

Лекция 5.

- Гармонический осциллятор. Туннельные осцилляции.
- Оценочные и приближенные решения для квантовых ям.
- Момент импульса в квантовой механике. Движение в центральном поле.

Небольшое математическое уточнение...

Часть 1. Квантовый осциллятор

Гармонический осциллятор в 1D

Гармонический осциллятор в 1D

- Точно решаема в эрмитовых функциях
- Эквидистантные уровни

$$E_n = \hbar \omega \left(n + \frac{1}{2} \right)$$
$$\omega = \sqrt{\frac{k}{m}}$$

• Имеются «нулевые колебания»

Схематический вид волновых функций одномерного осциллятора

https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator

Часть 2: Туннельные осцилляции в связанных квантовых ямах

$$\hat{T}\Psi_{1,2}=\hbar T\Psi_{2,1}$$

$$\Psi^{(\pm)} = \frac{1}{\sqrt{2}} (\Psi_1 \pm \Psi_2)$$
$$(\hat{H}_0 + \hat{T}) \Psi^{(\pm)} = E^{(\pm)} \Psi^{(\pm)}$$

$$E^{(\pm)} = E_0 \pm \hbar T$$

по осцилляторной теореме меньшую энергию имеет состояние без «дополнительных» нулей в.ф.

ямах

Часть З. Оценки и приближенные методы

Оценки и приближенные методы

Подбор удобной для вычислений волновой функции, например:

 $\Psi(x, a) = A x e^{-x/a}$

$$E(a) = \int \Psi^*(x, a) \hat{H} \Psi(x, a) dx > E_0$$

Минимум *E*(*a*) приближается к энергии основного состояния.

«Оптимизованная» волновая функция $\Psi(x,a)$ будет «близка» к в.ф. основного состояния Ψ_0

Часть 4. Момент импульса в квантовой физике

https://www.youtube.com/watch?v=DcaJQtKHm88

Момент импульса в квантовой физике

стоп-кадр из https://www.youtube.com/watch?v=DcaJQtKHm88

Момент импульса в квантовой физике

стоп-кадр из https://www.youtube.com/watch?v=DcaJQtKHm88

Момент импульса в квантовой физике

стоп-кадр из https://www.youtube.com/watch?v=DcaJQtKHm88

В стационарных состояниях *L*² должен иметь строго определенные значения, но все компоненты <u>вектора</u> *L* одновременно задать невозможно

Немного математики в сферических координатах

Spherical coordinate system

Немного математики в сферических координатах

Немного математики в сферических координатах

Собственные значения проекции момента

$$\hat{l}_z = -i \frac{\partial}{\partial \phi} -i \frac{\partial \Psi}{\partial \phi} = m \Psi \Psi = f(r, \Theta) e^{i m \phi} + требование однозначности при повороте на 2 π$$

Собственные значения проекции момента

возможные значения от *-l* до *l*

Собственные значения проекции момента

Собственные значения квадрата момента. Физика.

Собственные значения квадрата момента. Математика.

$$\hat{l}^{2} = -\left(\frac{1}{\sin\Theta}\frac{\partial}{\partial\Theta}\left(\sin\Theta\frac{\partial}{\partial\Theta}\right) + \frac{1}{\sin^{2}\Theta}\frac{\partial^{2}}{\partial\phi^{2}}\right)$$
$$\hat{l}^{2}\Psi = A\Psi \text{ решается в сферических функциях, см ЛЛ.III, пар.28}$$
$$Y_{lm}(\Theta, \phi) = C_{lm}P_{l}^{|m|}(\cos\Theta)e^{im\phi}$$
собственные значения $A = l(l+1)$

Собственные значения квадрата момента. Математика.

$$\hat{l}^{2} = -\left(\frac{1}{\sin\Theta}\frac{\partial}{\partial\Theta}\left(\sin\Theta\frac{\partial}{\partial\Theta}\right) + \frac{1}{\sin^{2}\Theta}\frac{\partial^{2}}{\partial\phi^{2}}\right)$$
$$\hat{l}^{2}\Psi = A\Psi$$
 решается в сферических функциях, см ЛЛ.III, пар.28
$$Y_{lm}(\Theta, \phi) = C_{lm}P_{l}^{|m|}(\cos\Theta)e^{im\phi}$$
собственные значения $A = l(l+1)$

Пространственная чётность состояния с определенным моментом импульса

$$\vec{r} \Leftrightarrow -\vec{r}$$

$$\{r, \Theta, \phi\} \Leftrightarrow \{r, \pi - \Theta, \pi + \phi\}$$

$$Y_{lm}(\pi - \Theta, \phi + \pi) = (-1)^{l} Y_{lm}(\Theta, \phi)$$

Правила квантования момента

импульса

- одновременно могут быть измерены проекция момента на заданную (любую, традиционно обозначается Z) ось и квадрат момента импульса
- собственные значения квадрата момента *l(l+1)*, «длиной» вектора момента импульса называют *l*
- проекция момента импульса целое число *m*=-*l*,-*l*+1...*l*-1, *l*,
 всего (2*l*+1) возможность
- чётность состояния с определённым *l* : *P*=(-1)^{*l*}

Часть 5. Движение в центральном поле, некоторые общие свойства

$$E\Psi = \hat{H}\Psi = \left(\frac{\hat{p}^2}{2m} + U(r)\right)\Psi = \left(-\frac{\hbar^2}{2m}\Delta + U(r)\right)\Psi$$

$$E\Psi = \hat{H}\Psi = \left(\frac{\hat{p}^2}{2m} + U(r)\right)\Psi = \left(-\frac{\hbar^2}{2m}\Delta + U(r)\right)\Psi$$

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\Psi}{\partial r}\right)+U(r)\Psi+\frac{\hbar^2}{2mr^2}\hat{l}^2\Psi=E\Psi$$

$$E\Psi = \hat{H}\Psi = \left(\frac{\hat{p}^2}{2m} + U(r)\right)\Psi = \left(-\frac{\hbar^2}{2m}\Delta + U(r)\right)\Psi$$

$$-\frac{\hbar^{2}}{2m}\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\Psi}{\partial r}\right)+U(r)\Psi+\frac{\hbar^{2}}{2mr^{2}}\hat{l}^{2}\Psi=E\Psi$$

действует только
на радиальную
часть
часть

$$E\Psi = \hat{H}\Psi = \left(\frac{\hat{p}^2}{2m} + U(r)\right)\Psi = \left(-\frac{\hbar^2}{2m}\Delta + U(r)\right)\Psi$$

$$\Psi = \frac{\xi(r)}{r} \times Y_{lm}(\Theta, \phi)$$

$$-\frac{\hbar^{2}}{2m}\xi''+\left(U(r)+\frac{l(l+1)}{r^{2}}\right)\xi=E\xi$$

Сведена к одномерной задаче, *r>0*
$$E\Psi=\hat{H}\Psi= \underbrace{\Psi(r,\Theta,\phi)=\Psi_{n_{r},l,m}}_{E=E(n_{r},l)}$$

$$\underbrace{\frac{2m r^{2}\partial r}{\partial r}}_{\text{действует только}} \underbrace{2mr^{2}}_{\text{действует только на угловую часть}}$$

$$\Psi = \frac{\xi(r)}{r} \times Y_{lm}(\Theta, \phi)$$

$$-\frac{\hbar^{2}}{2m}\xi''+\left(U(r)+\frac{l(l+1)}{r^{2}}\right)\xi=E\xi$$

Сведена к одномерной задаче, $r>0$
 $E\Psi=\hat{H}\Psi=$
 $\Psi(r,\Theta,\phi)=\Psi_{n,l,m}$
 $E=E(n_{r},l)$
Квантовые числа:
• n_{r} — радиальное
(0,1,2...)
• l — орбитальное
 $\{s,p,d,f..\}=\{0,1,2,3..\}$
• m — магнитное

$$\Psi = \frac{\xi(r)}{r} \times Y_{lm}(\Theta, \phi)$$

Вид некоторых волновых функций (угловая часть).

Часть 6. Трехмерный осциллятор и кулоновское поле

Трёхмерный осциллятор U=kr²/2

$$-\frac{\hbar^2}{2m}\Delta\Psi + \frac{kr^2}{2}\Psi = E\Psi$$

Трёхмерный осциллятор U=kr²/2

$$-\frac{\hbar^2}{2m}\Delta\Psi + \frac{kr^2}{2}\Psi = E\Psi$$

$$-\frac{\hbar^2}{2m}\Delta\Psi - \frac{e^2}{r}\Psi = E\Psi$$
$$-\frac{\hbar^2}{2m}\xi'' + \left(-\frac{e^2}{r} + \frac{l(l+1)}{r^2}\right)\xi = E\xi$$

$$\Psi = \frac{\xi(r)}{r} \times Y_{lm}(\Theta, \phi)$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m}\Delta\Psi - \frac{e^2}{r}\Psi = E\Psi\\ -\frac{\hbar^2}{2m}\xi'' + \left(-\frac{e^2}{r} + \frac{l(l+1)}{r^2}\right)\xi = E\xi \end{bmatrix}$$

$$\Psi = \frac{\xi(r)}{r} \times Y_{lm}(\Theta, \phi)$$

Только ответы:

- 1) случайное вырождение по орбитальному квантовому числу
- 2) энергию определяет главное квантовое число $n = n_r + l + l$

3) возможные значения момента l=0, 1...(n-1)

 $E_n = -\frac{m e^4}{2 \hbar^2} \frac{1}{n^2}$ 13.6 3B

Основное на лекции

