Неделя 11. Контактные явления в полупроводниках. Построение энергетических диаграмм контактов полупроводников.

Оглавление

Задача 4.24	1
Задача 4.18	4
Задача Т.11.1	6

Задача 4.24

Если нанести плёнку металла на плоскую поверхность легированного кремния, то получится контакт Шоттки. При определённой полярности напряжения между плёнкой металла и объёмом полупроводника ток через контакт пренебрежимо мал. При этом контакт подобен плоскому конденсатору, у которого роль одной из обкладок играет слой ионизованных примесей. Найти толщину H этого слоя и дифференциальную ёмкость C = dQ/dV для контакта площадью $S = 1 \text{ см}^2$. Считать, что примеси нейтральны в отсутствие поля и однократно ионизованы при $E \neq 0$. Концентрация примесей $n = 10^{16} \text{ см}^{-3}$, напряжение V = 5B, диэлектрическая проницаемость $\varepsilon = 12$.

Решение:

Энергетическая диаграмма контакта металл-полупроводник показана на рисунке 1.

При соединении разнородных материалов необходимо выбрать общее начало отсчёта энергии для электронов в этих материалах. Для контакта металл-полупроводник имеется полуэмпирическое правило Шоттки-Мота: от общего уровня минимальной энергии электрона в вакууме откладывается работа выхода для металла и сродство к электрону для полупроводника. В зависимости от взаимного расположения уровня Ферми металла и зоны проводимости полупроводника возможно возникновение «нормального» омического контакта (панели а и в)¹ или «диодного» контакта (б и г). На практике омический контакт более редок, его получение (необходимое в частности для подключения всевозможных гетероструктур к измерительному оборудованию) является отдельной технологической задачей. В задаче речь идёт именно о «диодном» контакте: в условии сказано, что в одной из полярностей напряжения ток через контакт не течёт.

Даже в отсутствие внешнего потенциала часть примесей вблизи такого «диодного» контакта ионизована. При приложении небольшого потенциала смещается граница слоя ионизованных примесей, что равносильно описываемому в условии появлению дополнительного заряженного слоя. Именно поэтому речь в условии идёт про дифференциальную ёмкость.

¹ Для того, чтобы показать, что ток по такому омическому контакту потечёт при малом приложенном напряжении нужно дополнительно учесть конечность температуры, приводящую к небольшой заселенности зоны проводимости полупроводника и заселению состояний металла над поверхностью Ферми.

Рисунок 1 Построение энергетических диаграмм контакта металл-полупроводник. Левые рисунки: уровень Ферми металла попадает в зону проводимости полупроводника. Правые рисунки: уровень Ферми металла попадает в запрещённую зону полупроводника.

Для определённости считаем кремний легированным донорными центрами, условие подразумевает мелкость примесных уровней (близость к дну зоны проводимости). При T=0 ионизуются все примеси, для которых энергия донорного уровня окажется выше локального химпотенциала.

Запирающая полярность диодного контакта для нашего рисунка 1 соответствует приложению положительного потенциала к металлу. В отсутствие заметного тока (запертый диод) условие равновесия соответствует постоянству электрохимпотенциала, внешний источник уменьшает энергию электронов в металлическом электроде. Тогда, так как напряжение 5В больше щели в полупроводнике, уровень Ферми металла окажется ниже потолка валентной зоны в полупроводнике, а в положительный заряд в приграничном слое полупроводника будет два вклада: от ионизованных донорных центров и от вакансий в приграничном слое валентной зоны. Строго разделить мы их не можем. В задаче говорится про

дифференциальную ёмкость — можно надеяться, что при небольшом изменении нап яжения изменение заряда за счёт ионизации донорных центров будет основным (из-за более пологой зависимости $\phi(x)$ на границе слоя ионизованных примесей граница обеднённого слоя будет сильнее сдвигаться при изменении напряжения, чем граница инверсного слоя в валентной зоне). Поэтому задача решается в приближении, что всё изменение потенциала связано только с ионизацией примесей.

Напряжение 5В заведомо заметно больше контактной разности потенциалов (которая составляет обычно доли вольта). Это позволяет пренебречь начальным (при U=0) перераспределением заряда и считать, что слой ионизованных при приложении напряжения примесей шириной H начинается прямо от границы контакта.

Заряд ионизованных примесей в слое толщиной H (расстояние, на которое сместится граница слоя ионизованных примесей): Q=nHSe, аналогичный заряд другого знака добавится на металлической обкладке. Откуда ёмкость конденсатора: $C=\frac{neSH}{II}$.

Для оценки сравниваем эту ёмкость с ёмкостью плоского конденсатора с расстоянием между пластинами *H* (пренебрегаем пространственным распределением заряда) $C = \frac{\varepsilon S}{4\pi H}$ откуда $H = \sqrt{\frac{\varepsilon U}{\varepsilon M}} \approx 5.8 \cdot 10^{-5} c_M = 0.58 \, \text{мкм}$

откуда
$$H = \sqrt{\frac{\epsilon O}{4 \pi n e}} \approx 5.8 \cdot 10^{-5} \, c_M = 0.58 \, \text{мк/}$$

$$H \quad C = \frac{\varepsilon S}{4\pi H} \approx 1.6 \cdot 10^4 \, c_M = 0.018 \, \text{MK}\Phi$$

Для более точного результата можно учесть распределение заряда в слое ионизованных примесей. Уравнение Пуассона (с точностью до несущественного здесь знака) $\frac{d^2 \Phi}{dx^2} = 4\pi \frac{en}{\epsilon}$, отсюда изменение потенциала на слое толщиной $H = U = 2\pi \frac{en}{\epsilon} H^2$ (именно в этот момент не учитывается влияние возможно образовавшегося инверсного слоя). Тогда $C = \frac{neSH}{U} = \frac{1}{2\pi} \frac{\epsilon S}{H}$, что отличается множителем от сделанной выше грубой оценки. В числах: $H = \sqrt{\frac{\epsilon U}{2\pi en}} = 8.1 \cdot 10^{-5} c_M \approx 0.8 \, \text{мкм}$, $C = 2.4 \cdot 10^4 \, \text{см} = 0.026 \, \text{мк}\Phi$. Найденные выше ёмкости — это ёмкости всего слоя без учёта начального (при U = 0)

перераспределения заряда. Для искомой дифференциальной ёмкости $C_{diff} = \frac{\delta Q}{\delta U}$ воспользуемся тем, что из найденной квадратичной связи толщины слоя с приложенным напряжением $\delta U = 2U \frac{\delta H}{H}$, а $\delta Q = neS\delta H$. Отсюда $C_{diff} = \frac{neSH}{2U} = 0.013 \, \text{мk}\Phi$.

Задача 4.18

Как изменится ток насыщения полупроводникового диода при понижении температуры от 20° C до 0° C? За счёт какого механизма возникает этот ток? Вследствие какого процесса и примерно при какой температуре T^* эффект выпрямления начнёт исчезать? Диод изготовлен из материала с шириной запрещённой зоны $\Delta = 0.7$ эВ и с одинаковыми эффективными массами электронов и дырок $m^* = 0.3 m_0$, m_0 — масса свободного электрона. Концентрация примеси по обе стороны перехода равна $n_{np} = 10^{15} \text{ см}^3$. Считать, что время жизни неравновесных носителей тока от температуры не зависит.

Решение:

Задача решена в задачнике. Здесь приводится краткое решение.

Схема изгиба зон на p-n переходе обсуждалась на лекции и есть в лекционных материалах (рисунок 2).

Рисунок 2 Построение схемы энергетической диаграммы для p-n перехода с приложенным внешним напряжением. Открытые и закрытые кружки условно показывают концентрации дырок и электронов на одном уровне полной энергии в разных случаях.

Током насыщения называется предельный ток через p-n переход при обратной полярности включения (естественно, до пробоя диода). Этот случай проиллюстрирован на левом нижнем рисунке на рисунке 2. Ток через переход при этом связан с неосновными носителями заряда: электронами в p-области и дырками в n-области.

Полный ток через переход равен разности диффузных токов слева-направо и справа-налево, в насыщении встречного тока нет (заселенность электронных уровней в п-области и дырочных состояний в р-области стремится к нулю), так что $I_{\mu ac} \propto n_e^{(p)}$

Для поиска концентрации несобственных носителей можно воспользоваться сразу общим соотношением (для определённости — для дырок в n-полупроводнике) $n_h = Q_h e^{-\mu/T}$, где химпотенциал отсчитывается от потолка валентной зоны. Считая донорный уровень мелким и пренебрегая температурной зависимостью химпотенциала, оставляем $n_h \propto e^{-\Delta/T}$. Как будет видно далее, это дает ответ с точностью около 20%, что приемлемо для оценки.

Зависимость химпотенциала от температуры может приводить к перенормировке предэкспоненты и в частности изменить её температурную зависимость (для статфактора $O \propto T^{3/2}$). Отметим, что *если бы* полупроводник был чистым, то концентрация электронов

и дырок равнялась бы
$$n_0 = Q e^{-\Delta/(2T)} = 2 \left(\frac{m^* k_B T}{2 \pi \hbar^2} \right)^{3/2} \exp\left(-\frac{\Delta}{2 k_B T}\right) \approx 3.8 \cdot 10^{12} \, 1/c m^3$$
 (при 20°C).

Эта концентрация много меньше концентрации примеси и если (что неявно подразумевается) примесной уровень мелкий и все примесные ионы ионизованы, то концентрация собственных носителей будет равна концентрации примесей.² Тогда для несобственных носителей по «правилу рычага» $n_e^{(p)} = \frac{n_0^2}{n_{np}} \propto T^3 e^{-\Delta/T}$. Экспонента та эе, что и в простой

оценке выше, но степень температуры в предэкспоненте отличается!

Отсюда для отношения токов:

$$\frac{I_{\mu ac}(0^{0}C)}{I_{\mu ac}(20^{0}C)} = \left(\frac{273}{293}\right)^{3} \times \exp\left(-0.7*11600\left(\frac{1}{273} - \frac{1}{293}\right)\right) \approx 0.808 \times e^{-2.03} \approx 0.131 \quad ,$$

оказывается что формулами малых приращений здесь пользоваться нельзя — степень экспоненты получается большой. Такая сильная зависимость характеристик прибора от температуры показывает, что полупроводниковые приборы очень чувствительны к внешним условиям.

Второй вопрос задачи тоже отражает эту чувствительность к изменению температуры. Если концентрация термоактивированных электронов (дырок) станет сравнима с концентрацией примеси, то отличие между легированным и чистым полупроводником начнёт исчезать и выпрямляющее действие перехода пропадёт. Грубой оценкой этой температуры будет: $n_{np} \simeq n_0(T^*)$. Это уравнение аналитически неразрешимо, но, зная из опыта, что уже при температурах 100-200 ^оС полупроводниковые приборы перестают работать, естественно ожидать, что главная зависимость от температуры в экспоненте. Тогда логарифмированием получим:

² Во избежание недоразумения, отметим, что в лекционных материалах при анализе концентрации носителей в допированном полупроводнике рассматривался случай *T*→0, когда ионизованных примесей мало. Это даёт другую температурную зависимость предэкспоненты в концентрации несобственных носителей.

$$T^* \simeq \frac{\Delta}{2} \frac{1}{\ln\left(\frac{2}{n_{np}} \left(\frac{m^* k_B T}{2\pi\hbar^2}\right)^{3/2}\right)} \simeq 500 \mathrm{K} \quad .$$

Задача Т.11.1

Для получения двумерного электронного газа с поверхностной плотностью $N=10^{11}1/cm^2$ используется гетероструктура из сильно допированного донорными примесями ($N_d \sim 10^{17}1/cm^3$) AlAs и чистого GaAs. Ширина запрещённой зоны в AlAs 2.16эB, в GaAs 1.42эB, на границе контакта потолок валентной зоны GaAs на 0.3эB выше потолка валентной зоны в AlAs. GaAs считать чистым полупроводником, примесной уровень в AlAs считать расположенным очень близко к дну зоны проводимости. Эффективная масса электрона в GaAs $m^*=0.067m_0$, диэлектрическая проницаемость арсенида галия $\varepsilon=12$, T=0.

- (і) построить энергетическую диаграмму гетероперехода;
- (ii) оценить в конденсаторном приближении толщину слоя, в котором формируется двумерный электронный газ, сравнить его с характерным межэлектронным расстоянием;
- (iii) оценить параметры треугольной потенциальной ямы, сравнить расстояние между нижними уровнями с энергией Ферми двумерного газа данной плотности.

Решение:

Сверхчистый GaAs обычно имеет небольшое количество акцепторных примесей и является таким образом слабодопированным полупроводником р-типа. Однако в этой задаче наличие таких примесей несущественно — при формировании двумерного газа подавляющее большинство электронов с примесей в AlAs перейдут в двумерный слой в зоне проводимости GaAs, а не займут места на акцепторных центрах. Простым объяснением этого является невозможность перехода электрона по, в общем-то, диэлектрической матрице полупроводника при T=0 далеко от границы раздела для заполнения вакансий на акцепторных центрах. Поэтому в гетероструктурах с чистым GaAs арсенид галлия правильнее считать идеальным полупроводником. Соответственно, уровень химпотенциала в GaAs располагается посередине запрещённой зоны, а в AlAs находится почти на дне зоны проводимости.

Взаимное расположение зон в разных полупроводниках на контакте гетероструктуры является вообще говоря сложным вопросом, приближённо может быть установлено правилом Андерсона (откладывая сродство к электрону от общего уровня в вакууме). В нашем случае нужная информация содержится в условии.

<u>(і) Построение зонной схемы</u>

Эти рассуждения и данные задачи позволяют нарисовать зонную структуру без учёта перераспределения электронов:

Рисунок 3: Первый шаг изображения зонной структуры. Красные горизонтальные линии — уровни химпотенциала в AlAs и GaAs; зелёный пунктир — положение примесного уровня в AlAs; фиолетовая кривая - «сглаживание» химпотенциала при перераспределении заряда. Рисунок в масштабе приведённых в условии значений энергии.

На границе контакта, если не учитывать перераспределение заряда, химпотенциал испытывает скачок $\Delta \mu = (2.16 - 0.3 - 1.42/2) \Im B = 1.15 \Im B$.

Электроны будут перераспределяться в направлении уменьшения химпотенциала (это соответствует в нашей задаче переходу электронов с примесных уровней в AlAs в зону проводимости GaAs), перераспределение зарядов вызовет появление возвращающего их электрического поля и процесс остановится, когда по системе будет постоянен электрохимический потенциал $\mu' = \mu - e \phi$ (знак минус явно учитывает отрицательность заряда электрона). Так как электростатический потенциал $\phi(z)$ меняется без скачков, то и

 $\mu(z)$ при учёте перераспределения заряда потеряет скачок на границе и станет плавным (фиолетовая кривая на рисунке 3). При этом в силу сильного (по условию) допирования в AlAs в основном химпотенциал будет меняться внутри GaAs (можно сравнить это утверждение с известной задачей о толщинах слоёв поляризованных примесей на обычном рп переходе) — и с необходимостью пройдёт через зону проводимости (дно зоны проводимости в GaAs получается на 0.44 эВ ниже, чем в AlAs), что и соответствует формированию приповерхностного слоя двумерных электронов.

Эту картину можно перерисовать с изгибом зон «выпрямив» уровень химпотенциала — то есть нарисовать зонную схему для полной энергии с учётом электростатической энергии (рисунок 4).

В таком представлении видна возникающая для электронов треугольная потенциальная яма на границе контакта. Отметим также, что из-за того, что GaAs — это чистый полупроводник минимум этой потенциальной ямы оказывается выше потолка валентной зоны в GaAs вдали от контакта примерно на 0.3 эВ. Поэтому единственными электронами в этом слое зоны проводимости окажутся электроны с примесных центров AlAs. Если бы GaAs оказался

полупроводником p-типа, то как легко видеть, дно ямы оказалось бы ниже потолка валентной зоны и был бы возможен и переход электронов из валентной зоны в яму. Первый сценарий (переход электронов только из второго полупроводника) называют также аккумуляцией или слоем аккумуляции, а второй (с переходом электронов из валентной зоны) иногда в более узком смысле называют инверсным слоем.

Рисунок 4 Схема с изгибом зон. В масштабе.

(ii) оценка толщины слоя аккумуляции

Точное распределение электронной плотности после перераспределения нам неизвестно. Ответ на этот вопрос потребует совместного решения уравнений Шредингера для электрона в полупроводнике и уравнений электростатики, что слишком сложно. Качественно понятно (так как в условии сказано, что двумерный газ сформировался), что плотность заряда в GaAs плавная функция похожая на квадрат волновой функции электрона в треугольной яме (задача известная из 5 семестра) с максимумом на некотором расстоянии от границы. Для оценки воспользуемся конденсаторным приближением — будем считать, что все электроны находятся на некотором расстоянии d от границы. Тогда получим, что электрическое поле между слоем ионизованных примесей в AlAs и этим слоем электронов в GaAs - это поле конденсатора. Разность потенциалов на обкладках очевидно равна разности химпотенциалов, т.е. 1.15 В (см. выше). По формулам электростатики $U = Ed = \frac{4 \pi \sigma d}{s}$

откуда $d = \frac{\varepsilon U}{4\pi\sigma} = \frac{\varepsilon U}{4\pi N e}$. Подставляя числа из условия и не забывая, что $1B = \frac{1}{300} e\partial. C\Gamma C$, получим $d = 6.6 \cdot 10^{-5} c_M = 660 \, \mu M$. Это расстояние можно сравнить с

расстоянием между электронами в «плоском» слое $a = \frac{1}{\sqrt{N}} = 3 \cdot 10^{-6} c_M = 30 \, н_M$ и с толщиной слоя ионизованных примесей в AlAs $d_n = \frac{N}{N_d} \sim 10^{-6} c_M$. Сравнение с расстоянием между электронами показывает, что, например, при учёте взаимодействия электронов

распределение электронной плотности в z-направлении даже в условиях размерного квантования будет важно. Вторая оценка подтверждает наше предположение, что основное изменение электростатического потенциала происходит внутри GaAs.

(ііі) оценка параметров квантовой ямы

Получающаяся потенциальная яма конечно не строго треугольная. Однако для оценки и если важны только первые подуровни размерного квантования можно считать зависимость потенциала вблизи границы линейной. Для оценки можно воспользоваться той же конденсаторной моделью: напряжённость электрического поля $E = \frac{U}{d} \approx 58 \, e \partial . C \Gamma C / c M$, а

$$eE = 2.8 \cdot 10^{-8}$$
 эрг/см

Ответ для задачи о треугольной яме известен в литературе, можно подобрать для оценки соображениями размерности, в пятом семестре искались уровни в треугольной яме по правилам Бора-Зоммерфельда (задача 3.6). Воспользуемся для оценки квазиклассическим

результатом $E_n = \frac{3}{2} \sqrt[3]{\frac{k^2 \pi^2 \hbar^2}{m}} n^{2/3}$, где наклон потенциала k = eE. Для характерного расстояния между нижними уровнями получаем оценку $\Delta E \simeq \sqrt[3]{\frac{(e E)^2 \pi^2 \hbar^2}{m_0}} \left(\frac{m_0}{m^*}\right)^{1/3} \simeq 5 \cdot 10^{-14} \, \text{эрг} \simeq 300 \text{K}$. Отметим, что из-за кубического корня результатом расстояния

сильное отличие эффективной массы электрона в GaAs от массы свободного электрона даёт лишь множитель величиной около 2.5.

Для того, чтобы понять сколько уровней размерного квантования заполнится сравним эту энергию с энергией Ферми. В двумерном газе $2\frac{\pi k_F^2}{(2\pi)^2} = N$ и с энергией Ферми. В двумерном газе $t^2 l^2$ m t^2 M

$$E_F = \frac{n \kappa_F}{2} m^* = \frac{m_0}{m^*} \frac{\hbar^2 \pi N}{m_0} = 50 \cdot 10^{-16} \, \text{эрг} \ll \Delta E \quad \text{. Здесь отличие эффективных масс уже}$$

существенно (множитель 15), но всё равно энергия Ферми мала по сравнению с расстоянием между уровнями размерного квантования. Значит все электроны при T=0 займут первый уровень размерного квантования и мы действительно получим двумерный газ.