sin
(

2µc
} r

)
−

(
}
µcr

)2

sin2
(µc
} r

). (65)

Substituting Equations (63) and (65) into Equation (59) and taking into account Equation (57), we get
r dν

dr , which is needed for Equation (58).

r
dν
dr

=
q}2

2(µcrh)
2

(
1−

}
2µcr

sin
(

2µc
} r

))
. (66)

In accordance with Equation (58), the dependence of the velocity V(r) of a circulating star on the
distance r from the center of a galaxy is as follows:

V(r) = Vpl

√
1−

}
2µcr

sin
(

2µc
} r

)
, (67)

where Vpl,

Vpl = c
M2

Pl
4
√
µmM

, (68)

is the velocity on the plateau of a galaxy rotation curve. MPl =
√
}c/k = 2.177× 10−5g is the Plank

mass. M = M
(
xg, xh

)
is the mass of a black hole, visible to a remote observer. m is the mass of a

quantum of a scalar field, and µ is the mass of a quantum of a longitudinal vector field (dark matter).
Equation (67) shows that the saturation of the function V(r) on the plateau is accompanied by damped
oscillations [10].

Figure 11 shows the rotation curve of the spiral galaxy NGC 3769 of the Ursa Major cluster [3,10].
Dots with error bars are observations, copied from Reference [11]. The solid curve is the analytical
dependence of the velocity on the radius (Equation (67)).Universe 2019, 5, x FOR PEER REVIEW 20 of 21 
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Rejecting the prejudice that the signature of a metric tensor remains unchanged with an 
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the speed in km/sec. The horizontal axis is the distance from the center of the galaxy in kiloparsecs.
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The plateau velocity of this galaxy is Vpl ≈ 120 km/ sec . The period of damping oscillations is
ň ≈ 13 kpc. This corresponds to the de Broglie wavelength of a particle with a mass µ = }/cň ≈

0.713× 10−60g. On the basis of the standard model of elementary particles, the mass of a quantum of a
scalar field with the rest energy about 100 GeV is m ≈ 1.78× 10−22g. If the black hole at the center of
the galaxy NGC 3769 in the Ursa Major cluster is really compressed to the state of condensation of
scalar particles, then, according to Equation (68), its mass is three times larger than the solar mass:

M =
c

4Vpl

M2
Pl

√
µm
≈ 6.5× 1033g. (69)

7. Conclusions

Rejecting the prejudice that the signature of a metric tensor remains unchanged with an arbitrarily
strong curvature of space-time, we get a possibility to clarify a number of long-standing questions.
Considering a gravitating scalar field as an ordinary matter of a black hole, and a longitudinal vector
field describing dark matter from outside, the possibility of a static equilibrium state of these two
phases is shown. The main factor providing the ability to stop the collapse is the presence of a layer
with a broken signature (grr > 0) inside the black hole. The corresponding static solutions of the
Einstein equations do not require a limitation of the black hole mass. Super-massive black holes in the
centers of galaxies, being in the state of phase equilibrium with the surrounding dark matter, form the
skeleton of modern structure of the universe.
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