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The existence of magnetic materials has been known almost since prehistoric
times, but only in the 20th century has it been understood how and why the
magnetic susceptibility is influenced by chemical composition or crystallo-
graphic structure. In the 19th century the pioneer work of Oersted, Ampere,
Faraday and Joseph Henry revealed the intimate connection between electric-
ity and magnetism. Maxwell’s classical field equations paved the way for the
wireless telegraph and the radio. At the turn of the present century Zeeman
and Lorentz received the second Nobel Prize in physics for respectively
observing and explaining in terms of classical theory the so-called normal
Zeeman effect. The other outstanding early attempt to understand magnetism
at the atomic level was provided by the semi-empirical theories of Langevin
and Weiss. To account for paramagnetism, Langevin (1) in 1905 assumed in
a purely ad hoc fashion that an atomic or molecular magnet carried a per-
manent moment µ, whose spatial distribution was determined by the Boltz-
mann factor. It seems today almost incredible that this elegantly simple idea
had not occurred earlier to some other physicist inasmuch as Boltzmann had
developed his celebrated statistics over a quarter of a century earlier. With
the Langevin model, the average magnetization resulting from N elementary
magnetic dipoles of strength µ in a field H is given by the expression

(1)

At ordinary temperatures and field strengths, the argument x of the Langevin

function can be treated as small compared with unity. Then L(x) = :x, and

Eq. (1) becomes

perature, a relation observed experimentally for oxygen ten years earlier by
Pierre Curie (2) and hence termed Curie’s law.

To explain diamagnetism, Langevin took into account the Larmor preces-
sion of the electrons about the magnetic field, and the resulting formula for
the diamagnetic susceptibility is
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where (ri)
2 is the mean square radius of an electron orbit, and the summation

extends over all the electrons in the atom. The important thing about (3)
is that, in substantial agreement with experiment, it gives a diamagnetic
susceptibility independent of temperature, provided the size of the orbits
does not change.

Two years later, in 1907, Pierre Weiss (3), another French physicist,
took the effective field acting on the atom or molecule to be the applied
field augmented by a mysterious internal or molecular field proportional to
the intensity of magnetization. The argument of the Langevin function then

becomes ‘L(H+qM)
kT

rather than EF, and in place of (2) one has

(4)

Since the right side of (4) becomes infinite for T = T c, the Weiss model
predicts the existence of a Curie point below which ferromagnetism sets in.
This model also describes qualitatively quite well many ferromagnetic phenom-
ena. Despite its many successes there was one insuperable difficulty from
the standpoint of classical electrodynamics. Namely the coefficient q of the

4n
molecular field qM should be of the order - whereas it had to be of the order

3
1 03 to describe the observed values of Tc.

There was, moreover, an even worse difficulty. If one applies classical
dynamics and statistical mechanics consistently, a very simple calculation,
which can be made in only a few lines but I shall not reproduce it here, shows
that the diamagnetic and paramagnetic contributions to the susceptibility
exactly cancel. Thus there should be no magnetism at all. This appears to
have been first pointed out by Niels Bohr (4) in his doctor’s dissertation in
1911, perhaps the most deflationary publication of all time in physics. This
may be one reason why Bohr broke with tradition and came forth with his
remarkable theory of the hydrogen spectrum in 1913. That year can be
regarded as the debut of what is called the old quantum theory of atomic
structure, which utilized classical mechanics supplemented by quantum con-
ditions. In particular it quantized angular momentum and hence the magnetic
moment of the atom, as was verified experimentally in the molecular beam
experiments of Stern and Gerlach (5). Hence there was no longer the statistical
continuous distribution of values of the dipole moment which was essential
to the proof of zero magnetism in classical theory. When Langevin assumed
that the magnetic moment of the atom or molecule had a fixed value µ, he
was quantizing the system without realizing it, just as in Moliere’s Bourgeois
Gentilhomme, Monsieur Jourdain had been writing prose all his life, without
appreciating it, and was overjoyed to discover he had been doing anything
so elevated. Magnetism could be understood qualitatively in terms of in-
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complete shells of electron orbits, and a sentence of Bohr which I like to quote
reads “In short an examination of the magnetic properties and colors of the
long periods gives us a striking illustration of how a wound in the otherwise
symmetrical inner structure of the atom is first created and then healed.”
However, with the passage of time it became increasingly clear that the old
quantum theory could give quantitatively correct results for energy levels or
spectral frequencies only in hydrogen. One historian of science has referred
to the early 1920’s as the crisis in quantum theory, but I would characterize
this era as one of increasing disillusion and disappointment in contrast to the
hopes which were so high in the years immediately following 1913.

The advent of quantum mechanics in 1926 furnished at last the real key to
the quantitative understanding of magnetism, I need not elaborate on the
miraculous coincidence of three developments, the discovery of the matrix
form of quantum mechanics by Heisenberg and Born, the alternative but
equivalent wave mechanical form by de Broglie and Schrödinger, and the
introduction of electron spin by Uhlenbeck and Goudsmit. A quantum
mechanics without spin and the Pauli exclusion principle would not have been
enough - one wouldn’t have been able to understand even the structure of
the periodic table or most magnetic phenomena. Originally spin was a sort of
appendage to the mathematical framework, but in Dirac 1928 synthesized
everything in his remarkable four first order simultaneous equations. To stress
the importance of the quantum mechanical revolution, I cannot do better than
to quote an often-mentioned sentence from one of Dirac’s early papers, which
reads “The general theory of quantum mechanics is now almost complete. The under-
lying physical laws necessary for the mathematical theory of a large part of physics and
all of chemistry are thus completely known”.

With at last the key available for the proper analysis of what was going on
inside the atom, it was natural that more than one physicist would try applying
it to a particular problem. So it is not surprising that four different researchers
independently calculated and reported in practically simultaneous publi-
cations (6) the susceptibility of a rotating diatomic molecule carrying a
permanent dipole moment, which could be either electric or magnetic de-
pending on whether one was interested in an electric or magnetic suscepti-
bility. (I was one of the four. The others were Kronig, Manneback, and
Miss Mensing working in collaboration with Pauli. The new mechanics
happily restored the factor i in the Langevin formula) (or the corresponding
Debye expression in the electric case), as shown in Table I. Thus was ended
the confusion of the old quantum theory, where half quanta worked better
in band spectra even though whole integers were required with rational
application of Bohr’s 1913 ideas.

There are three common paramagnetic gases, viz. O
2
, NO

2
, and NO. I shall

discuss NO first as its behavior is the most interesting of the three. In 1926
Robert Mulliken, who has a sixth sense for deducing molecular energy levels
from band spectra, had decided that the ground state of the NO molecule was
a 2II state, whose two components were separated by about 122 cm-1 but he
wasn’t sure whether the doublet was regular rather than inverted. I tried
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calculating the susceptibility of NO on the basis of Mulliken’s energy levels
and found (7) that the observed susceptibility at room temperatures could
be explained on the basis that the doublet was regular, i.e. the ~zz,,~ component
lower than the zns,*. I wasn’t entirely convinced that the agreement was real
rather than spurious, as molecular quantum mechanics was then in its infancy.
If the theory was correct there should be deviations from Curie’s law, and so
measurements on the susceptibility as a function of temperature should be
decisive. To my surprise, experiments to test this prediction were performed
in 1929 at three different laboratories in different parts of the world, with
each going to a lower temperature than the preceding (8). As shown in Fig. 1,
the agreement with theory was gratifying. The ordinate in Fig. 1 is not the
susceptibility itself, but rather the effective magneton number ,U~E defined
b y  x = JVpze+r  b2/3kT,  where  β i s  the  Bohr  magneton hel4zmc. The  non-
constancy of ,ue~ is a measure of the deviation from Curie’s law.

My calculations on NO started me thinking on the general conditions under
which Curie’s law should be valid or non-valid. I noted the fact, often over-



looked in those early days, that to make a proper computation of the suscepti-
bility even in weak fields, it is necessary to know the energy of the stationary
states, or alternatively the partition function, to the second order in the field
strength H., corresponding to including the second as well as first order
Zeeman effect. If the energy of a stationary state is

the correct formula for the susceptibility is

Perturbation theory tells us that

where huir  is the energy interval &CO) - Ej(O)  spanned by the matrix element
<il,uHlj>  of the magnetic moment in the direction of the field H. From (5)
and (6) one derives (7) the results presented in Table II.
Table II. Behavior of the Susceptibility in Various Situations

(a) x is proportional to 1 / T if all / htq are < <kT.
(b) x is independent of 7 if all Ihuii) are > >kT.
(c) x = A + B/T if all (hug are either >>kT  or <<kT.
(d) no simple dependence of x on T if Ihug  is comparable with kT.

In connection with the above it is to be understood that the relevant huij are
only those which relate to the energy intervals spanned by <ilplj>,  which
because of selection principles can often be less than the total spread in the
populated energy levels.

From too cursory examination of Eq. (5) one might conclude that case (a)
could never arise when there is a second order Zeeman effect, but this is not
S O. Since hqi = --huii,  ( <iI p~jj> I2 = 1 <ji p~li> I2 the various terms in (4)
can be so paired as to involve a factor (pj - &)/hucj)  which is approximately
4 (@a + pj)/kT  if lhuiil< <kT. The fact that the factor hurj  has thereby dis-
appeared shows that there is no catastrophe in the expression for the suscepti-
bility even when the denominators in the expression (6) for the second order
perturbed energy are very small.

The NO molecule, as we have seen, is an illustration of the situation (d).
On the other hand, the O2 and NO, molecules are examples of (a) and hence
obey Curie’s law. The oxygen molecule exhibits the same susceptibility as
though its spin of unity (S = 1) were completely uncoupled from the molecule.
Actually the spin is coupled to the molecule so that most of the Zeeman energy
becomes of the second rather than first order, but this complication is im-
material as regards the susceptibility since the binding energy is only of the
order 2 cm -1, small compared to kT. The third common paramagnetic gas
NO, should have a susceptibility corresponding to a free spin a, as it is an odd
molecule. Existing data were in disagreement with this prediction when I
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made it, but new magnetic measurements made by Havens at Wisconsin at
my suggestion removed this discrepancy (9).

In 1925 Hund (10) wrote a paper on the magnetic susceptibilities of rare
earth compounds which was the crowning achievement of the empiricism of
the old quantum theory. He utilized Landé’s then phenomenological g-factor
and the Hund rule that the state of lowest energy is that of maximum spin,
and of maximum L compatible with this S. At the time this rule was an inspired
conjecture, but today physicists justify it by examining nodes in the wave
function. He thus obtained the formula

for the susceptibility, and found that this expression agreed remarkably well
with experiments for all the trivalent rare earths compounds except those
containing Sm or Eu. In 1928 Laporte (11) pointed out that for these particular
two ions, the multiplet structure was such that the interval separating the
lowest multiplet component from the one next above it is not large com-
pared to kT. So he summed Hund’s expression for χ over the multiplet’s
various values of J weighted in accordance with the Boltzmann factor. Even
so, he was not able to raise the susceptibility to the values found experi-
mentally. When I read his paper it occurred to me that probably the cause
for the discrepancy was that the second order energy had been omitted. So
Miss Frank and I made the relevant calculations (12), and then there was
agreement with experiment, as shown in Fig. 2. The reason that Hund was
able to obtain agreement with experiment for other rare earths was that his

Fig. 2. The effective magneton number (in multiples of β) at room temperature for the
sequence of trivalent ions in the configurations 4f”, 4f, 4f2, ., 4f’4.
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empirical expression for the first order energy was the same as the true quan-
tum-mechanical one, and that the second order energy could be omitted
without too much error. The latter was the case because the interval sepa-
rating the lowest multiplet component from the next one above is large
except for Sm 3 +, E u3+, and the second order energy involves this interval in
the denominator. Since Sm3+ and  Eu3 +, unlike the other rare earth ions,
correspond to case (d) of table II, deviations from Curie’s law are to be
expected for salts containing these ions. This was indeed confirmed by the
limited amount of experimental data available at the time.

In 1930 and 1931 a great deal of my time went into writing my book on
the Theory of Electric and Magnetic Susceptibilities, which appeared in
1932 (13). In this volume I aimed to include the major theoretical develop-
ments which had taken place up to the time of writing. Besides the things
which I have already mentioned, there were other major developments in the
theory of magnetism in the early days of quantum mechanics. Heisenberg (14)
took the mystery out of the then twenty year old Weiss molecular field. He
showed that it arose from exchange effects connecting the different magnetic
atoms, which had the effect of introducing the needed strong coupling between
the spins. Other notable theoretical developments prior to 1932 included
Landau’s paper (15) on the diamagnetism of free electrons, in which he
showed that spinless free electrons had a small susceptibility of diamagnetic
sign, in contrast to the zero result of classical mechanics. Pauli (18) showed
that the spin moment of conduction electrons gives rise to only a small para-
magnetic susceptibility practically independent of temperature. This paper
was notable because it was the first application of Fermi-Dirac statistics to the
solid state. If one used the Boltzmann statistics one would have a large sus- 
ceptibility obeying Curie’s law.

On the other hand, there were some important development which arrived
just a little too late for me to include them in my volume. Néel’s first paper on
antiferromagnetism appeared in 1932, and in later years he introduced an
important variant called ferri-magnetism, in which the anti-parallel dipoles
are of unequal strength, so that they do not compensate and the resulting
behavior can be ferromagnetic (17). There was also Peirls’ (18) theoretical
explanation of the de Haas-van-Alphen effect, and Bloch’s 1932 paper (19)
on the width of the boundaries (now called Bloch walls) separating the
elementary domains in ferromagnetic materials. The corresponding domain
structure was explained and elaborated by Landau and Lifschitz two years
later (20).

In 1930 I held a Guggenheim fellowship for study and travel in Europe.
I spent most of the time in Germany, but by far the most rewarding part of
the trip scientifically was a walk which I took with Kramers along one of the
canals near Utrecht. He told me about his own theorem (21) on degeneracy
in molecules with an odd number of electrons and also of Bethe’s long paper
(22) concerned with the application of group theory to the determination of
the quantum mechanical energy levels of atoms or ions exposed to a crystalline
electric field, and in my book I referred to the role of the crystalline field only
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in a qualitative way, stressing the fact that it could largely suppress the orbital
part of the magnetic moment in salts of the iron group. In the process of
writing I did not have the time or energy to attempt quantitative numerical
computations. I was most fortunate when, beginning in the fall of 1931 I had
two post-doctoral students from England, namely William (now Lord)
Penney, and Robert Schlapp. I suggested to these two men that they make
calculations respectively on salts of the rare earth and of the iron group. The
basic idea of the crystalline field potential is an extremely simple one, namely
that the magnetic ion is exposed not just to the applied magnetic field but
experiences in addition a static field which is regarded as an approximate
representation of the forces exerted upon it by other atoms in the crystal. The
form of the crystalline potential depends on the type of crystalline symmetry.
For some of the most common types of symmetry the terms of lowest order
in x, y, z  are respectively

axial, tetragonal or hexagonal
rhombic

cubic

If the potential satisfies Laplace’s equation, the factors A, B, D are constants,
but because of charge overlap they can be functions of the radius.

The 4f  electrons responsible for the magnetism of the rare earths are se-
questered in the interior of the atom, and so experience only a small crystalline
field. The general formalism which I developed in 1927 and which is displayed
in table II shows that it is a good approximation to treat the atom as free
provided the decomposition of the energy levels caused by the crystalline
field is small compared to kT. This condition is fulfilled fairly well for the
rare earths at room temperatures, and explains the success of Hund’s theory.
At low temperatures inclusion of the crystalline potential is usually imperative,
and so Penney utilized it to interpret the existing experimental data mainly
by Cabrera and by Becquerel. Fig, 3 is taken from the original paper of
Penney and Schlapp (23). The ordinate is the reciprocal of the susceptibility.
Hence for Nd3+ one expects it to approach zero as T + 0 inasmuch as Nd3+

is an ion with an odd number of electrons, and even at T = 0 there is still the
Kramers degeneracy which implies a first order Zeeman effect and a l/T
term in the susceptibility. On the other hand for the even ion Pr 3+ a suf-
ficiently asymmetrical field should completely lift the degeneracy (case (b)
of Table II) and the susceptibility should remain finite as one approaches
T = 0. This difference is strikingly exhibited in the two sides of Fig. 3.

When applied to the iron group the results of crystal field theory are
particularly striking and form the basis of much of what may be called modern
magnetochemistry. The crystalline potential is much larger than for the rare
earths and is so powerful that it quenches a large part of the orbital part of the
magnetic moment even at room temperatures. Schlapp found that the mag-
netic behavior in the iron group required a large crystalline field of nearly
(but usually not entirely) cubic symmetry.
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Fig. 3. The reciprocal of the susceptibility as a function of temperature, for two rare earth
compounds containing respectively an even and odd number of electrons.

Each time I read the paper of Schapp and Penney (24) I am impressed
with how it contains all the essential ingredients of modern crystalline field
theory, although there have been changes in the best quantitative estimate
of D in (7c). For instance it accounted for the fact that most nickel salts
are nearly isotropic magnetically and follow Curie’s law down to quite low
temperatures, whereas the corresponding cobalt salts are highly anisotropic
and deviate greatly from Curie’s law. However, for a while we thought that
there was a difficulty and inconsistency. Let us focus attention on the ions
in F states; e.g. Ni++, Co++. In a nearly cubic field an F state will decompose in the
fashion shown in Figure 4. If a non-degenerate level is deepest, as in Figure 4,
then the orbital moment is completely quenched, and there should be almost
complete isotropy. On the other hand, if Figure 4 is upside down, and if the
components a, b, c of the ground level do not coincide because of deviations

Fig. 4. Orbital energies of an F state in a nearly cubic field The decompositions (a-b-c)
and (d-e-f) ensue only because of deviations from cubic symmetry. The quantity Dq is
connected with the constant D of (7c) by the relation Dq = 2 D<r 4> /105.



362

from cubic symmetry, and so have different Boltzmann factors, the anisotropy 
will be considerable. The very different behavior of nickel and cobalt can thus
be explained if it supposed that Figure 4 is rightside up for Ni 

++ but is upside
down in Co++. The calculations of Schlapp then worked fine. However, this
seemed to US for a while a thoroughly dishonest procedure, as it appeared to
require a change in the sign of D

Then one day it dawned on me that a simple calculation based on the
invariance of the trace shows that the splitting pattern does indeed invert in going
from nickel to cobalt even though the constant D is nearly the same.

The article (25) in which I published this result is my favorite of the various
papers I’ve written as it involved only a rather simple calculation, and yet it
gave consistency and rationality to the apparently irregular variations in
magnetic behavior from ion to ion.

The iron group salts I have discussed are of the 6-coordinated type, e.g.
C o ( N H4)2( S O4)2 6 H2O. A simple electrostatic calculation made by Gorter
(26) shows that the constant D in (7c) should change sign when the coordi-
nation is 4 rather than 6 fold and then Fig. 4 should be upright in Co++ and
inverted in Ni++. Krishnan and Mookherji (27) in 1937 verified experimentally
this theoretical prediction. They prepared some tetracoordinated cobalt
compounds, which are a beautiful cobalt blue in color and found that they
indeed show very much less anisotropy than do the pink six-coordinated
ones.

In 1935 I published a paper (28) in which I amplified and generalized in
two respects the primitive crystal field theory employed a few years previously
by Penney, Schlapp, and myself. In the first place I showed that Bethe’s
grouping of energy levels according to symmetry type was still valid even
if one allowed the electrons in the unclosed shells to wander away sometimes
from the central paramagnetic ion and take a look at the diamagnetic atoms
clustered around it. In more technical language, the wave function of the
electron has mixed into it small terms which correspond to such excursions.
This generalization corresponds to the use of molecular rather than atomic
orbitals. Following Ballhausen (29) it is convenient to designate this more
general model as ligand rather than crystal field theory, as chemists sometimes
refer to the neighboring atoms clustering about the central ion as ligands.
The use of ligand in distinction from crystal field theory can also be charac-
terized as making allowance for incipient covalence.

The other modification I made of the conventional theory was to note
that under certain conditions, the levels may be split so much by the crystalline
field as to break down the Hund rule that the deepest state is that of maximum
multiplicity permitted by the Pauli principle. This situation is shown sche-
matically in Fig. 5, which is drawn for the configuration d 6. According to the
Hund rule the deepest state is 5D (S = 2) and this necessitates all but one of
the five Stark components being singly inhabited, as in the left side of Fig. 5.
It is obvious that the energy in the crystalline or ligand field is lower if the
three deepest Stark components are doubly populated, with antiparallel
spin because of the exclusion principle. However, then the resultant spin is
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Fig. 5. The central diagram of the figure shows the decomposition of a single 3d level in a
field of mainly cubic symmetry. The arrows indicate how the different crystalline field
components are filled in case the ion contains six 3d electrons, and also the direction of
alignment of each spin. The situation in the left side of the figure represents conformity
to the Hund rule, while the right exemplifies what happens when minimization of the
energy in the crystalline field is so important as to break down this rule.

only 0, the Russell-Saunders coupling is broken up, and the part of the energy
not associated with the crystalline field is raised. The two cases represented
by the two sides of Fig. 5 are sometimes referred to as the high and low spin
cases. When the susceptibility of a compound is found to conform to the low
rather than high spin situation, this is something of interest to chemists. It
shows that the inter-atomic bonding is strong, since it is large enough to break
down the Hund rule. Beginning with Pauling and Coryell (30) in 1936, this
magnetic criterion has even been used to study the chemical behavior of iron
in blood. For example, the ferro-haemoglobin ion exhibits high and low
spin values 2 and 0 in the presence of H2O and O2 molecules respectively.
I should by all means mention that prior to my own paper Pauling (31) also
stressed the role of covalency effects in magnetism, and the fact that sometimes
the low rather than high spin case may be realized. However, in my opinion
the method of electron pair bonds which he employed is less flexible and
realistic without some modification than is that of molecular orbitals which
I used.

On 1937 Jahn and Teller (32) established a remarkable theorem that when
in a crystal there is a degeneracy or coincidence of levels for reasons of sym-
metry, the ligands experience forces which distort the crystalline arrangement,
thereby lowering both the symmetry and the energy.

I realized that the Jahn-Teller effect might have an important effect on
magnetic susceptibilities, and in 1939 I published a paper on this subject (33).
The energetic effect of Jahn-Teller distortions, is very similar to that of mo-
lecular vibrations. Consequently I was able to make the calculations which
I performed do double duty using them also in connection with the theory
of paramagnetic relaxation caused by spin-lattice coupling. The work I have
discussed so far all has related mainly to static susceptibilities but when
I visited Leiden in 1938, Gorter (34) aroused my interest in the behavior of the
susceptibility at radio frequencies and related problems in relaxation. In a
landmark pioneer paper written in 1932 Waller (35) showed that there could
be a transfer of energy between the magnetic and phonon systems because of the
modulation of the dipolar energy by the lattice vibrations, and a little later
Heitler and Teller, Fierz, and Kronig (36) showed that there could be a
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similar relaxation effect, usually of larger magnitude, because of the vibrational
modulations of the energy associated with the crystalline potential. I made
a more detailed explicit calculation (37) of the numerical values of the re-
laxation times to be expected for titanium, chronium and ferric ions. On the
whole the agreement with experiment was rather miserable. In an attempt
to explain away part of the disgreement, I suggested in another paper (38)
that there might be what is usually called a phonon bottleneck. The point
is that because of the conservation of energy only a portion of all the phonons,
those in a narrow frequency range, can exchange energy with the spin or
magnetic system. Because of their limited heat capacity, these phonons are
easily saturated and brought to the same temperature as the spin system,
except insofar as they exchange energy by anharmonic processes coupling
them to other oscillators, or transport the excess energy to a surrounding bath
that serves as a thermostat. Consequently the relaxation process may be con-
siderably slower than one would calculate otherwise.

This brings me up to the years of world war II, during which very little
was done in the way of pure research. Even before the war, the number of
physicists interested in magnetism was limited, both because at that time there
were few theoretical physicists in the world, and because there were many
different fields in which quantum mechanics could be applied. So I seldom
ran into problems of duplicating the work of other physicists, except for the
calculations with the rotating dipole I mentioned near the beginning of my
talk, and some duplication with Kronig on paramagnetic relaxation. AS a n
example of the rather relaxed rate of development I might mention that while
the first successful experiments on adiabatic demagnetization were made by
Giauque (39) at California in 1933, the first attempt to interpret these ex-
periments in the light of crystal field theory was not until Hebb and Purcell
(40) published an article in 1937 which was essentially a term paper in my
course in magnetism which had only two students. Shortly after the war,
the whole tempo of research in magnetism changed abruptly. The develop-
ment of radar in the war created apparatus and instruments for microwave
spectroscopy, permitting exploration of a spectral low frequency spectral
region previously practically untouched. Also infrared and optical spectro-
scopy of solids was pursued much more vigorously, with improved apparatus.
On the theoretical side, crystalline and ligand field calculations were made
in various centers, notably in Japan, going into much more detail and lengthy
computation than in the work of my group at Wisconsin in the 1930’s.

For the rare earths the pre-war period may be described as the era of the
rare earth sulphate octohydrates, as the meager magnetic measurements at
that time were mainly on these compounds. These materials are particularly
annoying as they have a very complicated crystal structure, with eight rare
earth ions in the unit cell. However, the x-ray analysis (41) that yielded this
disconcerting information had not been made at the time of Penney and
Schlapp’s work, and so they obtained the theoretical curve shown in Fig. 3,
by making faute de mieux the simplifying assumption that the local crystalline
field had cubic symmetry, and was the same for all the paramagnetic ions.
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Undoubtedly the local potential is more complicated. Even today there have
been few attempts to revaluate the crystalline field parameters for sulphate
octohydrates, both because of theoretical complexity and the paucity of new
experimental data. The most comprehensive crystalline field analysis for rare
earth salts in modern times is on the ethyl sulphates (Re(C2H 5S O4)3 9 H2O),
which have only one ion in the unit cell and are magnetically dilute. One
important result is that the higher order harmonics in the series development
of the crystalline potential are much more important than one thought in the
early days. These ethyl sulphates have hexagonal symmetry. Were only second
order terms important, the crystalline potentia would be of the simple type
(7a), but actually there are also important terms involving fourth and sixth
order harmonics, including those of the type (x ± iy)6. One sometimes worries
how meaningful and reliable are the crystalline field parameters deduced
from spectroscopic data, but very comforting magnetic measurements have
been published by Cooke and collaborators (42). They measured the sus-
ceptibility both parallel and perpendicular to the hexagonal axis, and as
shown in Fig. 6 found that the experimental results agreed exceedingly well
with the theoretical curve calculated with the spectroscopically determined
(43) crystalline field parameters.

One of the spectacular developments associated with spectroscopy of the
solid state was the first optical laser constructed by Maiman (44) in 1960. By
a sheer coincidence it involved transitions between the same ruby energy levels
that were interpreted in terms of crystal field theory by Finkelstein and
myself (45) in 1940. Cynics can well claim that our theoretical labelling of
the energy levels was no more germane to the successful instrumentation
of a laser than the prior naming of a star was to astrophysical studies thereof.
Still it may be true that any theoretical understanding of the nature and

Fig. 6. The product of susceptibility times temperature for erbium ethyl sulphate as a
function of temperature for directions parallel and perpendicular to the hexaconal axis.
The broken curves represent experimental measurements of the susceptibility by Cooke,
Lazemby and Leark, (42) the solid curves are calculated theoretically with the crystalline
field parameters of Erath. (43)
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relaxation rates of the different energy levels in solids may help the experi-
mentalists a little.

Particularly gratifying to me were the improved determinations of spin-
lattice relaxation times made at various laboratories (46). These confirmed
the reality of the bottleneck effect. They also verified the proportionality of
the relaxation time in a certain temperature range to T -9 which I had pre-
dicted for salts with Kramers degeneracy and of sufficient magnetic dilution
that there is no bottleneck.

The year 1946 brought about the discovery of nuclear magnetic resonance
independently by Purcell, Torrey and Pound, and by Bloch, Hansen and
Packard (47). I need not tell you how enormously important the field of
nuclear magnetism has become both for its basic scientific interest and its
surprising technological applications. The nuclear magnetic resonance spectro-
meter has become a standard tool for any laboratory concerned with analytical
chemistry, completely usurping the role of the Bunsen burner in earlier days.
Measurements of transferred hyperfine-structure give a quantitative measure
of incipient covalence in molecular orbital or ligand field theory. Little of my
own research. has been concerned with. nuclear magnetism, but in 1948
Purcell asked me if I could explain theoretically the size of the line widths he
and Pake (48) were observing in the resonance of the F nucleus in CaF2. It
occurred to me that this could be done by applying the method of moments
that Waller (35) developed in 1932. The predicted magnitude of the mean
square line breadth and its dependence on direction agreed on the whole
very well with experiment. The only difference in this calculation (49) of the
mean square dipolar broadening as compared with that originally performed
by Waller is that he was concerned with the width in a weak magnetic field,
whereas in the experiments by Pake and Purcell the dipolar energy is small
compared to the Zeeman energy, and this necessitates the truncation of the
Hamiltonian function, i.e., the omission of certain terms. A year previously
I had also used Waller’s method of moments in connection with explaining
some apparently anomalous line shapes in some of the Leiden experiments on
paramagnetic dispersion. Gorter was a visiting Professor at Harvard in 1947,
and one morning we came to the laboratory and discovered that we had both
overnight come to the conclusion that the explanation is to be found in an
effect now generally known as exchange narrowing. Gorter had reached this
conclusion on the basis of an intuitive picture, that the spin waves associated
with exchange spoiled the coherence of the dipolar coupling, analogous to the
motional narrowing discussed by Bloembergen, Purcell, and Pound in con-
nection with nuclear magnetic resonance in liquids (50). On the other hand
I used a more mathematical approach, showing that exchange enhanced the
fourth but not the second moment, thereby narrowing the line. The result
was a joint paper by Gorter and myself (51).

So far I have not said much about ferromagnetism, partly because more
of my own work has been in paramagnetism, but mainly because most ferro-
magnetic metals are very complicated since they are conductors. Over the
years there have been arguments ad infinitum as to which is the best model to
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use, each researcher often pushing his own views with the ardor of a religious
zealot (52). Heisenberg’s original model (14) was one in which the spins
responsible for the ferromagnetism did not wander from atom to atom,
whereas in the band picture developed by Stoner (53) the electrons carrying
a free spin can wander freely through the metal without any correlation in
their relative positions, as the exchange effects are approximated by an
uncorrelated molecular field. Undoubtedly the truth is between the two
extremes, and I have always favoured as a first approximation a sort of
compromise model, which may be called that of minimum polarity (54). In
nickel for instance, this model there is continual interchange of electrons
between the configurations d 10 and d 9 but no admixture of d 8, d7 etc. as then
the correlation energy is increased.

Neutron diffraction is a very powerful new tool for disclosing how atomic
magnets are arranged relative to each other. It has led to the surprising and
spectacular discovery that in certain materials notably rare earth metals, the
elementary magnets are arranged in a spiral conical or wavy fashion, rather
than pointing all in the same direction within an elementary domain (55).
They can be ferromagnetic in one temperature region and antiferromagnetic
in another. This weird kind of magnetism is sometimes called helical magne-
tism. Most rare earth metals belong to this category and the mathematical
interpretation of the experimental results is complicated and difficult despite
the fact that the 4f electrons participate but little in electrical conductivity,
unlike the 3d electrons in iron or nickel. I have not been involved in any of
the theoretical analysis except for a point connected with the magnetic an-
isotropy. When I attended the conference on quantum chemistry sponsored
by Professor Lowdin in Florida in 1971, Bozorth presented some measurements
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Fig. 7. The energy of magnetization for various amounts of Ho relative to Er. The three
curves are for three different directions and would coincide were there is no magnetic
anisotropy. The latter is measured by the differences between the ordinates of the three
curves.
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of the ferromagnetic anisotropy of Ho-Er alloys. He found that the anisotropy
of pure holmium was approximately the negative of that of erbium, and
vanished when there was an equal amount of Ho and Er, as shown on Fig. 7.
It finally occurred to me that precisely the same property of spherical har-
monics that explained the inversion of Fig. 4 in passing from Co ++ to Ni++

also explained (56) the inversion of the anisotropy of Ho as compared to Er,
with the obvious corollary that the Ho and Er contributions should cancel
each other out for a 50% mixture. So sometimes primitive theory can still be
useful, but in general a higher degree of mathematical sophistication is re-
quired as time progresses, and as more and more exotic magnetic phenomena
are discovered by the experimentalists. This you will learn from the addresses
by Anderson and Sir Neville Mott but one can still say that quantum me-
chanics is the key to understanding magnetism. When one enters the first
room with this key there are unexpected rooms beyond, but it is always the
master key that unlocks each door.
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