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Equilibrium of a gravitating scalar field inside a black hole compressed to the state of
a boson matter, in balance with a longitudinal vector field (dark matter) from outside

is considered. Analytical consideration, confirmed numerically, shows that there exist

static solutions of Einstein’s equations with arbitrary high total mass of a black hole,
where the component of the metric tensor grr(r) changes its sign twice. The balance of

the energy-momentum tensors of the scalar field and the longitudinal vector field at the
interface ensures the equilibrium of these phases. Considering a gravitating scalar field

as an example, the internal structure of a black hole is revealed. Its phase equilibrium

with the longitudinal vector field, describing dark matter on the periphery of a galaxy,
determines the dependence of the velocity on the plateau of galaxy rotation curves on

the mass of a black hole, located in the center of a galaxy.
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The lifetime of a galaxy is of the order of the Universe’s life time. So slow evolution

suggests that mutual transformations of particles one into another can slow down

the collapse of a black hole located in the center of a galaxy, or even stop it. This

is the main reason for searching and analyzing static configurations of gravitating

objects in general theory of relativity. In the process of gravitational collapse, the

density of matter increases continuously. The stage of compression, when massive

Bose particles (Z bosons, W bosons, and/or Higgs scalar bosons) are dominating, is

inevitable. At low temperatures, the boson matter forms a Bose-Einstein conden-

sate, the wave function of which is that for a scalar field.1 A possible equilibrium

structure of a gravitating scalar field, describing the ordinary matter of a black hole,

is considered below. Condition of phase equilibrium at the interface between the

scalar field and a longitudinal vector field, describing dark matter outside a black
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hole, determines the connection (Eq. (3) below) between the plateau velocity of a

galaxy rotation curve and the mass of a black hole.

In the framework of the standard approach, a static space-time metric

ds2 = g00 (r) dx02 + grr (r) dr2 − r2
(
dϑ2 + sin2 ϑ dϕ2

)
,

with a spherically symmetric distribution of matter is considered. Using the com-

ponent of the metric tensor in the form grr = −e−λ , possible solutions with grr
changing sign are excluded in advance. Solutions, with the sign of grr remaining

unchanged, exist, but only if the total mass M does not exceed a critical value Mcr.

To leave a possibility for grr to change sign, the Einstein equations (100.4) and

(100.5) in Ref. 2 should be written as

(grr)
′
+

1 + grr

r
= κrT 0

0 , (1)

grr
(

1

r2
+
ν′

r

)
+

1

r2
= κT rr . (2)

Gravitational constant κ = (8πk)/c4 = 2 × 10−48 sec2 /g × cm, k = 6.67 ×
10−8cm3/g× sec2, ν = ln g00.

Looking at Eq. (1) one can see, that in the region where grr > 0, the derivative

(grr)
′

becomes negative when 1+grr

r exceeds κrT 0
0 with growing r. It means, that

there may exist (and do exist) a solution where, with increasing r, the metric

component grr (r) gets into the region of violated signature of metric tensor, passes

through a maximum, and returns back into the region of the Galilean signature.

grr (r) intersects the x axis twice. Note, that the component g00 of the metric tensor

does not change sign. It does not lead to any logical contradiction, provided that

rh is the event horizon, unattainable for a remote observer. Suppose, the metric

signature is changed to (+,+,−,−) within a spherical layer rg < r < rh. Then

grr (rg) = grr (rh) = 0.

It follows from the Einstein equations (1), (2) that

T 0
0 (rh) = 0, T rr (rh) =

1

κr2h
.

The energy density T 0
0 is zero at the horizon r = rh. However, since T rr (rh) 6= 0,

the pressure on the surface does not disappear. It means that there can be no static

equilibrium state of a gravitating body in vacuum, if the signature of metric tensor

is broken. Nevertheless, one can not exclude a possibility of static equilibrium, if the

event horizon rh takes place on the interface between two gravitating objects. For

instance, if the pressure on the surface of a black hole from inside is compensated by

the pressure of dark matter from outside. The balance of pressures at the interface

of black hole and dark matter establishes a relationship between the parameters of

these phases. In particular, we find the dependence of the plateau velocity Vpl of a

galaxy rotation curve on the mass M of a black hole:

Vpl = c
M2

Pl

4
√
µmM

, (3)

2040050-2



February 24, 2020 13:32 IJMPA S0217751X20400503 page 3

Black hole in balance with dark matter

MPl =
√
~c/k = 2.177 × 10−5g is the Plank mass; m is the mass of a quan-

tum of scalar field; µ is the mass of a quantum of longitudinal vector field (dark

matter).

Time is a cyclic coordinate in a static field. The energy of a single quantum

E = ~ω is the integral of motion. A scalar field in the state of definite energy E

per particle has the form: ψE
(
xi
)

= e−iEx
0/~cψ (r) .Radial function ψ (r) obeys the

Klein-Gordon equation

grrψ′′ +

(
(grr)

′
+
g′grr

2g

)
ψ′ =

1

~2c2
(
g00E2 −m2c4

)
ψ, g = det gik. (4)

Note that grr is the coefficient at the highest derivative in Eq. (4). Since grr (rh) = 0,

the Klein-Gordon equation is not determined on the hypersphere r = rh.

It is convenient to present the set of the Klein-Gordon and Einstein equations

(4), (1)–(2) in the normal form. In the dimensionless variables x = mc
~ r, u (x) =

√
κψ (r) , w (x) = ~

√
κ

mc g
rr (r)ψ′ (r) , g (x) = grr (r) , h (x) = E2

m2c4 g
00 (r) we have

the system of four first order equations, resolved with respect to derivatives:

u′ = w/g, (5)

w′ = (h− 1)u− 2w

x
+
x

g

(
u2h− w2

g

)
w, (6)

g′ = x

(
(1 + h)u2 − w2

g

)
− 1 + g

x
, (7)

h′ =
h

x

(
1 +

1

g

)
− xh

g

(
u2 (1− h) +

w2

g

)
. (8)

A detailed derivation of these equations is presented in the article,3 devoted

to equilibrium states of a gravitating boson condensate with grr not changing

sign.

The set (5) − (8) contains no parameters. Here and below, g(x) is the compo-

nent grr (r) of the metric tensor. Please, do not confuse it with the determinant

g = det gik in the Klein-Gordon equation (4). Denote a dimensionless gravitational

radius xg = mc
~ rg. At x = xg the component of metric tensor g(xg) ≡ grr(rg) = 0.

It follows from Eq. (8), that at x → xg ± 0 (+0 means from above, and −0 -

from below) (
w2

g

)
x→xg±0

→ 1

x2g
− u2g± (1− hg±) . (9)

Here ug± = lim
x→xg±0

u(x), hg± = lim
x→xg±0

h(x) are one-sided limits either from above,

or from below. Substituting (9) into Eq. (7), we obtain:

g′ (xg) =
2

xg

(
x2gu

2
g − 1

)
. (10)
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It follows from (9) and (10) that

w2 (x) =
[
x−2g − u2g (1− hg±)

]
g′ (xg) (x− xg) at x→ xg ± 0. (11)

On the left-hand side w2 > 0. Hence, the right-hand side of (11) should also be

positive. The factor (x − xg) changes sign at x = xg. Therefore, the combination

x−2g − u2g (1− hg±) has different signs at x < xg and x > xg. There are two possi-

bilities:

1. Regular gravitational radius. In the case of exact connection between the

parameters hg− = hg+ ≡ hg = 1 − (xgug)
−2

all four functions, u(x), w(x), g (x) ,

h (x) , as well as their derivatives, are continuous at x = xg. In accordance with

(9) w2/g = 0 at x = xg. xg is a regular gravitational radius inside the gravitating

condensate, provided that its energy-momentum tensor is regular.

2. Termination point. If g(xh) = 0, and hh 6= 1 − (xhuh)
−2
, the solution

cannot be continuously extended to the area x > xh. Functions u(x), w(x), and

h(x) terminate at x = xh in a square root manner, while g(x) remains a linear

function. Termination point xh is the event horizon for a remote observer.

Analytical analysis, confirmed numerically, shows, that within the strip 1 <

x2gu
2
g < 2, xg < xgmax = 1.4285 on the plane of parameters xg, ug (Fig. 1(A))

there are finite-mass solutions, continuous at the regular gravitational radius

x = xg, and terminating at the horizon x = xh > xg in a square root manner.

Approaching the upper line in Fig. 1(A) the mass grows, and becomes infinite on

the line.

An example of a regular solution with parameters xg = 1, ug =
√

2 − 0.01

is shown in Fig. 1(B). In the interval 1 < x < 13.78585 the metric component

g(x) > 0. This is the region of changed signature. On the right boundary xh =

13.78584985 the scalar field u (x) terminates with a nonzero value. On enlarged

scale, this solution is shown in Fig. 1(C) in the vicinity of the horizon xh.

The main factor allowing the existence of supper-heavy black holes, and provid-

ing the ability to stop the collapse, is the presence of a layer of broken signature

(where grr > 0) inside a black hole. Supermassive black holes in the centers of

galaxies, being in the state of phase equilibrium with the surrounding dark matter,

form the skeleton of modern structure of the Universe.

xg

ug
2

A

0.0 0.5 1.0 1.5

2

4

6

8

10

12

14
g

w u

B

2 4 6 8 10 12 14

–1

1

2 h

u

g
w

C

13.2 13.4 13.6 13.8

–0.10

–0.05

0.05

0.10

0.15

Fig. 1. A - The strip in the plane of parameters xg , u2
g between lower u2

g = x−2
g and upper

u2
g = 2x−2

g lines is the area of existence of regular solutions with a finite mass M . B - An example

of a regular solution. xg = 1, ug =
√

2−0.01. The horizon xh = 13.78581985 is found numerically.

C - The same functions g(x), u(x), h(x), w(x) in the vicinity of the horizon xh.
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