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Abstract: Analytical spherically symmetric static solution to the set of Einstein and Klein-Gordon

equations in a synchronous reference frame is considered. In a synchronous reference frame, a static

solution exists in the ultrarelativistic limit p = −ε/3. Pressure p is negative when matter tends to

contract. The solution pretends to describe a collapsed black hole. The balance at the boundary with

dark matter ensures the static solution for a black hole. There is a spherical layer inside a black hole

between two “gravitational” radii rg and rh > rg, where the solution exists, but it is not unique. In a

synchronous reference frame, detgik and grr do not change signs. The non-uniqueness of solutions

with boundary conditions at r = rg and r = rh makes it possible to find the gravitational field both

inside and outside a black hole. The synchronous reference frame allows one to find the remaining

mass of the condensate. In the model “λ|ψ|4”, total mass M = 3
(

c2/2k
)

rh is three times that of what

a distant observer sees. This gravitational mass defect is spent for bosons to be in the bound ground

state, and for the balance between elasticity and density of the condensate.

Keywords: black hole; dark matter; gravitating Bose-Einstein condensate; synchronous reference frame

1. Introduction

In Schwarzschild coordinates, when we consider a gravitational field created by
spherically symmetric matter, it is customary to proceed from the metric [1]:

ds2 = gikdxidxk = e2F0

(

dx0
)2

− e2F1 dr2 − r2
(

dθ2 + sin2 θdφ2
)

(1)

Exponential representation g11 = − e2F1 and g00 = e2F0 fixes signs of the metric tensor
components g00 > 0, g11 < 0 and the determinant g = detgik < 0. According to Einstein’s
hypothesis [2], detgik “always has a finite and negative value”. Setting g11 = − e2F1 in the
metric (1), we fix the sign of the component g11. Thus, not caring about the presence or
absence of a singularity, we exclude g11 > 0 from consideration as non-physical. In this
case, the coordinate system turns out to be incomplete [3–5]. A critical mass Mcr arises
(for neutron stars, it is of the order of the Sun mass), so that for M > Mcr, regular static
solutions to Einstein equations do not exist [6–8]. Shwartzshild’s solution [1]

ds2 =
(

1 − rg/r
)

(

dx0
)2

−
(

1 − rg/r
)−1

dr2 − r2
(

dθ2 + sin2 θdφ2
)

(2)

is not regular in the center r = 0, though it describes a gravitational field in a vacuum far
away from spherically symmetric matter, regardless of the mass, seen by a distant observer.
For M < Mcr, metric (2) asymptotically coincides with the regular solution in Ref. [5] for
r ≫ rg.

It is believed that objects with a mass greater than the critical one are subject to
unlimited compression [9]. The absence of static solutions in metric (1) for objects with
a mass greater than the critical one contradicts the existence of the object with a mass
seven orders of magnitude greater than the Sun mass [10] in the center of our Milky
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Way galaxy. “Unlimitedly collapsing objects” at the centers of galaxies are called black
holes. Black holes in the centers of galaxies, like the galaxies themselves, exist as long as
the universe exists. If we assume that the contraction is non-stop, then at the centers of
galaxies we meet a singularity, contrary to Einstein’s hypothesis that “this is nowhere to
be found” [2]. If we take into account that in the process of unlimited compression with
increasing pressure chemical reactions transform neutrons into more “elementary particles”,
then it can slow down and even stop compression. In order to find a regular static solution,
describing the state of matter to which a collapse can lead (with no restriction on mass), we
abandon the sign-fixing representation g11 = − e2F1 . It is sufficient to restrict ourselves by
a weaker condition of regularity: all invariants of the metric tensor are finite. With mass
M < Mcr in a static state, gravitational contraction is compensated by elasticity of fermions.
With M > Mcr, elasticity of fermions cannot resist the gravitational contraction. For a
degenerate relativistic Fermi gas, the critical mass Mcr f ∼ M3

Pl/m2
f [8]. The Planck mass

MPl =
√

cℏ/k = 2.177 × 10−5 g, mf is the fermion mass, and k is the gravitational constant.

For neutron stars (neutron rest mass m f = 1.67 × 10−24 g) the critical mass Mcr f ∼ 1033 g
is of the order of the Sun mass.

The static state of boson matter is energetically more preferable than that of fermionic
matter. Unlike fermions, all bosons in equilibrium at zero temperature are in the ground
state. This ultra-quantum state of matter is called a Bose-Einstein condensate. In equi-
librium, concentrations of particles, transforming one into another in chemical reactions,
depend on temperature and pressure, and do not depend on reaction channels [11] (§101).
If we proceed from the modern Standard Model of “elementary” particles [12], then, in the
state of equilibrium, massive Z- and W-bosons, the scalar Higgs boson, as well as bosonic
quasiparticles of paired fermions (the Cooper effect [13]), can be dominant. The wave
function of a condensate of neutral bosons is the classical scalar field [14] (§30).

Lagrangian L of a complex scalar field ψ: L = gikψ∗
,iψ,k − U(ψ∗ψ) . With a large mass

of the condensate, in the expansion of the potential

U
(

|ψ|2
)

= (mc/ℏ)|ψ|2 + (1/2)λ|ψ|4 + . . . (3)

the main first term is the source of gravity, m is the rest mass of a boson. Leaving only the
first term in the potential (3), we are dealing with an ideal gas of noninteracting bosons.
The second and following terms are corrections that take into account non-gravitational
interactions, including elasticity of a condensate. Only taking into account the two first
terms in expansion (3) with λ = const, we deal with a phenomenological model. This model
can be named “λψ4”.

Equilibrium of a gravitating scalar field has been considered in a number of papers
in relation to black holes and hypothetical boson stars, see [15–19] and references therein.
As in the case of fermions, with the restriction g11 = − e2F1 , equilibrium of a gravitating
degenerate Bose gas only exists if the mass M of the condensate is less than the critical
mass Mcr b ∼ MPl

2/mb [20]. For Standard Model bosons (with the rest mass mb about
100 GeV/c2) the critical mass of the condensate is Mcr b ∼ 1012 g. It is only about a
million tons.

With no restriction grr = − e−2F1 , a static solution to the set of Einstein and Klein-
Gordon equations with mass M > Mcr exists [21]. In Schwarzschild coordinates, there
are two real gravitational radii in this solution. The metric component grr(r) changes sign
twice: at r = rg inside the condensate and at r = rh > rg on its surface. Inside the spherical
layer rg < r < rh, the metric component grr(r) > 0, and the signature of metric tensor is (+,
+, −, −).

It follows from Einstein’s Equation (100.6) in Ref. [22] that if the energy density
ε(rh) = T0

0 (rh) = 0 on the condensate surface, then grr(rh) = 0 and dgrr(rh)/dr = −1/rh.
One can see from another Einstein’s Equation (100.4) in Ref. [22], that the pressure p(rh) =
−Tr

r (rh) = −1/κr2
h does not vanish on the surface of the condensate. Negative pres-
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sure means that gravitational forces are directed to compress the gas of bosons, and not
to expand.

The sphere r = rh is the interface of a black hole and dark matter. The observed
manifestations of dark matter, such as the rotation curves of galaxies, are adequately
described by a longitudinal vector field [23]. A covariant divergence of a longitudinal
vector field is a scalar. A Bose condensate wave function is also a scalar. Both satisfy the
same Klein-Gordon equation, though the masses of their quanta are extremely different.
Conditions of regular continuity of pressure at the interface between a black hole and dark
matter made it possible to determine the dependence of the plateau velocity (of galaxy
rotation curves) on the mass of a black hole. See formula (68) in Ref. [21].

If in the potential (3) only the first term of expansion is used (ideal Bose gas with
no elasticity), then the wave function of the condensate logarithmically diverges at the
center [21]. A regular at the center static solution to the set of Einstein and Klein-Gordon
equations with mass M > Mcr exists in the model “λψ4”, provided that there is a balance
of elasticity and density of the condensate [24]. In the Schwarzschild coordinates, a solution
with boundary conditions of regularity exists at the center, but it is only unique in the
interval 0 ≤ r < rg. Solutions with boundary conditions on spheres r = rg and r = rh,
where grr = 0 are not unique. This freedom makes it possible to find a solution with any
mass M > Mcr, as well as to ensure the balance of a black hole with dark matter at the
boundary.

In the Schwarzschild coordinates in the “λψ4” model, static states of a black hole are
determined by two free parameters. One of them characterizes elasticity of the condensate.
It uniquely defines the density of a condensate ε in the center, and the inner gravitational
radius rg. Inside the sphere r < rg; the equation of state of the condensate is

p = −ε/3 (4)

while the energy density ε and metric component g00 are independent of r. The second free
parameter ensures the existence of a regular static solution with arbitrary mass M in the
range Mcr < M < ∞ [25].

2. In Synchronous Coordinates

A reference frame with g00 = 1, g0α = 0 is called synchronous. It is shown in Ref. [22]
(§97), that, on the one hand, it is possible to switch to a synchronous frame of reference
in any space-time. On the other hand, it is argued that, generally speaking, “space-filling
matter cannot be at rest with respect to a synchronous frame of reference”. An exception
“may occur only in special cases”. This statement is based on the fact that, in a synchronous
frame of reference in statics, the component of the Ricci tensor R0

0 = 0, and the expression
on the right side of the Einstein equation R0

0 = κ(T0
0 − T/2) = κ(ε + 3p)/2 “is positive

with any distribution of matter”. Note that the pressure p is positive when matter tends
to expand, and negative when matter tends to contract. From the point of view stated in
Ref. [22] (§97), the state of a condensate, compressed to the ultra-relativistic limit (4) by its
own gravitational field, should be considered as an “exception in a special case”.

It has been known since the time of Eddington [26] and Lemaître [27] that the gravita-
tional radius rg, on which the component grr

(

rg

)

= 0, is not a physical singularity in the
Schwarzschild metric. In the problem 4 at the end of §100 in Ref. [22], the transformation of
the Schwarzschild metric (2) to the conformal Euclidean form is given. The non-uniqueness
of the solution to the system of Einstein and Klein-Gordon equations with boundary condi-
tions exactly on the gravitational radii r = rg and r = rh, where grr(r) = 0 [25], is a feature
of the Schwarzschild metric. In the conformal Euclidean form, grr(r) does not vanish.

In a synchronous frame of reference, a static spherically symmetric metric

ds2 =
(

dx0
)2

− e2F1(r)dr2 − e2F2(r)
(

dθ2 + sin2 θdφ2
)

(5)
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contains two functions F1(r) and F2(r), depending on one coordinate r. Unlike the
Schwarzschild metric (1), the coordinate r is the true distance from the center. The
length of the central circle θ = π/2 at a distance r from the center is 2πeF2(r). Radii
r = rg and r = rh play an important role in a synchronous reference system: solutions
to Einstein and Klein-Gordon equations with boundary conditions on these radii are not
unique. However, the component g11(r) does not vanish now on the spheres r = rg and
r = rh. Therefore, as it is customary for everyone, we here use exponential representations
g11(r) = −e2F1(r), g22(r) = −e2F2(r) in the metric (5). Substitution

dx = eF1(r)dr, x(r) =
∫ r

r0

eF1(r)dr, F2(r) = F2(x(r)) (6)

makes the metric (5) containing only one function F2(x):

ds2 =
(

dx0
)2

− dx2 − e2F2(x)
(

dθ2 + sin2 θdφ2
)

. (7)

Ricci tensor is diagonal:

R0
0 = 0, R1

1 = 2
(

F′
2

2
+ F

′′
2

)

, R2
2 = R3

3 = 2F′
2

2
+ F

′′
2 − e−2F2 . (8)

Energy is the integral of motion in a time-independent gravitational field. The wave func-
tion of the boson condensate in the state with a certain energy E per particle ψE

(

x0, x
)

=

eiEx0/ℏcψ(x) satisfies the Klein-Gordon equation (−detgik)
−1/2

(

√

−detgikglmψ,l

)

;m
=

−
(

∂U/∂|ψ|2
)

ψ. The radial part ψ(x) obeys the equation

ψ′′ + 2F
′′
2 ψ′ =

[

(mc/ℏ)2 + λ|ψ|2 − (E/ℏc)2
]

ψ. (9)

Unlike the Schwarzschild metric, in Equation (9), the coefficient at the highest derivative
(unity) does not vanish anywhere.

Lagrangian of a scalar field L = gikψ∗
,iψ,k −U(ψ∗ψ) does not depend on the derivatives

of the metric tensor gik. The energy-momentum tensor of the condensate is easily derived

using the formula Tik = −gikL + 2 ∂L/∂gik: T0
0 =

(

E2+m2c4

(ℏc)2 + 1
2 λ|ψ|2

)

|ψ|2 + |ψ′|2, T1
1 =

(

− E2−m2c4

(ℏc)2 + 1
2 λ|ψ|2

)

|ψ|2 − |ψ′|2, T2
2 = T3

3 =

(

− E2−m2c4

(ℏc)2 + 1
2 λ|ψ|2

)

|ψ|2 + |ψ′|2. In the

synchronous reference system R0
0 = 0 (8). Therefore, it is convenient to work with the

Einstein equations in the form

Rk
i = κ

(

Tk
i − 1

2
δk

i T

)

, κ =
8π

c4
k, k = 6.67 × 10−8cm3/g × s2. (10)

It follows from Equations (8) and (10):

T0
0 − 1

2
T =

(

2E2 − m2c4

(ℏc)2
− 1

2
λ|ψ|2

)

|ψ|2 = 0. (11)

In (11), E2, λ, and m2c4 are constants. Therefore, the wave function of the condensate ψ is
also a constant:

ψ = const, ψ′ = 0. (12)

Using relations (9), (11), and (12), the energy of a boson E in the bound ground state and

the balance between elasticity Λ and density |ψ|2 of a condensate are determined:

E2 =
1

3
m2c4, Λ|ψ|2 = −2

3
. (13)
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Λ = (ℏ/mc)2λ—parameter characterizing the elasticity of a condensate in the model “λψ4”.
Taking into account (13), the energy-momentum tensor of the condensate

T0
0 = ε =

(mc

ℏ

)2
|ψ|2, Tk

i = −δk
i p =

1

3
δk

i

(mc

ℏ

)2
|ψ|2, i > 0. (14)

corresponds to the ultra-relativistic equation of state for the matter compressed by its own
gravitational field. Einstein Equation (10) with Ricci tensor (8) and energy-momentum
tensor (14)

2
(

F′
2

2
+ F

′′
2

)

= −2κ|p|, (15)

2F′
2

2
+ F

′′
2 − e−2F2 = −2κ|p| (16)

define the metric function F2(x). These equations are not independent. Excluding F
′′
2 , and

subtracting (16) from (15), we obtain:

F′
2

2 − e−2F2 = −κ|p|, (17)

F
′′
2 + e−2F = 0. (18)

Since ψ = const (12), the energy density ε and pressure p (14) are also constants. Therefore,
Equation (18) is the derivative of Equation (17). Multiplied by e2F2 , Equation (17) is reduced
to

deF2 /dx =

√

1 − κ|p|(eF2)
2
. (19)

The partial derivative ∂
√

1 − κ|p|eF2 /∂eF2 suffers a discontinuity at eF2 = (κ|p|)−1/2. Ac-

cording to the existence and uniqueness theorem (see [28] (§3)), eF2 = (κ|p|)−1/2 is a

solution of Equation (19). However, it is not unique: eF2 = (κ|p|)−1/2 sin
(

√

κ|p|(x − x0)
)

is also a solution to Equation (19). x0 is the integration constant. The metric component

g22(x) = −e2F2(x) (7) has two solutions: a constant g22(x) = −(κ|p|)−1 independent of

x, and an oscillating function g22(x) = −(κ|p|)−1 sin2
(

√

κ|p|(x − x0)
)

. These solutions

periodically coincide at x = x0 + (κ|p|)−1/2π(1/2 + n), n = 0, 1, 2, . . ..
In accordance with (6), for the general metric (5), the oscillating solution

g22(r) = −(κ|p|)−1 sin2

[

√

κ|p|
∫ r

r0

eF1(x)dx

]

(20)

contains an arbitrary function F1(x), r0 is an integration constant. At ε → 0 (in a vacuum),

solution (20) establishes the relation between g11 and g22 : g11 = g′22
2
/4g22. One of these

two functions is arbitrary.
In a simple case F1(x) = 0, a regular solution at the center is g22(r) = −e2F2(r) =

−(κ|p|)−1 sin2
(

√

κ|p| r
)

. It is unique only in the interval 0 ≤ r < rg, rg = π/2
√

κ|p| is

the internal “gravitational radius”. In the region r > rg, Equation (19), with the boundary

condition e2F2(rg) = (κ|p|)−1, is satisfied by both solutions. Here, g22(r) = −(κ|p|)−1 at
r > rg is preferred, because there is no reason to choose the oscillating one.

In a synchronous reference frame, this is the same analytical solution as in Ref. [23]
in Schwarzschild coordinates. It can be verified by putting g22(r) = −r2 in formula (20)
and solving this equation with respect to eF1(x). It will be obtained g11(x) = −e−2F1(x) =
−1 + (κε/3)x2 as in formula (41) in Ref. [23] (up to notation). Both in the Schwarzschild
metric and in the synchronous metric, the inner gravitational radius is the boundary
of the central region in which the solution is unique and independent of the mass of
the entire condensate. In the region r > rg, the solution with the boundary condition

g22

(

rg

)

= (κ|p|)−1 is not unique. This ambiguity makes it possible to choose a solution
corresponding to a given mass of a condensate. The difference lies in the fact that in the
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Schwarzschild coordinates at the branch points rg and rh, the metric component g11(r) = 0,
but in the synchronous reference system (7) g11(r) = −1, and it does not vanish anywhere.

The total mass inside a sphere of radius r is obtained by integrating the energy

density T0
0 (r) = ε: M(r) = c−2

∫ 2π
0 dφ

∫ π
0 sin θ dθ

∫ r
0 T0

0 (r)|g22(r)|dr. Total mass is M(r) =
3c2

4k

(

r − rg

π sin π r
rg

)

, r ≤ rg, and M(r) = 3c2

2k

(

r − 1
2 rg

)

, r ≥ rg.

The energy E of one particle in the condensate (13) is less than the rest energy of
the same particle in a vacuum. In the “λψ4” model, elastic collisions of particles occur
without dissipation. This model shows that one third of the total energy is spent creating
the bound state for bosons. The second third provides a balance of density and elasticity.
Only one third of the original rest mass remains as the source of the gravitational field.
If the boundary of the condensate rh ≫ rg, then the total mass of a black hole is three
times greater than the Schwarzschild mass M =

(

c2/2k
)

rh. This is the composition of a
gravitational mass defect in the “λψ4” model.

3. Dark Matter

The sphere r = rh is the boundary separating a black hole and dark matter. Manifes-
tations of dark matter are adequately described using a longitudinal vector field ϕi [28].
Lagrangian:

L =
(

ϕm
;m

)2 − V(ϕn ϕn). (21)

For ideal gas of gravitating quanta of dark matter, the potential V(ϕn ϕn) = V′
0 ϕn ϕn, V′

0 =
dV(x)/dx at x = 0.

Dark matter energy-momentum tensor

Tk
i = δk

i

(

(

ϕm
;m

)2 − V′
0 ϕm ϕm

)

+ 2V′
0 ϕk ϕi. (22)

Outside a black hole, the right side of Einstein equations (10), in accordance with (22), has
the form

Tk
i − 1

2
Tδk

i =

{

−
(

ϕm
;m

)2 − 2V′
0(ϕr)2, i = r,

−
(

ϕm
;m

)2
, i 6= r.

(23)

With the Ricci tensor (8) and tensor (23), the Einstein equations outside the black hole reduce

to R0
0 : ϕm

;m = (ϕr)′ + 2F′
2 ϕr = 0, R1

1 : F′
2

2 + F
′′
2 = −κV′

0(ϕr)2, R2
2 : 2F′

2
2 + F

′′
2 − e−2F2 = 0.

From equation R0:
0 : we obtain ϕr(r) = Ce−2F2(r). C is the integration constant. Eliminating

F
′′
2 from R1

1 : and R2
2 :, we get the equation F′

2
2 = e−2F2 + κV′

0C2e−4F2 . Multiplying by e4F2 ,

we reduce this equation to the form de2F2 /dr = 2
√

e2F2 + κV′
0C2, determining the metric

component g22(r) in the synchronous reference system:

g22(r) = −e2F2(r) = κV′
0C2 − (r + D)2, r > rh. (24)

The dark matter Lagrangian (21) is required to have a negative V′
0. Note that V′

0 < 0
is also a condition of regularity at the center (formula (39) in Ref. [28]). Two integration

constants C2 = −
(

κ2|p|V′
0

)−1
and D = −rh in (24) provide a smooth transition of the

gravitational field through the boundary between a black hole and dark matter. In view
of rg = π/2

√

κ|p| it is convenient to express g22(r) in terms of the gravitational radii rg

and rh:

g22(r) =
{

−
(

2rg/π
)2

sin2
(

π r/2rg

)

, r ≤ rg; −
(

2rg/π
)2

, rg ≤ r ≤ rh; −
(

2rg/π
)2 − (r − rh)

2, r > rh

}

. (25)

Solution (25) for rg = 1 and rh = 5 is demonstrated in Figure 1. Since g11(rh) 6= 0 in the
synchronous reference frame, there is no reason to call rh an event horizon.
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Figure 1. Red line is g22(r) (25). rg = 1, rh = 5.
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