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Abstract—The possibility of an equilibrium static state of a collapsed black hole, surrounded by dark matter,
makes it possible to understand the existence of flat rotation curves of stars on the periphery of a galaxy.
Under the dominant gravity, a Bose—Einstein condensate is the energetically most favourable state of an
extremely compressed black hole. It turned out that the longitudinal vector field, as a wave function, ade-
quately describes the observed manifestations of dark matter. Considering as an example a condensate of Z,
W, and H bosons of the Standard Model of Elementary Particles (with rest energy of the order of 100 GeV),
the dependence of rotation curves of stars on the mass of a black hole at the galaxy center was investigated.
With this composition of the black hole of a mass on the order of the solar mass (2 % 10>3 g), the dark matter
gives the dominant contribution to the gravitational field. In this case, the plateau on the galaxy rotation curve
is explicitly expressed. As the black hole mass increases, a contribution to the gravity from the dark matter
decreases, while a contribution from the black hole increases. The mass of the black hole at the center of the
Milky Way galaxy is seven orders of magnitude greater than the solar mass. The contribution to the gravity
from the black hole dominates. Therefore, in our galaxy, the rotation velocity of stars V (r) as a function of

radius decreases in proportion to 1/ Jr in accordance with Newton’s law.
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INTRODUCTION

Dark matter manifests itself only through the grav-
itational interaction. Quanta of ordinary matter in flat
space are described by vector fields [1]. Let us assume
that a wave function of dark matter quanta is also a

vector field @,,. Then it makes sense to find such a vec-
tor field in the general theory of relativity (GTR),
which reveals itself exclusively in a curved space [2, 3].

LONGITUDINAL VECTOR FIELD

Within the minimal general theory of relativity
(field equations of no higher than second order), the

Lagrangian L of a vector field ¢,, is a scalar .S, consist-
ing of a convolution of bilinear combinations of covar-
iant derivatives ¢, and a scalar potential }/ ((pk(pk ) A

bilinear combination of covariant derivatives @, is the
tensor

Siklm = (pi;kq)l;m' (1)
The general form of the Lagrangian L generated by
the convolution S of tensor (1) is given by

L= a((pffn)z + b, 0" + ¢l 0] — V((pm(p'”). (2)

Here a, b, and c are arbitrary constants. In GTR,
the second derivative of a vector is not invariant
with respect to an interchange of the order of differ-
entiation:

/ / k
Cotim = Py = ka(p .
R,,, is the Ricci tensor. In a curved space, all three
kinetic terms in Lagrangian (2) are equisignificant.
The covariant derivative ¢, can be represented as
asum @, = G, + F; of the symmetric G, and anti-
symmetric F}, tensors:

Gy = %((pi;k + @), Fy = %((Pi;k — Qi)
The scalar .S can be presented as
S=a(G) +(b+) GG +(b-c) FF}
In a flat space R,,, = 0, and in fact only two of the
three kinetic terms are independent. As applied to the

ordinary matter in a flat space, the gauge invariance
allows a = 0 to be set. Then the covariant divergence

@’,, becomes an arbitrary function that does not affect
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the action. In electrodynamics, (p;'”m = 0 is called the
Lorentz gauge ([4], p. 145).

If we set b = ¢ = 0, then at ¢ # 0 we obtain the
Lagrangian

L=a(el) -V (0u¢")

of a longitudinal vector field, which, due to the gauge
invariance, does not affect the ordinary matterin a flat
space. It turns out that in a curved space-time, the
longitudinal vector field ¢,, adequately describes the
observed properties of dark matter [2]. The Euler—
Lagrange equation implies the wave equation

v
—a__ (3)
d(0n0")

On a galactic scale, the gravitational interaction is
dominant. In the potential expansion

a(P;mm,k =V, V'=

V((pm(p’") =V, +V'(0)0,9" + 7»((;),,,(p’")2 +...,
V'(0)  (uc\’ _ (1)’

‘—;——(;)=Tﬁ

the first term ¥} is an addition to the cosmological

constant that affects the expansion of the Universe [5].
On the galactic scale, the role of Vj, is negligible. The

second term of the expansion V' (0)@," is the main

source of the gravitational interaction; L is the rest

mass of a quantum of the longitudinal vector field.
2

The third term k((pm(p”’) is a correction for interac-

tions of the nongravitational nature (including the

elasticity of matter). The coefficient A in the third term

2
k(@m(pm) should not be confused with the metric
function A (r) = In(-g,,) in (4) and with the De Brog-
lie wavelength & = h/ le. Restricting ourselves to the
term V'(0)¢, 0", we consider the gravitating dark
matter as an ideal gas. The mass of a quantum of the
longitudinal vector field is denoted | so as not to be

further confused with the mass m of a quantum of the
bosonic scalar field of the black hole.

In space-time with a static centrally symmetric
Schwarzschild metric [6]

ds’ = gudx'dx’ = "V (dx"y? - "dr’ - FPdQ?, (4)

the energy—momentum tensor Td];rk ; of the longitudi-
nal vector field ¢@,, is written as
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The gravitational properties of a longitudinal vec-
tor field are described by the Einstein equations

1
Ry — ngkR = KT gark ik

According to the observed rotation curves of galax-
ies, the de Broglie wavelength A = h/ e of the longi-

tudinal vector field ¢, is about 15 kpc (see below,
Fig. 4). This is many orders of magnitude larger than
the size of a black hole. The surface radius of a black

hole #, in our Milky Way galaxy is less than 0.0002 ly
[7]. Therefore, the covariant divergence of longitudi-

nal field (pf:'n(rh) is almost indistinguishable from
(p;”,’,,(O). In the asymptotic region r ~ & > r,, the metric
function is A (r) < 1. Linearized Einstein’s equations
for metric functions v (r), A(r)

A 1\ ©
7\" + 4 -« (_ r) _ mm 2
p { @)~ (@)
together with the Klein—Gordon equation for the

covariant divergence @, () of a longitudinal vector
field

1 d 249, + L
FPdr dr R
make it possible to find the dependence on the radius
of the speed of a star’s rotation around the center V' (r)

in the asymptotic region r > 5, [8].

9, =0 (6)

The solution to Klein—Gordon equation (6),
which is regular at the center, has the following form:

i (r) = 5 (0) sin£). g

From wave Eq. (3), we obtain:

—Ql, (0)§[sin (%) — 7—’;005 (%)} (%)

By substituting (7) and (8) into linearized Ein-
stein’s equations (5) we find:

¢ (r) =

2 )
X [l - %sin (7% r) + (%) sin’ (%)} + A,
A(r)= K((p;mm (O))2 x’ {21 sin (% r) - (%)2 sin’ (%)} (10)
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Fig. 1. Graph of the function /1 — si121 2x'
X

In deriving A (r) (10), we used the identity:

[sin (ar)jz _sin(2ar)

ar ar

_ i(sin (2ar) B sin’ (ar)].

+ cos(2ar)

dr 2a a‘r
When a star rotates around the center of galaxy, the

2
centripetal acceleration C—Z—V is balanced by the cen-
r
2
trifugal acceleration V—. From formulas (9) and (10) it
r
is obtained that the velocity of a star’s motion V' (r) as
a function of a radius r asymptotically reaches a pla-

teau with damped oscillations [3]:

1 dv K. (2 )

Vr)=c|=r==V . J1-= =rl,
N P e P 1

r>n.
The graph of the function /1 — Sl;i is shown in
X
Fig. 1.
The velocity on the plateau

I/plat = C\/gxq),mm (0) ’ (12)

depends on the covariant divergence ¢!, (0) of the lon-
gitudinal field at the center, indistinguishable from the

divergence ¢!, (1) at the surface of the black hole for

X > r,. For each specific galaxy, the value of ¢/, (s,)
depends on the interaction of the longitudinal vector

field ¢ () with the black hole located at the center of
the galaxy.
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Fig. 2. Composition of the Universe [9].

ON THE STATIC STATE OF A BLACK HOLE
AT THE GALAXY CENTER

Here it is necessary to note the most significant
role of the dark sector. In a vacuum (without the stabi-
lizing effect of dark matter), the equilibrium state of a
superheavy black hole is impossible [8]. According to
the NASA Pie Chart [9] (see Fig. 2), there is only 4.6%
ordinary matter in the Universe.

The remaining 95% includes the so-called dark
matter (23%) and dark energy (72%).

It is believed that a black hole is a process of unlim-
ited compression (collapse) of matter under the influ-
ence of the dominant force of its own gravitational
field [10]. Galaxies with black holes at the center have
existed for as long as the Universe. With this slow
black-hole evolution, the local equilibrium concentra-
tion of particles participating in chemical reactions of
conversion between different particles depends on
temperature and pressure and does not depend on spe-
cific channels of the reaction [11]. To establish a link
between dark matter and a black hole, it is necessary to
show that there exists an equilibrium state to which a
gravitational collapse may lead.

In the process of collapse when the pressure
increases, at the next step, the elementary particles of
the Standard Model may become dominant after neu-
trons (Fig. 3).

The Bose—Einstein condensate of massive bosons
is the energetically most favorable state of matter at
low temperatures. These can be the gauge bosons Z
and W, the scalar Higgs boson H, as well as bosonic
quasiparticles of paired fermions (Cooper effect [13]).

A wave function of the Bose—Einstein condensate
isascalar field [ 14]. The Lagrangian of a complex sca-
lar field v is

L=g" iy, -U(uf), v0)=0. (13
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Fig. 3. Standard Model of elementary particles [12].

In the expansion of potential

0 () = (22 o+ Lol +

m is the rest mass of a boson. Scalar functions y and
y* satisfy the Klein—Gordon equation:

1 Im 8
—(Jdetg, =-9U . 14
retgik( etgug w,/),m aMw (14)

Equation (14) is invariant with respect to a change

in sign of det g, : v—1 in the numerator and denomi-
nator cancel. Static spherically symmetric scalar field
in a state with a certain energy £ per particle

W (xi) — e—iExO/hcw(r)

formally depends on two coordinates x° and . How-
ever, in statics in the equations of Klein—Gordon

gy + ((g”)' + %(ln (det g,-k))'g”)w'

1 00 42 24 2 (15)
= (_hzcz (g E —m'c )—7\.|\|1| )w
and Einstein
(grr)' +1+grr :KI’TE)O, (16)
r
P (l ~(in g°°)') o (17)
r r
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time x° is a cyclic variable. The coordinate x° is not
included explicitly in the components of energy—

momentum tensor 7])0 and 7., which follow from
Lagrangian (13):

Too _ %(gooEz n m2c4)|\|f|2 + 17L|\|I|4 _g" \V'|2 ’
hc 2
Trr — ﬁ(_gOOE2 + m2c4)|\|/|2 + %7\‘|\If|4 + grr \II'|2 )

Three equations (one of Klein—Gordon (15) and
two of Einstein (16), (17)) for three functions y(r),

goo(r) and g" (r) determine the static state of the
gravitating Bose—Einstein condensate.

The metric component g (r) is the coefficient at
the highest derivative of Klein—Gordon equation (15).
From the point of view of the existence and unique-
ness theorem [15], at gravitational radii » =r, and

r =1, >r, (for which in the Schwarzschild metric

g" (r) = 0) the solution y(r) exists, but is not unique.
For an arbitrarily large black-hole mass, the presence
of an internal gravitational radius 7, ensures the exis-
tence of a static solution that is regular at the center
[8]. A sphere with the gravitational radius #, is a
boundary of a black hole with the dark matter. The
nonuniqueness of solutions with boundary conditions
Vol. 55
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Fig. 4. Rotation curves of (a) NGC 3726 and (b) NGC 3769 spiral galaxies in the Ursa Major cluster [16].

at gravitational radii r, and r, confirms the possibility
of the existence of a regular static state of a massive
black hole in a dark matter halo.

From Einstein’s equations (16) and (17), it follows
that at the boundary r =45 the components of

Too("h) =0

T, (n) = 1/ «r. The covariant divergence of a vector
field is a scalar that satisfies Klein—Gordon Eq. (6).
The scalar wave function of the Bose condensate also
satisfies Klein—Gordon equation (15), but only with a
different mass of a quantum. One can joke that a diver-
gence of the longitudinal field of dark matter in the
region r > 1, is as if the “turned inside out” wave func-
tion of the Bose condensate inside the black hole r <
r,- A condition of pressure continuity at the interface
makes it possible to determine the dependence of the
plateau velocity of the galaxy’s rotation on the black
hole mass [8]:

energy—momentum tensor and

V.

plan —

(18)

Here My, = \Jlic/k =2.177x107 g is the Planck
mass; M is the mass of a black hole; p and m are the
rest masses of the quanta of longitudinal vector field of
dark matter and the bosons of wave function of the
black hole condensate; k = 6.67 x 10~% cm?/g s? is the
gravitational constant.

Figure 4 shows the rotation curves of two spiral gal-
axies NGC 3726 (Fig. 4a) and NGC 3769 (Fig. 4b) in
the Ursa Major cluster [16] (UMa is the Ursa Major
cluster). The acronym NGC stands for New General
Catalog of Nebulae and Star Clusters. The ordinate is
the velocity V'in km/s, and the abscissa is the distance »
from the galactic center in kpc. Points with error bars
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are the observations. Regarding (18), the solid curves are
approximations according to the following formula:

2
My, 1- A sin (2 r).
x

V(r)=c—F—2—
4. /umM 2r

19)

Galaxy NGC 3726 (in Fig. 4a) has a plateau veloc-
ity ¥V = 150 km/s and a de Broglie wavelength

A =16 kpc. The rest mass of the quantum of dark

matter for this galaxy is {1 = 7i/ck = 0.76 x 10" g. The
NGC 3769 galaxy in Fig. 4b has the plateau velocity
V= 120 km/s and the wavelength & = 13 kpc. The rest
energy of massive bosons of the Standard Model of
Elementary Particles (see Fig. 3) is around 100 GeV.
For quantitative estimations, we will assume that the
rest mass of black hole bosons m = 1.78 x 10722 g. It
turns out that the masses of black holes at the centers
of these galaxies are My,s =~ 2 x 10** g and My =
2.3 x 10** g. The accuracy of estimation of masses of
these two black holes is low because it is not clear
exactly what kind of bosons make up the Bose—Ein-
stein condensate.

GRAVITATIONAL FIELD OF A BLACK HOLE
IN A DARK MATTER HALO

Outside a black hole r > 5,, Einstein equation (5)

v okew| (o] (o)

is a linear inhomogeneous ordinary differential equa-
tion. Its full solution consists of a sum of the general
solution to the homogeneous equation (without the
right-hand side) and a particular solution to the inho-
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Fig. 5. Deviation of the centripetal acceleration from the
Newtonian one observed in 240 different galaxies [17].

mogeneous equation. The particular solution to inho-
mogeneous equation (10) is:

Vzat 7{. . 2 7{.2 .
A(r) = 2;’—12[55111 (%r)—(;) sin’ (7%) ,

r>n

and it determines the contribution of dark matter to
gravity. The general solution to the homogeneous

equation A' + A =0, in our case, is the Schwarzschild

,
solution A(r) = #, / r [6]. This is the contribution of a

black hole to the gravitational field in the region r > 5,
that is occupied by the dark matter. Actually, the
dependence of the star velocity

_ 2 A (2 2 K
V(r) \/me (1 oy sin (7& r)) +c >
on the mass M of the black hole located at the center
of the galaxy manifests itself in two ways. By means of
the dark matter alone, the plateau velocity (18) would
have decreased with an increase in the black hole mass

(20)

as M~'. However, only due to the attraction to the

black hole (in view of r, = 2k—2M) the star velocity V' (r)

c
would have increased with an increase in mass as

~J/M . At distances from the center r ~ A, the contri-
butions to the gravity jointly from the black hole and
the dark matter (the two terms under the root in (20))
turn out to be of the same order with the black hole
mass

When M > M the star velocity V (r) decreases
proportionally to 1/ \/;, as according to Newton’s the-
ory. And vice versa, with a black hole mass M < M the
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curve of rotation of galaxy stars V' (r) reaches a pla-
teau. With the rest energy of bosons ~100 GeV of the
condensate (with the mass m = 1.78 x 10~*2g) and with
the mass of quanta of the longitudinal vector field
W=n/ck = 0.76 x 107 g, we obtain M =~ 4 x 10¥ g.

Figure 5 shows a comparison of the observed (ordi-
nate) centripetal acceleration with the Newtonian one
(abscissa) for 240 different galaxies [17]. Without the
dark matter, all points would have lain along a straight
line at an angle of 45 deg from the axes. For stars of
different galaxies moving in a circle of the same radius,
the accelerations are proportional to the masses of
black holes at the centers of their galaxies. Therefore,
the logarithms of black hole masses are plotted along
the axes.

The masses of the spiral galaxies NGC 3726 and
NGC 3769 of the Ursa Major constellation, M3, =

2 x 10°** g and My¢ =~ 2.3 X 103 g, are much less than
M = 4 x 10% g. Their place is at the bottom of Fig. 5
on the left. The mass of the black hole at the center of
our Milky Way galaxy My, = 8.6 x 10% g is two orders
of magnitude greater than M . Among the 240 galaxies

in Fig. 5, the place of our Milky Way is in the upper
right corner.

CONCLUSIONS

Dark matter does not play a significant role in the
Milky Way galaxy.

ABBREVIATIONS AND NOTATION

GTR general theory of relativity
NGC New General Catalog of nebulae and star clusters
UMa Ursa Major cluster
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