

Лекция 5. Потенциальные барьеры и потенциальные ямы

В.Н.Глазков, МФТИ 2018

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi + U(x)\Psi = E\Psi$$

Часть 1. Туннельный эффект

Задача 1: подбарьерное туннелирование

Приближенная формула для барьера произвольной формы

Приближенная формула для барьера произвольной формы

Обычно применяется для «слабо прозрачных» барьеров, когда ослабление велико

Основной вклад в ограничение пропускания от «высоких» участков

Предэкспоненты отброшены с этой же точностью

$$D \approx \prod_{i} D_{i} \approx \prod_{i} e^{-2\kappa_{i}a_{i}} =$$
$$= \exp\left(-\sum_{i} \kappa_{i}a_{i}\right) = \exp\left(-2\int_{0}^{a} \sqrt{\frac{2m(U(x)-E)}{\hbar^{2}}} dx\right)$$

Примеры эффекта подбарьерного туннелирования

- 1) Реакции ядерного синтеза и альфа-распад
- 2) Туннельные контакты проводников и туннельный микроскоп
- 3) Оптическая аналогия

Wake Forest University, STM Group, http://www.wfu.edu/nanotech/Microscopy %20Facility/STMInstructions.html

IBM Corp., STM Images Gallery, http://www.almaden.ibm.com/vis/stm/gallery.html

Часть 2. Потенциальные ямы

Прохождение над ямой (эффект Рамзауэра)

Прохождение над ямой (эффект Рамзауэра)

Одномерная яма с бесконечными стенками

$$\Psi = A e^{ikx} + B e^{-ikx} =$$

$$= A' \sin(kx) + B' \cos(kx)$$

$$\Psi = 0$$

$$U(x) =\begin{cases} 0, 0 < x < a \\ \infty, x < 0 \text{ или } x > a \end{cases}$$

Бесконечный потенциал — нефизичен, остается только непрерывность волновой функции (гладкость не требуем)

$$\Psi(0) = \Psi(a) = 0$$

Симметричная одномерная яма конечной глубины

1) Для локализованного состояния можно выбрать действительные волновые функции 2) Потенциал симметричен, поэтому распределение вероятностей (наблюдаемая величина!) симметрично. Поэтому волновые функции четные или нечётные.

Сферическая прямоугольная потенциальная яма: вопрос о существовании связанного состояния

$$U(r) = \begin{cases} U_{0,} r < R(U_{0} < 0) \\ 0, r > R \end{cases} - \frac{\hbar^{2}}{2m} \Delta \Psi + U(r) \Psi = E \Psi \\ \text{если } \Psi \text{ от углов не зависит,} \\ \text{то в сферических координатах.} \Delta \Psi = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \Psi}{\partial r} \right) \end{cases}$$

1) для f=Ψ/r получим одномерное уравнение Шредингера 2) т.к. r>0, то яма «полубесконечная», решения (для f!) только типа SIN 3) в трёхмерной яме решения есть при условии $\sqrt{\frac{2 m U_0 R^2}{\hbar^2}} > \frac{\pi}{2}$

- 1) Атом
- 2) Гармонический осциллятор
- 3) Реализации в полупроводниках и наночастицах
- 4) Одноэлектронный транзистор

1) Атом 2) Гармоі 3) Реали 4) Одноэ

Пример 3: Реализации в полупроводниках и наночастицах

 $\hbar^2 \pi^2 n^2$ E_n 2ma

Physics 41(16):162004

металлическая гранула размера ~нм

Journal of Physics D Applied (e)

The self-assembled InAsSbP-based strain-induced islands grown by LPE on InAs substrate

Часть 3. Дополнительные вопросы

Некоторые приближенные методы

Приближение Бора-Зоммерфельда

$$\oint \vec{p} \, d \, \vec{l} = n \, h$$
$$\oint \vec{k} \, \vec{dl} = 2 \, \pi \, n$$

на «квазиклассической» траектории частицы укладывается целое число длин волн де Бройля

«Угадывание» энергии основного состояния

Точное решение в аналитических функциях невозможно (решается через функции Эйри), но волновая функция О.С. должна быть качественно такой. Пробная функция

$$\Psi = x e^{-ax}$$

заведомо не собственная, но удобная. Найти среднюю энергию и минимизировать по подстроечному параметру *а*

Связанные ямы

Две одинаковые ямы, достаточно далеко друг от друга (вероятность туннелирования есть, но мала)

Без учёта туннелирования

$$\hat{H}_{0}\Psi_{1,2} = E_{0}\Psi_{1,2}$$

Модельный учёт туннелирования: оператор туннелирования

$$\hat{T}\Psi_{1,2} = \hbar T \Psi_{2,1}$$

 $(\hat{H}_0 + \hat{T})\Psi = E\Psi$

Задача на поиск собственных функций:

 $\Psi^{(\pm)} = \frac{1}{\sqrt{2}} (\Psi_1 \pm \Psi_2)$ туннельное расщепление уровня энергии $E^{(\pm)} = E_0 \pm \hbar T$

Главное на лекции

