В.Н.Глазков «Физика низкоразмерных систем» слайды к лекции 9

Одномерные спиновые системы 2: Гейзенберговская спиновая цепочка.

# Гейзенберговский гамильтониан спиновой цепочки в фермионном представлении



### Напоминание про ферми-жидкость



Схематическое изображение спектральной плотности для ферми-газа (с) и для ферми-жидкости (d).

... и одномерный случай. Жидкость Томонаги-Латтинжера.



Функции распределения по импульсу (слева) и энергии (справа) в одномерной системе взаимодействующих ферми-частиц.

$$n(k) - n(k_F) \propto -sign(k - k_F) |k - k_F|^{\frac{K + K^{-1}}{2} - 1} \qquad n(\varepsilon) \propto \varepsilon^{\frac{K + K^{-1}}{2} - 1}$$

Отсутствие хорошо определённых квазичастиц; Линейный спектр возбуждений на малых волновых векторах; Для заряженных частиц — разделение зарядовой и спиновой степени свободы (хороший обзор arXiv: 9807366) Построение волновой функции основного состояния.

$$\hat{H} = \sum_{m} J_{ij} \left( \hat{S}_{m}^{z} S_{m+1}^{\hat{z}} + \frac{1}{2} \left( \hat{S}_{m}^{+} S_{m+1}^{-} + \hat{S}_{m}^{-} S_{m+1}^{+} \right) \right)$$

«вакуум» = поляризованное состояние

$$\psi_0 = |\dots - - - - - \dots \rangle$$
  $E_0 = NJ/4$ 

одночастичное состояние

$$\psi_k = \frac{1}{\sqrt{N}} \sum_n e^{i \vec{k} \cdot \vec{r_n}} \hat{S}_n^+ \psi_0$$

$$E(\vec{k}) = \langle \psi_k | \hat{H} | \psi_k \rangle = \frac{1}{N} \sum_{n, n'} e^{i\vec{k} \cdot (\vec{r}_n - \vec{r}_n)} \langle \psi_0 | \hat{S}_{n'}^- \hat{H} \hat{S}_n^+ | \psi_0 \rangle$$

частично вычислено для ХҮ модели, осталась только ZZ-часть гамильтониана

$$\hat{S}_{m}^{z} \hat{S}_{n}^{+} = \hat{S}_{n}^{+} \left( \hat{S}_{m}^{z} + \delta_{mn} \right)$$

$$E\left(\vec{k}\right) = J\cos\left(ka\right) + \frac{J}{N} \sum_{n,m} \langle \psi_{0} | \hat{S}_{n}^{-} \hat{S}_{m}^{z} \hat{S}_{m+1}^{z} \hat{S}_{n}^{+} | \psi_{0} \rangle = J\cos\left(ka\right) +$$

$$+ \frac{J}{N} \sum_{n,m} \langle \psi_{0} | \left( \hat{S}_{m}^{z} + \delta_{mn} \right) \left( \hat{S}_{m+1}^{z} + \delta_{m+1,n} \right) | \psi_{0} \rangle = J\cos\left(ka\right) + \frac{NJ}{4} - J = E_{0} - J\left( 1 - \cos\left(ka\right) \right)$$

Двухчастичные и далее состояния

наивно: 
$$\psi'_{\underline{k},\underline{k}'} = A \sum_{n,n'} e^{ikna} e^{ik'n'a} \hat{S}_n^+ \hat{S}_{n'}^+ \psi_0^-$$

нельзя, избыточность базиса

$$\psi_{k,k'} = \frac{1}{2} \sum_{i \neq j} f_{ij} \hat{S}_i^+ \hat{S}_j^+ \psi_0$$

$$f_{ij} = f_{ji}$$

диагональные элементы физического смысла не имеют — можно доопределить по математическому удобству

$$\hat{H} \psi = E \psi$$

$$\langle \psi_0 | \hat{S}_i^- \hat{S}_j^- \hat{H} | \psi_{k,k'} \rangle = E \langle \psi_0 | \hat{S}_i^- \hat{S}_j^- | \psi_{k,k'} \rangle$$

$$J \left\langle \psi_0 | \hat{S}_i^- \hat{S}_j^- \sum_m \left( \hat{S}_m^z \hat{S}_{m+1}^z + \frac{\hat{S}_m^+ \hat{S}_{m+1}^- + \hat{S}_m^- \hat{S}_{m+1}^+}{2} \right) \sum_{n \neq n'} f_{nn'} \hat{S}_n^+ \hat{S}_{n'}^+ | \psi_0 \right\rangle = E (f_{ij} + f_{ji})$$

для вычисления следим, чтобы на каждом узле повышающие и понижающие операторы встречались одинаковое число раз вычисляем....

ZZ: нужно совпадение пар (i, j) и (n,n')

произведение Z-компонент ¼, кроме тех случаев, когда до S<sub>z</sub> был переворот спина.

$$\begin{split} \sum_{n \neq n'} \left( \delta_{in} \delta_{jn'} + \delta_{in'} \delta_{jn} \right) f_{nn'} \sum_{m} \left( \frac{1}{4} - \frac{1}{2} \left( (\delta_{mn} + \delta_{m+1,n'}) (1 - \delta_{n+1,n'}) + (\delta_{mn'} + \delta_{m+1,n}) (1 - \delta_{n'+1,n}) \right) \right) \\ = \left( f_{ij} + f_{ji} \right) \left( \frac{N}{4} - 2 + \delta_{i+1,j} + \delta_{j+1,i} \right) \end{split}$$

«+-» слагаемое m+1 должно быть п или п'  

$$\frac{1}{2} \sum_{n \neq n',m} f_{nn'} \hat{S}_{i}^{-} \hat{S}_{j}^{-} \hat{S}_{m}^{+} \hat{S}_{n+1}^{-} \hat{S}_{n}^{+} \hat{S}_{n'}^{+} =$$

$$= \frac{1}{2} \sum_{n \neq n',m} f_{nn'} \Big( \delta_{im} (\delta_{jn} \delta_{m+1,n'} + \delta_{jn'} \delta_{m+1,n}) + \delta_{jm} (\delta_{in} \delta_{m+1,n'}^{-} + \delta_{in'} \delta_{m+1,n}) \Big) =$$

$$= \frac{1}{2} \Big( f_{j,i+1} \Big|_{j \neq i+1} + f_{i+1,j} \Big|_{j \neq i+1} + f_{i,j+1} \Big|_{j \neq i-1} + f_{j+1,i} \Big|_{j \neq i-1} \Big)$$

«-+» слагаемое

$$\frac{1}{2} \left( f_{j,i-1} \Big|_{j \neq i-1} + f_{i-1,j} \Big|_{j \neq i-1} + f_{i,j-1} \Big|_{i \neq j-1} + f_{j-1,i} \Big|_{i \neq j-1} \right)$$

$$(E - E_0 + 2\mathbf{J}) f_{ij} - \frac{J}{2} (f_{i, j+1}|_{i \neq j+1} + f_{i, j-1}|_{i \neq j-1} + f_{i+1, j}|_{i \neq j-1} + f_{i-1, j}|_{i \neq j+1}) = J f_{ij} (\delta_{i+1, j} + \delta_{j+1, i})$$

## от исключений слева избавляемся, добавляя исключённые члены справа

$$(E - E_0 + 2\mathbf{J}) f_{ij} - \frac{J}{2} (f_{i, j+1} + f_{i, j-1} + f_{i+1, j} + f_{i-1, j}) = J f_{ij} (\delta_{i+1, j} + \delta_{j+1, i}) - \frac{J}{2} (f_{ii} \delta_{i, j+1} + f_{ii} \delta_{i, j-1} + f_{jj} \delta_{i, j-1} + f_{jj} \delta_{i, j+1}) = J (\delta_{i+1, j} + \delta_{j+1, i}) \left( f_{ij} - \frac{f_{ii} + f_{jj}}{2} \right)$$

так как диагональные члены нефизичны — выбираем их по удобству (работает только для S=1/2!)

$$2f_{i,i+1} = f_{ii} + f_{i+1,i+1}$$

и тогда:

$$(E - E_0 + 2J) f_{ij} - \frac{J}{2} (f_{i, j+1} + f_{i, j-1} + f_{i+1, j} + f_{i-1, j}) = 0$$
 угадываем  $f_{nn'} = e^{i(kan+k'an'+\xi/2)} + e^{i(kan'+k'an-\xi/2)}, \quad n > n'$ 

граничные условия и уравнение «на диагональ» определяют k, k', ξ

$$\begin{split} & \frac{2f_{n,n+1} = f_{nn} + f_{n+1,n+1}}{2\left(e^{i(kan+k'a(n+1)+\xi/2)} + e^{i(ka(n+1)+k'an-\xi/2)}\right) = \left(e^{i((k+k')an+\xi/2)} + e^{i(((k+k')an+\xi/2)} + e^{i(((k+k')an+\xi/2)}\right)} \\ & + \left(e^{i((k+k')a(n+1)+\xi/2)} + e^{i((k+k')a+\xi/2)}\right) \\ & 2\left(e^{i(k'a+\xi/2)} + e^{i(ka-\xi/2)}\right) = e^{i\xi/2} + e^{-i\xi/2} + e^{i((k+k')a+\xi/2)} + e^{i(((k+k')a-\xi/2)}\right) \\ & + \left(e^{i((k-k')a)} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k+k')a/2} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k-k')a} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k-k')a} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k+k')a/2} + e^{i(k-\xi/2)} + e^{i(k+k')a-\xi/2)}\right) \\ & + \left(e^{i(k+k')a/2} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k-k')a} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i(k-\xi/2)} + e^{i(k-\xi/2)}\right) \\ & + \left(e^{i$$

$$\begin{array}{c} f_{nN} = f_{0n} \\ kaN - \xi/2 = \xi/2 + 2\pi p; \\ k = \frac{2\pi p + \xi}{aN}; \end{array} e^{i(kan + k'aN + \xi/2)} + e^{i(kan - \xi/2)} = e^{i(k'an + \xi/2)} + e^{i(kan - \xi/2)} \\ k'aN + \xi/2 = -\xi/2 + 2\pi p; \\ k' = \frac{2\pi p + \xi}{aN}; \\ k' = \frac{2\pi p' - \xi}{aN} \end{array}$$

два числа p, p' (от 1 до N) задают двухчастичное состояние

$$E - E_0 = -J(2 - \cos(ka) - \cos(k'a))$$

ограничения на р, р': нужна вещественность k и k'

пример: 
$$p' = p + 1$$
  
 $\cos\left(\frac{2p+1}{N}\pi\right) > 0$   $\xi = \pi + i \delta$ 

частный пример

$$k = \frac{(2p+1)\pi}{aN} + i\frac{\delta}{aN}$$
$$k' = \frac{(2p+1)\pi}{aN} - i\frac{\delta}{aN}$$
$$k' - k a + \xi = \pi + i\delta - 2i\frac{\delta}{N}$$

$$\cos\left(\left(k'-k\right)a/2 + \xi/2\right) = \cos\left(\xi/2\right) \cdot \cos\left(\left(k+k'\right)a/2\right)$$
$$\cos\left(\frac{\pi}{2} + i\frac{\delta}{2} - i\frac{\delta}{N}\right) = \cos\left(\frac{\pi}{2} + i\frac{\delta}{2}\right) \cdot \cos\left(\frac{2p+1}{N}\pi\right)$$
$$sh\left(\frac{\delta}{2} - \frac{\delta}{N}\right) = sh\frac{\delta}{2} \cdot \cos\left(\frac{2p+1}{N}\pi\right)$$

разрешимо на б

Можно строго доказать, что проблем нет, если

|p-p'| > 1

обобщение на n-частичный случай

$$\begin{split} \psi_{k_{1},k_{2...},k_{n}} &= \sum_{m_{1,},m_{2,},...,m_{n}} f_{m_{1,},m_{2,},...,m_{n}} \hat{S}_{m_{1}}^{+} \hat{S}_{m_{2}}^{+} ... \hat{S}_{m_{n}}^{+} \psi_{0} \\ f_{m_{1,},m_{2,},...,m_{n}} &= e^{i(k_{1}m_{1}a+k_{2}m_{2}a+...+k_{n}m_{n}a+\frac{1}{2}\sum_{r$$



$$E - E_0 = -J \sum_{1}^{n} (1 - \cos k_i a)$$

основное состояние: n=N/2 чисел p, не соседние. То есть: 1,3,5,7,...,(N-1) Энергия основного состояния. Путём несложных вычислений....

$$E - E_0 = -J \sum_{1}^{n} (1 - \cos k_i a) = -J \sum_{p = [1, 3, \dots, N-1]} \left( 1 - \cos \left( \frac{2\pi p + \sum \xi_{kk'}}{N} \right) \right) = -\frac{JN}{2} \int_{0}^{1} (1 - \cos k(x)) dx = -J N \int_{0}^{1} \sin^2 \frac{k(x)}{2} dx$$

$$k(x) = 2\pi x + \frac{1}{2} \int_{0}^{1} \xi(x, y) dy$$
  
$$2 ctg \frac{\xi(x, y)}{2} = ctg \frac{k(x)}{2} - ctg \frac{k(y)}{2}$$
  
$$k(x) = 2\pi x + \int_{0}^{1} arcctg \left[ \frac{ctg(k(x))}{2} - \frac{ctg(k(x))}{2} \right]$$

$$k(x) = 2\pi x + \int_{0}^{1} \operatorname{arcctg}\left[\frac{\operatorname{ctg}(k(x)/2) - \operatorname{ctg}(k(y)/2)}{2}\right] dy$$

$$A = ctg \frac{k(x)}{2}$$
$$f(A) = -\left(\frac{dA}{dx}\right)^{-1}$$

$$f(B) = -\left(\frac{dB}{dy}\right)^{-1}$$

 $B = ctg \frac{k(y)}{2}$ 

... вычисляем

$$E - E_0 = -JN \int_0^1 \sin^2 \frac{k(x)}{2} dx = -JN \int_0^1 \frac{1}{\frac{\cos^2(k(x)/2)}{\sin^2(k(x)/2)} + 1} dx =$$
$$= -JN \int_{-\infty}^\infty \frac{f(A) dA}{1 + A^2}$$

$$\frac{d k(x)}{dx} = 2 \pi + \int_{-\infty}^{\infty} \frac{f(B)/f(A)}{1 + (A - B)^2/4} dB$$
  
тождество  $f(A) \frac{dk(x)}{dx} = \frac{2}{1 + A^2}$   $\frac{2}{1 + A^2} = 2 \pi f(A) + \int_{-\infty}^{\infty} \frac{1}{1 + (A - B)^2/4} f(B) dB$ 

добавляем Фурье-преобразование 
$$F_k = \int_{-\infty}^{\infty} f(x) e^{ikx} dx$$
 замена A'=A-B  
 $2 \int_{-\infty}^{\infty} \frac{e^{ikA}}{1+A^2} dA = 2\pi F_k + \int_{-\infty}^{\infty} f(B) \frac{e^{ikA}}{1+(A-B)^2/4} dB dA$ 

... вычисляем

$$2\int_{-\infty}^{\infty} \frac{e^{ikA}}{1+A^2} dA = 2\pi F_k + F_k \int_{-\infty}^{\infty} \frac{e^{ikA'}}{1+(A')^2/4} dA'$$

фурье-образ лоренциана - экспонента

$$F_k = \frac{1}{2 \operatorname{ch} k}$$

$$E - E_0 = -JN \int_{-\infty}^{\infty} \frac{f(A) dA}{1 + A^2} = \frac{-JN}{2\pi} \int_{-\infty}^{\infty} \frac{F(k) e^{-ikA}}{1 + A^2} dA dk$$

И наконец: 
$$E - E_0 = -JN \ln 2$$

$$\left\langle \left(\hat{\vec{S}}_{n}\cdot\hat{\vec{S}}_{0}\right)\right\rangle \propto (-1)^{n}\frac{1}{\left(2\pi\right)^{\frac{3}{2}}}\frac{\sqrt{\ln n}}{n}$$

возбуждения гейзенберговскогом магнетика.

континуум, нижняя граница

$$\epsilon(q) = \frac{\pi J}{2} |\sin q|$$
  
в  $\pi/2$  раз жёстче обычных спиновых волн

верхняя граница 
$$E_{max} = 2 \epsilon \left(\frac{q}{2}\right) = \pi J \left|\sin \frac{q}{2}\right|$$

плотность состояний вычисляема, имеет острый максимум на нижней границе

формально может быть описан введением частицы *спинона* со спином ½, при взаимодействии с внешним миром спиноны всегда рождаются парами.

#### Экспериментальные примеры



Кристаллическая структура СРС

Измеренный спектр возбуждений в одномерном антиферромагнетике СРС и сравнение с результатом классической теории и теории де Клуазо-Пирсона. Из работы. Единицы энергии отличаются вдвое от принятых в нашем курсе из за другой формы записи гамильтониана

Y. Endoh, G. Shirane, R. J. Birgeneau, Peter M. Richards, and S. L. Holt, Dynamics of an S=1/2, One-Dimensional Heisenberg Antiferromagnet, Physical Review Letters, 32, 170 (1974)

 $CuCl_2 \cdot 2N(C_5D_5)$  (сокращённо СРС)

a = 17.00Å

*b*=8.59Å

*c*=3.87Å

 $\beta = 91^{\circ} 52'$ 

E/J

J=26.8К может быть определён независимо из магнитных измерений



## Экспериментальные результаты



$$c = 3.914$$
Å  
 $a = b = 4.126$ Å

Обменный интеграл (антиферромагнитного знака) вдоль цепочки равен примерно 35 мэВ (около 380К). Из-за слабого межцепочечного (ферромагнитного в случае KCuF<sub>3</sub>) взаимодействия наступает дальний магнитный порядок при температуре 39К для структуры вида (а) и 22К для структуры вида (d).

#### Экспериментальные результаты







Набор траекторий для измерения передачи импулься и энергии при неупругом рассеянии нейтронов и соответсвующие профили рассеяния. Т=50К. Сплошные линии — расчёт в двухспинонной модели.

D. Alan Tennant and Roger A. Cowley, Stephen E. Nagler, Alexei M. Tsvelik, Measurement of the spin-excitation continuum in onedimensional KCuF3 using neutron scattering, Physical Review B, (1995)

## Экспериментальные результаты



D. C. Dender, D. Davidovic, Daniel H. Reich, and Collin Broholm, Kim Lefmann, G. Aeppli, Magnetic properties of a quasi-one-dimensional S=1/2 antiferromagnet: Copper benzoate, Physical Review B, 53, 2583 (1996)

 $Cu(C_6D_5COO)_2 \cdot 3D_2O$ 

Определённый по кривым восприимчивости обменный интеграл равен 1.57мэВ (18.2К), слабое межцепочечное взаимодействие приводит к упорядочению при 0.76К.



Профили рассеяния с постоянной передачей импульса. Кривые — модельный расчёт в двухспинонной модели.