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It is generally assumed in the Ginzburg–Landau
theory [1] that the surface free energy of the super�
conducting phase is negligible. For this reason, the
following boundary condition is imposed on order
parameter Ψ in the description of surface supercon�
ductivity:

(1)

Here and below, the prime indicates the derivative with
respect to the normal to the superconductor–vacuum
interface. (We will henceforth use the London gauge in
which the normal component of the vector potential at
the interface is zero.)

The assumption concerning the smallness of the
surface free energy was confirmed in [2], where the
following boundary condition was derived:

(2)

where λG ~ a0/ξ0 � 1 has the order of the ratio of
atomic spacing a0 to the average size ξ0 of a Cooper
pair. For the superconductors considered here, this is
a small quantity (λG ≈ 10–3).

Solution of the Ginzburg–Landau equations with
boundary condition (1) leads to the well�known rela�
tion between critical field Hc3 of surface superconduc�
tivity and thermodynamic critical field Hc:

(3)

where κ is the Ginzburg–Landau parameter and τ =
(T – Tc)/Tc is the reduced temperature. It should be
emphasized that in the Ginzburg–Landau theory, the
coefficient in this relation is independent of tempera�
ture. Therefore, ratio (3) of the critical fields can be
used for experimental determination of parameter κ.

However, the results of measurements [3, 4] have
shown that the Hc3/Hc ratio for some superconductors
(Al, In, Sn, and Pb) varies with temperature. This vari�
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ation exceeds 10% even for τ ~ 10–2 � 1, where no
noticeable deviation from the Ginzburg–Landau the�
ory should take place.

A natural way of eliminating this contradiction
between the experimental results and the theory is to
refine boundary condition (1). The attempts at using
the BCS theory for this purpose (see the literature
cited in [3]) have not led to a satisfactory result. The
values of parameter κ for the above superconductors
have been determined with a low accuracy.

Here, we consider the variational boundary condi�
tions determined by the surface free energy of the
superconducting phase. We will write the surface free
energy in the most general form corresponding to the
Ginzburg–Landau theory.

The variational boundary conditions depend both
on the surface free energy and the bulk free energy.
Since we are interested in the role of the surface free
energy, we will confine our analysis to a homogeneous
superconductor whose bulk energy has the simplest
form.

The bulk free energy density of a superconductor in a
constant external field H0 can be written in the form [5]

(4)

Here, Φ0 denotes the flux quantum, B is the magnetic
field induction in the superconductor, and A is the vec�
tor potential. Let us now pass to dimensionless vari�
ables. For this purpose, we will use the notation of the
Ginzburg–Landau theory,

(5)

F
v

ατ Ψ 2 β
2
�� Ψ 4+=

+ g ∇ i2π
Φ0

�����A–⎝ ⎠
⎛ ⎞Ψ

2 B2

8π
�����

BH0

4π
��������.–+

ξ0
g
α
���, κ

Φ0

2π
����� β

8πg2
���������,= =

Effect of Surface Free Energy on Critical Field Hc3

E. R. Podolyak
Kapitza Institute of Physical Problems, Russian Academy of Sciences, Moscow, 119334 Russia

e�mail: podolyak@kapitza.ras.ru
Received April 11, 2011

Abstract—The emergence of surface superconductivity in a type I superconductor is considered taking into
account the surface free energy of the superconducting phase. It is shown that the disregard of the surface
energy leads to a substantial error in determining the Ginzburg–Landau parameter from the measurements
of the Hc3 field.

DOI: 10.1134/S1063776111140081

ORDER, DISORDER, AND PHASE TRANSITION
IN CONDENSED SYSTEM



1036

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 113  No. 6  2011

PODOLYAK

and natural units of length ξ(τ), magnetic field Hc2(τ),
and equilibrium value of the order parameter Ψ0(τ):

(6)

In the dimensionless variables

(7)

bulk energy density (4) has the form

(8)

It should be noted that F
v
 is the sum of the second�

order invariants in τ.

Omitting dimensional common factor α2τ2/β, we
can calculate the free energy of the superconducting
phase (  = 1, b = 0) equal to –1/2 and the free
energy of the normal phase (  = 0, b = h0) amount�

ing to –κ2 . The condition for coexistence of the
phases is satisfied in the thermodynamic critical field

h0 = hc = 1/κ . Since quantity h0 in the problem
under investigation is a constant, we can measure the
free energy of the superconductor from the energy of
the normal phase; for this purpose, we add quantity

κ2  to the last term in expression (8):

(9)

We can write the surface free energy in the form of
an expansion in Ψs, viz., the value of order parameter
Ψ at the boundary of the superconductor:

(10)

Here, index l indicates the components of the gradient
and vector potential directed in the plane of the inter�
face. This expression contains the first�order term in
τ – C0|Ψs |2. It was shown in [2], however, that coeffi�
cient C0 is small. Therefore, retaining the second�
order terms in τ is not an overestimate.

We assume that the external field direction lies in
the plane of the interface. Using the standard gauge
procedure for the 1D problem (along x), in which vec�
tor potential a = a(x)ey also lies in this plane and order
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parameter ψ(x) = f(x) is real�valued, we can write the
total energy in the form

(11)

where

(12)

The temperature dependence of the surface free
energy in expression (11) is a consequence of reduc�
tion to the dimensionless form, in which the Gin�
zburg–Landau energy (the integrand) is independent
of temperature.

The minimum of functional (11) corresponds to
the Ginzburg–Landau equations

(13)

with boundary conditions

(14)

where

(15)

We have obtained the boundary conditions in the gen�
eral form, which depend on four parameters (12). One
of these parameters (the De Gennes parameter λ0) is
especially small. We use the notation λ0 instead of λG

from condition (2) to emphasize that the sign and
magnitude of parameter λ0 may noticeably differ from
the value of λG, which is an order�or�magnitude esti�
mate. A reasonable expression for λ0 was derived
in [6]:

(16)

where N(x) is the local density of states at the Fermi
level, V(x) is the Cooper interaction constant, and Λ =
V(∞)N(∞) (Λ ≈ 0.2–0.3).

Parameter γ1 defines the surface current and the
field jump at the boundary of the superconductor,
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which can be explained by the nonlocal nature of the
relation between the superconducting current and the
vector potential. For this reason, we refer to γ1 as the
Pippard parameter. It should be emphasized that
quantitative analysis of parameters (12) is beyond the
scope of the phenomenological model considered
here and can be carried out only in terms of micro�
scopic theory.

Critical field hsc in which surface superconductivity
appears can be determined from the linearized eigen�
value problem

(17)

with the boundary condition

(18)

where vector potential a(x) = h0(x – x*) corresponds
to the unperturbed field. Parameter x* has the mean�
ing of the coordinate at which the superconducting
current changes its sign and is chosen so that field hsc

is maximal.
A distinguishing feature of problem (17), (18) is

that parameter λ cannot be treated as an independent
quantity. In accordance with relation (15), this param�
eter depends on the value of a(0), which in turn is
determined from the solution to Eq. (17). Therefore,
the solution to problem (17), (18) shown in Fig. 1 is a
function of two variables: hsc = �(λ, ε), where ε =

γ1 .

For ε = 0, dependence �(λ, 0) was obtained in [7].
It is depicted by curve 1 in Fig. 1. The value of λ = 0
corresponds to the field hsc = hc3 = 1.695; for |λ| � 1,
the approximation hsc ≈ hc3(1 – λ) holds. It should also
be noted that for λ > 0, field hsc < hc3; i.e., surface
superconductivity is suppressed, and when λ  +∞,
the field tends to hsc  hc2 = 1.

To derive the temperature dependence hsc(τ), we
must determine dependence λ(τ). For this, we must
find the value of a(0) in formula (15). This can be done
using the value of the first integral of the Ginzburg–
Landau equations,

(19)

for x = 0. Substituting boundary conditions (14) and
passing to the limit f(0)  0, we obtain

(20)

Eliminating a(0) from expression (15), we obtain the
fourth�degree equation in λ:

(21)

which defines the λ(τ) dependence implicitly.
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For h0ε � 1, we can use the approximate relation

a(0) ≈ –  and lower the equation to the second
degree. The solution to this equation,

(22)

gives the required temperature dependence hsc(τ) =
�(λ(τ), 0).

In expression (22), there is a characteristic temper�
ature,

(23)

which separates two ultimate cases. For (–τ) � τ*
(and 4γ1|λ0 | � 1), expression (22) can be simplified,

(24)

which corresponds to the value of a(0) = –1. The
other case (–τ) � τ*,

(25)

leads to a linear dependence Hsc(τ), which has a larger
slope than that of Hc3(τ).

For h0ε � , relation (20) leads to

(26)

which allows us to omit the last term in formula (15).
In this case, we obtain temperature dependence
hsc(τ) = �(λ(τ), ∞), where
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Fig. 1. Dependence of field hsc = �(λ, ε) on parameter λ for
several values of ε: (1) ε = 0, (2) ε = 1, and (3) ε  ∞.
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The above arguments correctly describe the λ(τ)
dependence; however, numerical approximation
should be used for function �(λ, ε). In addition, for
h0ε ~ 1, the hsc(τ) dependence can be obtained only by
solving problem (17), (18) numerically.

To compare our results with experiment, it is con�
venient to introduce (as was done in experimental
works) the effective value of κsc(τ) and its deviation
from parameter κ:

(28)

These expressions are convenient because the follow�
ing relation holds for small λ and ε:

(29)

Figure 2 shows dependence δκ(τ)/κ for tin based
on the results from [3], which was obtained using
model (22) with parameters λ0 = ⎯9.1 × 10–3, λ1 =
1.76, and γ1 = 0.72. It is important that in view of the

slow decrease of function 1/ , the presence of the
second term in formula (24), which is proportional to

, is not clearly seen in the figure. Conversely, it
can be seen from the figure that the left part of the
curve is a weakly curved linear dependence, which can
be “smoothly” extrapolated to τ = 0. It follows from
the figure, however, that such an extrapolation gives an
estimate for κ higher by 20%. Indeed, from the extrap�
olation to τ = 0, the value of κ ≈ 0.093 was obtained in
[3] for tin, while approximation (22) gives κ ≈ 0.075.
The κsc(τ) dependence for tin obtained in [4] notice�
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ably differs from that reported in [3]; nevertheless, we
obtained a close value κ ≈ 0.073.

Since the value of h0ε in our approximations varies
in the range 0.1 < h0ε < 0.7 and the condition h0ε � 1
for which expression (22) was obtained is violated, we
have also determined parameter κ using the direct
solution to problem (17), (18). As a result, we obtained
a slightly higher value of κ ≈ 0.079.

Too high values of parameter κ were also obtained
for indium by extrapolating κsc(τ) to τ = 0. The extrap�
olation in [3] gives κ ≈ 0.062, while approximation
(22) gives κ ≈ 0.05.

It should be noted that the experimental works
were aimed at analysis of the κsc(τ) dependence for its
subsequent extrapolation to τ = 0. But the behavior of
the curve in close vicinity to Tc was ascribed to size
effects, so the detailed measurements in this tempera�
ture range were not performed.

Recent studies devoted to surface superconductiv�
ity of lead [8], in which measurements were taken in
the immediate vicinity of Tc, have revealed good
agreement between the observed hsc(τ) dependence
and the model described here. The value of the Gin�
zburg–Landau parameter obtained in [8] for lead is
κ ≈ 0.2.

Boundary condition (18), (15) does not contain
parameter η1. This is not surprising because in the lin�
ear problem, we disregard the term proportional to
f4(0). However, this parameter can also be determined
experimentally. As a matter of fact, the following two
scenarios are possible in field hsc(τ): (i) a localized sur�
face state is formed, which is stable in a certain range
of fields and temperatures, or (ii) an unstable state is
formed, and superconductivity immediately sets in the
entire sample. If we disregard the surface free energy,
the choice of the scenario is determined by the value of
parameter κ. This problem was considered in [9], in
which the critical value of Ginzburg–Landau param�
eter κF ≈ 0.405 (Feder point) was determined. For κ <
κF, bulk superconductivity appears in field hc3, while
for κ > κF, stable surface states exist [10].

If the surface free energy differs from zero, the
Feder critical point depends not on the Ginzburg–
Landau parameter only, but also on parameters (12) of
the surface free energy. Let us consider the stability of
the surface state near the hsc(τ) curve for f  0. This
can be done in the simplest way by evaluating the
energy E0 at the extremum of functional (11). For this
purpose, we integrate term ( f ')2 in relation (11) by
parts and substitute expression (13) for f ''(x) and (14)
for f '(0):
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Fig. 2. Dependence of the relative variation of κsc on
reduced temperature τ for different values of λ(τ). The
solid curve is calculated by formula (22) with parameters
λ0 = –9.1 × 10–3, λ1 = 1.76, and γ1 = 0.72. The dashed
curves correspond to the following approximations:

(1) λ0/ , (2) (γ1 – λ1); (3) formula (24). Circles
correspond to the results obtained in [3] for tin.
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Since f  0 and (b – h0) ∝ f 2 as the hsc(τ) curve is
approached, energy (30) vanishes as E0 ≈ cf 4(0). The
sign of coefficient c changes at the critical point.
Therefore, we can express η1 in terms of solution a(x),
f(x) to linear problem (17), (18):

(31)

Thus, knowing the position of the Feder point on the
hsc(τ) curve and the three parameters determining
boundary condition (15) for the linear problem, we
can also determine the value of parameter η1. By way
of illustration of the effect of parameters (12) on the
critical value κF, Fig. 3 shows the κF(λ) dependence for
γ1 = η1 = 0.

If we consider the surface free energy as a tempera�
ture correction to the Ginzburg–Landau energy, the
question of the next�order corrections in τ arises.
These are the corrections to volume energy density (4)
on the order of τ3. These corrections were considered
in [11], in which it was shown that for (–τ) � 1, such
corrections lead to the dependence

(32)

As expected, the value of the effects considered here is
much larger than the value given by formula (32) in the
vicinity of Tc.

Since the thickness of the surface state is on the

order of ξ(τ) and is proportional to 1/ , we can
conclude that the corrections to the volume energy
lead to integral powers of τ in the κsc(τ) dependence,
while the terms in the surface energy lead to half�inte�
gral powers of τ. This conclusion is in conformity with
the results obtained in the BCS theory. In particular,
the square root dependence κsc(τ) was obtained in [12]
from analysis of the conditions of electron reflection
from the interface with vacuum.

The last question to be considered here concerns
the surface superconducting transition temperature in
zero field. At temperatures higher than Tc, the volume
energy changes its sign and becomes positive, while
the surface free energy remains negative (for λ0 < 0)
and finite. Therefore, the total energy of the surface
state remains negative up to a certain temperature τs,
at which superconductivity disappears [13]. It can be
shown that τs satisfies the equation

(33)

The experimental observation of surface supercon�
ductivity above Tc appears to be difficult in view of the
small value of parameter λ0.
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