Неделя 5. Кинетические и электрические явления в твёрдых телах и металлах.

Здесь приводятся решения задач для разбора на семинаре для лекционного потока ФОПФ, 6 семестр, 2017-2018 уч.год. О замеченных опечатках, ошибках и неточностях просьба сообщать В.Н.Глазкову vglazkov@yandex.ru

Оглавление

Неделя 5. Кинетические и электрические явления в твёрдых телах и металлах	1
Задача 3.65	
Задача 3.75	
Задача 3.9	
Задача Т.5.1	
Задача 3.74	

Задача 3.65

Характерная величина удельного сопротивления металлов при комнатной температуре $\rho=10^{-5}~O_{M}\cdot c_{M}$. Оценить длину свободного пробега Λ , приняв постоянную решётки равной $a=3\text{\AA}$.

Решение:

Используем формулу Друде для проводимости $\sigma = \frac{n\,e^2\,\tau}{m}$. Для перехода к требуемым в условии величинам подставляем $\Lambda = v_F \tau$, $p_F = m\,v_F$ и $p_F = \hbar\,(3\,\pi^2\,n)^{1/3}$: $\frac{1}{\rho} = \sigma = \frac{n\,e^2\,\tau}{m} = \frac{n\,e^2\,\Lambda}{p_F} = \left(\frac{n}{\pi}\right)^{2/3} \frac{e^2\,\Lambda}{\hbar\,\sqrt[3]{3}} \ .$

Будем считать, что в металле имеется один электрон проводимости на ячейку (случай меди, например), то есть $n=a^{-3}$.

Тогда получаем ответ:
$$\Lambda = \frac{\hbar 3^{1/3} \pi^{2/3} a^2}{\rho e^2} \approx 1.1 \cdot 10^{-6}$$
 $c_M = 11$ нм .

<u>Комментарий:</u> в задаче используются внесистемные единицы — *Ом·см* , перед тем как вычислять по этой формуле, лучше проверить размерность. Формула Друде верна и в СИ и в СГС, в СИ размерность удельного сопротивления *Ом·м* , в СГС — $ce\kappa$, $1 Om \cdot m = \frac{1}{9} 10^{-9} ce\kappa$.

Задача 3.75

Удельное сопротивление сплава Ag+1% Ni при $T\simeq 0$ равно $\rho=10^{-6}$ Ом \cdot см . Считая, что это сопротивление определяется только примесными ионами никеля, оценить величину сечения рассеяния электронов на атоме никеля. Серебро кристаллизуется в ГЦК решётку с $a=4.1 \mbox{\AA}$.

Решение:

Напомним, что ГЦК решётка — не примитивная, в ней на кубическую элементарную ячейку приходится 4 атома. У серебра единственный валентный электрон, поэтому концентрация электронов равна концентрации атомов серебра.

Нулевая температура в условии задачи означает, что основным каналом рассеяния электронов является рассеяние на примесях. В технически чистых металлах (сплав с 1% примесей это даже довольно «грязный» металл) такой низкотемпературный режим реализуется ниже примерно 10К.

Напомним также, что в металле примесной ион погружен в «море» электронов проводимости, которые экранируют его поле. Потенциал взаимодействия с таким экранированным ионом в рамках локального приближения Томсона-Ферми (см. лекционные материалы) — это экранированный кулоновский потенциал $\frac{e^{-r/r_0}}{r}$, где характерный радиус экранирования для металлов порядка атомного. Так что ожидаемым должен быть ответ порядка квадрата атомного размера.

Длина пробега связана с концентрацией рассеивающих центров и сечением рассеяния как $\Lambda = \frac{1}{s\,n_{\mathrm{Ni}}}$, где s - искомое сечение рассеяния, а n_{Ni} - концентрация рассеивающих центров (атомов никеля). Для относительной концентрации 1%, концентрация рассеивающих центров никеля на атом серебра $n_{\mathrm{Ni}} = 0.01 \frac{4}{a^3}$. Концентрация электронов проводимости $n_e = \frac{4}{a^3}$.

Ферми-поверхность серебра в целом близка к сферической, хотя и имеет «перетяжки» на границе зоны Бриллюэна, поэтому для оценки можно взять величину фермиевской скорости, вычисленной в модели газа свободных электронов: $\Lambda = v_F \tau = \frac{\hbar}{m} \sqrt[3]{3 \pi^2 n_e} \ \tau$.

Сводя все эти рассуждения в формулу Друде, получаем: $\sigma = \frac{n_e e^2 \tau}{m} = \left(\frac{4}{a^3}\right)^{2/3} \frac{\Lambda e^2}{\hbar \sqrt[3]{3 \, \pi^2}}$.

Окончательно для сечения рассеяния:

$$s = \frac{1}{n_{\text{Ni}}\Lambda} = \frac{1}{0.01 \frac{4}{a^3}} \left(\frac{4}{a^3}\right)^{2/3} \frac{e^2}{\sigma \hbar \sqrt[3]{3\pi^2}} = 100 \frac{1}{\sqrt[3]{12\pi^2}} \frac{a e^2}{\sigma \hbar} = 100 \frac{1}{\sqrt[3]{12\pi^2}} \frac{\rho a e^2}{\hbar} \approx 2 \cdot 10^{-16} \text{ cm}^2 .$$

Как и ожидалось, сечение оказывается порядка атомного.

Задача 3.9

На какой максимальный угол может отклониться электрон при поглощении или испускании одного фонона в одновалентном металле с простой кубической решёткой, хорошо описывающемся моделью Дебая и моделью свободных электронов.

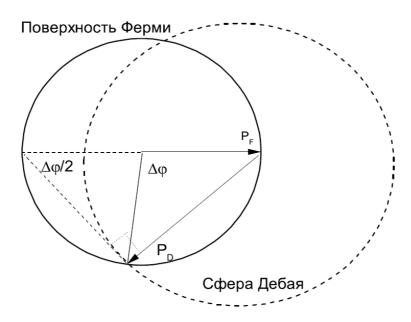


Рисунок 1: K задаче 3.9. Сфера радиусом $\hbar k_D$ построена из одной из точек ферми-поверхности. Точки пересечения этой сферы с поверхностью Ферми соответствуют максимальным углам отклонения.

Решение:

В одновалентном металле с простой кубической решёткой поверхность Ферми представляет собой сферу радиусом $k_F = \sqrt[3]{3\pi^2}/a \approx 3.09/a$, где a - параметр решётки.

Максимальный импульс фонона в дебаевской модели равен $\hbar k_D$. Согласно модели Дебая $\frac{4}{3}\pi(k_D)^3 = \frac{(2\pi)^3}{a^3}$ (полное число мод колебаний одной поляризации для простой решётки равно числу атомов), откуда $k_D = \sqrt[3]{6\pi^2}/a \approx 3.90/a$. Дебаевский импульс оказывается несколько больше фермиевского.

В то же время, максимальная энергия фонона в дебаевской модели равна дебаевской температуре и для металлов является величиной порядка 200К. Энергия Ферми для электронов в нормальном металле порядка нескольких электронвольт, то есть порядка 50000 К. Это означает, что при рассеянии электрона с испусканием или поглощением фонона

¹ Для дебаевской энергии $k_B\Theta = s\,\hbar\,k_D$ и $\Theta \!\!\approx\!\! \frac{600\,K}{a\,[\mathring{A}\,]}$, для вычисления принято $s \! = \! 2\,\kappa m/c$. Для фермиевской энергии $k_BT_F \! = \! \frac{\hbar^2}{2\,m}k_F^2$ и $T_F \!\!\approx\!\! \frac{420000\,K}{a^2[\mathring{A}\,]}$. Межатомное расстояние в ангстремах.

исходное и конечное состояния электрона должны быть практически на поверхности Ферми: запрет Паули не позволяет «глубоким» электронам получить или отдать такую порцию энергии.

По закону сохранения квазиимпульса, разница между этими положениями должна быть равна импульсу фонона с точностью до вектора обратной решётки, помноженного на постоянную Планка. Но процессы с перебросом в нашей задаче можно не рассматривать, так как минимальный вектор обратной решётки на простой кубической решётке $G = \frac{2\pi}{a} > 2k_F$.

Таким образом, задача об угле отклонения сводится к геометрической задаче о нахождении угла в равнобедренном треугольнике, две стороны которого равны фермиевскому импульсу, а одна сторона — дебаевскому. Задача может быть решена по теореме косинусов или другим тригонометрическим способом.

Более геометрическое решение (см. рисунок 1) предлагает построение из точки на поверхности Ферми (соответствующей исходному состоянию электрона) сферы с радиусом, равным дебаевскому импульсу. Пересечения этих сфер дадут геометрическое место точек для конечного состояния электрона при рассеянии на максимальный угол. Максимальный угол отклонения $\Delta \phi$ можно определить пользуясь известным геометрическим свойством

опирающегося на диаметр внутреннего угла. Откуда:
$$\sin\frac{\Delta\varphi}{2} = \frac{\omega_D/s}{2\hbar\,k_F} = \frac{\sqrt[3]{6\,\pi^2}}{2\,\sqrt[3]{3\,\pi^2}} = \frac{1}{2^{2/3}}$$
 и $\Delta\varphi \approx 78^0$.

Задача Т.5.1

На какой максимальный угол может отклониться электрон при поглощении фотона в одновалентном металле с простой кубической решёткой, хорошо описываемом моделью Дебая и моделью свободных электронов.

<u>Комментарий:</u> задача подразумевает, что длина волны фотона велика по сравнению с межатомным расстоянием — это соответствует поглощению фотона видимого или ультрафиолетового диапазона.

Решение:

Фотон, в отличие от фонона, может иметь сравнимую с электроном энергию (электронвольты). Однако, так как в видимом и УФ диапазонах длина волны фотона много больше атомного масштаба, волновой вектор фотона много меньше фермиевского. Таким образом, при поглощении или испускании фотона квазиимпульс электрона практически не изменяется.

Таким образом, в рамках зонной картины переход электрона между состояниями при поглощении или испускании фотона должен быть «вертикальным»: с заметным изменением энергии, но практически без изменения квазиимпульса. Следовательно, внутри одной зоны процесс излучения или поглощения фотона вообще невозможен, так как противоречит закону сохранения импульса и энергии. Испускание фотона большой энергии дополнительно запрещено принципом Паули — все глубокие состояния уже заняты.

Испускание и поглощение фотона маленькой энергии вблизи поверхности Ферми также

невозможно: изменение энергии электрона $\delta E_e \approx V_F \hbar \delta k$, а требуемый по сохранению квазиимпульса фотон будет иметь энергию $E_{ph} = c \hbar \delta k \gg \delta E_e$.

Межзонный переход (т.н. вертикальный переход) возможен. При этом квазиимпульс практически не изменится, однако направление распространения (направление групповой скорости) может измениться сильно в зависимости от вида ветви спектра, на которую произошёл переход.

Задача 3.74

В тонких проволочках длины свободного пробега лимитируются диаметром проволочки, поэтому совпадают у электронов и фононов. Оценить, при какой температуре в этих условиях сравниваются электронная и решёточная теплопроводности.

Решение:

Сразу заметим, что хотя проволочки и тонкие, задача является трёхмерной, так как существенно для рассеяния движение в перпендикулярном направлении.

Для электронного вклада в теплопроводность $\kappa_{el} = \frac{1}{3} v_F C^{(V)} \Lambda = \frac{\pi^2}{3} \frac{n_e \Lambda}{p_F} k_B^2 T$, где Λ ограничивающий размер (диаметр проволочки).

Для фононов априори не ясно в какой области температур мы окажемся в ответе: будет ли применим закон Дебая, высокотемпературный предел или получится промежуточный случай.

Используем формулу газового приближения: $\kappa_{\it ph} = \frac{1}{3} C(T) s \Lambda$.

Предположим, что применим низкотемпературный дебаевский предел $C = \frac{12\,\pi^4}{5} n_{\rm вчеек} \, k_{\rm B} \left(\frac{T}{\Theta}\right)^3 \ .$ Для одновалентного металла с примитивной ячейкой, содержащей единственный атом, концентрации электронов проводимости, атомов и ячеек равны. Приравниваем две теплопроводности:

$$\frac{\pi^2}{3} \frac{k_B^2 T n_e \Lambda}{\hbar k_E} = \frac{12 \pi^4}{5} n_{\text{greek}} k_B \left(\frac{T}{\Theta}\right)^3 \times \frac{s \Lambda}{3} .$$

Откуда:
$$T^2 = \frac{5 k_B \Theta^3}{12 \pi^2 m v_F s} \approx (70 \text{K})^2$$

Численный ответ получен для параметров меди $s=3.7\cdot 10^5\, cm/ce\kappa$, скорость Ферми $v_F=1.6\cdot 10^8\, cm/ce\kappa$ температура Дебая $\Theta=347\mathrm{K}$ (Внимание: в задачнике в ответах на два порядка ошибочно указана фермиевская скорость).

Полученная температура всего в несколько раз меньше дебаевской, поэтому модель T^3 уже неприменима. При $T/\Theta = 1/5$ вычисленное по низкотемпературной зависимости значение

² Можно получить тот же результат, пользуясь законом Видемана-Франца (применимому для рассеяния на границах) $\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2 \quad , \text{ а проводимость} \quad \sigma = \frac{n_e e^2 \tau}{m} = \frac{n_e e^2 \Lambda}{\hbar \, k_E} \quad .$

теплоёмкости составляет уже около 60% от максимального значения (см. рисунок 2). Для оценки сравним результат с высокотемпературным пределом, когда фононная теплоёмкость равна $C = n_{at} 3 \, k_B$:

$$\frac{\pi^2}{3} \frac{k_B^2 T n_e \Lambda}{\hbar k_F} = n_{at} 3 k_B \times s \Lambda / 3$$
$$T = \frac{3 m v_F s}{\pi^2 k_B} \approx 120 K$$

Полученный ответ опять оказывается вне пределов используемого приближения (теперь температура слишком низка для высокотемпературного предела). Отсюда следует, что, не решая задачу точно, мы можем лишь получить оценку $T \simeq 100 \mathrm{K}$.

Для завершенности анализа приведём результат графического решения без использования низкотемпературного или высокотемпературного приближения. Если ввести нормированную теплоёмкость на ячейку $c(T) = \frac{C(T)}{n_{_{\mathit{я}_{\mathit{q}}}} 3\mathrm{k}_{_{\mathit{B}}}}$, то равенство электронной и решёточной теплопроводности даёт условие: $c(T) = \frac{\pi^2}{3} \frac{k_{_{\mathit{B}}}\Theta}{s \, p_{_{\mathit{F}}}} \frac{T}{\Theta} \approx 2.92 \, \frac{T}{\Theta}$, численные значения подставлены, как и выше, для меди.

Как видно из графического решения (рисунок 2), точного решения *нет*! Таким образом, точный анализ показывает, что в рамках используемых приближений в тонких проволочках электронная и фононная теплопроводности не сравниваются никогда, электронная всегда больше. Более того, если бы решение было, то решений должно было бы быть два: низкотемпературное <u>и</u> высокотемпературное (должно было быть две точки пересечения выпуклой дебаевской кривой и линейной кривой теплоемкости ферми-газа).

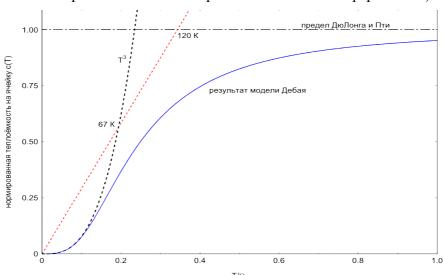


Рисунок 2: Графическое решение задачи 3.74. Синяя кривая - нормированная теплоёмкость дебаевской модели. Чёрный пунктир и штрих-пунктир - низкотемпературное и высокотемпературное приближения. Красный пунктир - вычисленный выше для параметров меди закон $c = 2.92 \frac{T}{\Theta}$.

³ Нормировка выбрана так, чтобы давать единичное значение в высокотемпературном пределе.