

Лекция 13 Ядерные реакции, сечения реакций. Элементарные частицы. Кварки.

В.Н.Глазков, МФТИ 2018

«Зоопарк» элементарных частиц

			Particle name	Symbol •	Quark content +	Rest mass (MeV/o ²) +				
		prot	ton ^[4]	p/p*/N*	uud	938.272 046(21) [×]				
		neu	tron ^[3]	n/n ⁰ /N ⁰	udd	939.565 379(21) [×]				
		Lan	nbda ^[10]	۸۵	uds	1 115.683 ±0.006				
		cha	rmed Lambda ^[11]	\wedge_e^{\pm}	ude	2 286.46 ±0.14				
		bott	tom Lambda ^[12]	^0	udb	5 619.4 ±0.6				
		Sig	ma[12]	٤	uus	1 189.37 ±0.07				
1957 2017 particle data group		Sig	ma ^[14]	Σ ⁰	uds	1 192.642 ±0.024				
About PDG PDG Aut	Sig	ma ^[13]	٤	dds	1 197.449 ±0.030					
		cha	rmed Sigma ^[16]	Σ,	uuc	2 453.98 ±0.16				
The Review of	cha	rmed Sigma ⁽¹⁶⁾	Σ¢	ude	2 452.9 ±0.4					
M. Tanabashi <i>et al</i> . (Particle	e Data Group), Phys. Rev. D 98 , 030001 (2018).	cha	rmed Sigma ⁽¹⁴⁾	Σ ⁰	ddc	2 453.74 ±0.16				
	pdgLive - Interactive Listings	bott	tom Sigma ⁽¹⁷⁾	Σ; -0	uub	5 811.3 - 0.8 ± 1.7				
	Summary Tables	bott	tom Sigma	26 5	ddb	5 815 5 +0.8				
	Reviews, Tables, Plots	×r	۹	=0	uss	1 314.86 ±0.20				
	Particle Listings	XII	গ	ΞŤ	dss	1 321.71 ±0.07				
	Conset	cha	rmed XI ⁽²⁰⁾	Ξţ	usc	2 467.8 ^{±0.4} -0.8				
	Search	cha	rmed XI ^[21]	Ξê	disc	2 470.88 -0.80				
0	idom Rd	cha	rmed XI prime ^[22]	Ξ'¢	usc	2 575.6 ±3.1				
Download or Print: E	Download or Print: Book, B Particle Data Group									
Previous Editions (& Errata) 19	57-2017									
Errata in current edition	http://pdg.lbl.gov/	http://pdg.lbl.gov/								
Figures in reviews	Илобиний сайт	Улобный сайт								
Mirror Sites										
	http://hyperphysics.	http://hvperphysics.phy-astr.gsu.edu								
	/hhaaa/Dartialaa/raar	/hhase/Derticles/nersen html								
	/ndase/Particles/par	/ndase/Particles/parcon.ntml								

Часть 1. Частицы Стандартной модели

Кварки, внутренняя структура нуклонов

Экспериментальные факты:

- Магнитный момент нейтрона
- g-фактор протона 5.585694713(46), а не 2
- Сечения рассеяния на высоких энергиях
- Эквивалентность протона и нейтрона для ядерных сил
- Все тяжелые частицы описываются в кварковой модели

Два кварка (кварк+антикварк) – мезоны

Три кварка – барионы

Экзотические, короткоживущие, но обнаруженные в экспермиентах на ускорителях тетракварки и пентакварки

Представление о цветовом заряде

Барионы со спином 3/2

$$\Omega^{-} = (sss)$$
$$\Delta^{++} = (uuu)$$
$$\Delta^{-} = (ddd)$$

И это основное состояние данной комбинации кварков!

Кварки (S=1/2) - фермичастицы!!????

Bubble chamber trace of the first observed Ω baryon event at Brookhaven National Laboratory

Представление о цветовом заряде

Представление о цветовом заряде

Барионы со спином 3/2

$$\Omega^{-} = (sss)$$
$$\Delta^{++} = (uuu)$$

Есть ещё какое-то квантовое число, описывающее состояние кварка в нуклоне. Необходимо хотя бы три (а больше не нужно) значения этого квантового числа...

«Цвет»: R, G, B ... и «антицвет» anti-R, anti-G, anti-B

Bubble chamber trace of the first observed Ω baryon event at Brookhaven National Laboratory

Перенос сильного взаимодействия внутри частицы: глюоны

Изменение цвета кварка при испускании/поглощении глюона. Левое изображение: исходное состояние адрона с тремя разноцветными кварками. Среднее изображение: синий кварк испускает синий-антизелёный глюон и становится зелёным. Правое изображение: зелёный кварк поглощает синий-антизелёнй глюон и становится синим.

Частица в целом "бесцветная" - соответсвует короткодействию ядерного взаимодействия: либо все три цвета RGB, либо пары цвет-антицвет

Часть 2. «Инструменты» физики частиц

CERN Brochure, 2017

Сечение реакции

Покоящаяся мишень

число реакций (нужного типа) в единицу времени

$\propto j(nS\,dx)\sigma$

"эффективная площадь", в ядерной физике удобная единица барн, 1бн=10⁻²⁴ см²

Встречные пучки

Порог реакции (система Ц.М.=встречные пучки)

Минимальная энергия – если в системе центра масс продукты реакции покоятся

$$\begin{pmatrix} mc^{2}+T \\ pc \end{pmatrix} + \begin{pmatrix} mc^{2}+T \\ -pc \end{pmatrix} = \begin{pmatrix} Mc^{2} \\ 0 \end{pmatrix}$$

$$2 (mc^{2})^{2} + 2 (mc^{2}+T)^{2} + 2 (pc)^{2} = (Mc^{2})^{2}$$

$$E = mc^{2} + T = \sqrt{(mc^{2})^{2} + (pc)^{2}} \Rightarrow$$

$$(pc)^{2} = (mc^{2}+T)^{2} - (mc^{2})^{2}$$

$$T = \frac{Mc^2}{2} - mc^2$$

Порог реакции (лабораторная с.к.=неподвижная мишень)

Минимальная энергия – если в лабораторной с.к. продукты реакции движутся как целое

$$\begin{pmatrix} m_1 c^2 + T \\ pc \end{pmatrix} + \begin{pmatrix} m_2 c^2 \\ 0 \end{pmatrix} = \begin{pmatrix} Mc^2 \\ pc \end{pmatrix}$$

$$(m_1 c^2)^2 + (m_2 c^2)^2 + 2(m_1 c^2 + T)m_2 c^2 = (M c^2)^2$$

$$T = \frac{(M c^2)^2 - (m_1 c^2)^2 - (m_2 c^2)^2}{2m_2 c^2} - m_1 c^2$$

для m₁=m₂

$$T = \frac{(M c^{2})^{2}}{2 m c^{2}} - 2 m c^{2}$$

В опыте с неподвижной мишенью пороговая энергия выше, но больше гибкость в выборе мишени.

$$\frac{T_{no\kappa}}{T_{scmp}} = \frac{M^2 - 4m^2}{2m(M - 2m)} = \frac{M}{2m} + 1 > 2$$

Немного про ускорители

В основном – встречные пучки

Главные характеристики:

- тип ускоряемых частиц
- энергия частиц
- светимость (число потенциально возможных столкновений в единицу времени)

Name	Type	$\sqrt{s} \; ({\rm GeV})$	Years of	
		в системе ц.м.	operation	
LEP	e^+e^-	91.2 (LEP-1)	1989-95 (LEP-1)	
		130-209 (LEP-2)	1996-2000 (LEP-2)	
SLC	e^+e^-	91.2	1992-98	
HERA	$e^{\pm}p$	320	1992-2007	
Tevatron	$p\bar{p}$	1800 (Run-I)	1987-96 (Run-I)	
		1960 (Run-II)	2000-??? (Run-II)	
LHC	pp	14000	2010? - 2013?	
			2013?? - 2016???	
ILC	e^+e^-	500-1000	???	

INTRODUCTION TO COLLIDER PHYSICS

MAXIM PERELSTEIN

SLAC (1966-...),

Вид с воздуха на комплекс зданий Стэнфордского линейного ускорителя. Детекторный комплекс справа. Сам канал ускорителя находится на глубине 10 метров под землёй.

http://en.wikipedia.org/wiki/Stanford_Linear_Accelerator_Center

до 2017 года – самое длинное прямое здание (2 мили) Нобелевские премии: с-кварк (1976), кварковая структура протона и нейтрона (1990), тау-лептон (1995) 50 Гэв энергия пучка, до 90 Гэв в с.ц.м. в режиме коллайдера (1987-1998)

Циклотрон

Схема циклотрона из патентной заявки Лоуренса, 1934 год.

$$f = \frac{1}{T} = \frac{V}{2\pi R} = \frac{V}{2\pi \frac{mV}{qB}} = \frac{qB}{2\pi m}$$

для нерелятивистской частицы не зависит от скорости!!!

TRIUMF

Самый большой циклотрон

Протоны с К=520 МэВ

Диаметр 18 метров, поле в зазоре 0.46 Тл

Синхротроны

Движение по фиксированной траектории

Магнитное поле и частота/фаза ускоряющего поля подстраиваются по мере роста энергии

Принципиально работает импульсами (bunch)

Частицы и античастицы можно разогнать одновременно в противоположных направлениях

Одно из ограничений по энергии: синхротронной излучение (100-200 ГэВ для электронов)

$$P \propto \frac{1}{R^2} \left(\frac{E}{mc^2}\right)^2$$

БАК

CERN Brochure, 2017

Счётчик Гейгера

wikipedia.org, Geiger-Muller tube, http://en.wikipedia.org/wiki/Geiger_Müller_tube

Для ионизующих излучений: детектируется импульс тока, усилиевый образованием лавины вблизи тонкого электрода

Для нейтронов наполняется гелием-3

$${}_{2}^{3}He + {}_{0}^{1}n \rightarrow {}_{1}^{1}H + {}_{1}^{3}H$$

Камера Вильсона

Wison Chamber Demo, http://www.darvill.clara.net/mydown.htm

Сделанная Ч.Вильсоном камера Вильсона. Из экспозиции музея Кавендишской лаборатории.

Memorial museum of Cavendish Laboratory, Wilson Chamber Discovery, http://chambrebrouillard.wifeo.com/history-andachievements.php

Исторические фото в камере Вильсона

Alpha particle strikes helium nucleus and they part at right angles (Blackett)

Alpha particle enters nitrogen which ejects proton and becomes oxygen (Blackett)

Ранние фотографии в камере Вильсона (получены Блэкеттом). Слева: рассеяние альфа-частицы на атоме гелия, угол 90[°] после столкновения свидетельствует о равенстве масс альфа частицы и атома гелия. Справа: взаимодействие альфа-частицы с ядром азота с образованием ядра кислорода и протона.

Hystorical tracks of alpha particles by Blackett, http://www.courtauld.ac.uk/researchforum/events/2011/spring/Showsof London.shtml

Трек первого достоверно обнаруженного позитрона в камере Вильсона (К.Андерсон). В центре кадра свинцовая пластина, большая кривизна трека в верхней части показывает, что позитрон прилетел снизу.

C.D.Anderson, The Positive Electron, Physical Review , 43, 491 (1933)

Пузырьковая камера

K٩

ĸ-

π-

Пузырьковая камера Гаргамель (ЦЕРН)

CERN, CERN for teachers: Bubble Chambers, http://teachers.web.cern.ch/teachers/archiv/HST2005/bubble_cha mbers/BCwebsite/index.htm

Искровая камера

Возникновение мюона в искровой камере при поглощении мюонного нейтрино (почти горизонтальный трек). Вертикальные полосы - пластины искровой камеры. Из Нобелевской лекции Шварца

 $v_{\mu} + e \rightarrow \mu + v_{e}$

Современные детекторы (БАК)

wikipedia.org, Large Hadron Collider, http://en.wikipedia.org/wiki/Large_Hadron_Collider

Часть 3. Сечения реакций

Покоящаяся мишень

Напоминание: поглощение гамма-квантов в свинце

NISTIR 5632 X-Ray Mass Attenuation Coefficients | NIST

Пример из физики частиц: получение адронов в электронпозитронных реакциях

R: нормированное сечение адронных выходов в электрон-позитронной аннигиляции

Резонанс на 0.78 ГэВ – омегамезон (время жизни 10⁻¹⁸ сек)

$$\omega = \frac{1}{\sqrt{2}} \left(u \,\overline{u} + d \,\overline{d} \right)$$

Порог на 1.5 ГэВ – появление пары s-кварков и их дальнейшие распады

Порог на 3.8 ГэВ – появление пары с-кварков и их дальнейшие распады

Recent results from $e^+e^- \rightarrow$ hadrons

S. I. Eidelman^a

arXiv:hep-ex/0211043

Полное сечение электрон-позитронных реакций

INTRODUCTION TO COLLIDER PHYSICS

MAXIM PERELSTEIN*

Оценки для сечений реакции. Нерезонансные реакции.

1) Нерезонансные реакции с нейтральными частицами

$$\sigma \simeq \pi (\lambda + R)^2 D(E)$$

с учётом большой глубины ямы – пользуемся формулой для прозрачности барьера

$$D = \frac{4kK}{(k+K)^2} \simeq 4\frac{k}{K} \simeq 4\sqrt{\frac{E}{U_0}}$$
$$\sigma \simeq 4\pi\lambda^2 \sqrt{\frac{E}{U_0}} = 4\pi\frac{\hbar^2}{p^2} \sqrt{\frac{E}{U_0}} = \frac{2\pi\hbar^2}{m}\frac{1}{\sqrt{EU_0}} \propto \frac{1}{V}$$
 закон Бете

Оценки сечения реакций. Резонансные реакции.

При формировании промежуточной частицы — дополнительный канал реакции. По законам сохранения, промежуточная частица формируется при «резонансной» энергии.

2) Резонансные реакции

$$a + A = \dots = \begin{cases} a + A - "упругий" процесс b + B c + C \dots \end{cases}$$

$$\sigma_{ab} = \pi \lambda^2 \frac{\Gamma_a \Gamma_b}{(E - E_0)^2 + \Gamma^2 / 4}$$
$$\Gamma = \Gamma_a + \Gamma_b + \dots$$
$$\frac{\sigma_{aa}}{\sigma_{ab}} = \frac{\Gamma_a}{\Gamma_b} = \frac{\tau_b}{\tau_a}$$

формула Брейта-Вигнера

Времена реакции и взаимодействия

τ

Г τ ≃ ħ времена жизни (времена полураспада) - измеряемы

"внутриядерный" масштаб времени

$$=\frac{r_{_{R}\partial}}{c}=10^{-23}\,cek$$

Дополнительный фактор: эффективность взаимодействия, приводящего к распаду

Времена жизни (грубое правило): ~10⁻²³ сек – сильное взаимодействие (взаимодействие кварков) ~10⁻¹⁷ сек – электромагнитное взаимодействие (взаимодействие с электромагнитным полем) ~10⁻¹³ сек – слабое взаимодействие (превращения кварков, лептонов; возникновение нейтрино)

Законы сохранения

Строгие, "привычные": энергия, импульс, момент импульса, заряд

Примеры: <u>свободный</u> нейтрон (939.6 МэВ) распадается в протон (938.3) МэВ +электрон (0.51 МэВ) +нейтрино, но не наоборот; электрон-позитронная пара анигилирует в <u>не менее чем 2</u> гамма кванта

Строгие "в современной Вселенной": сохранение числа кварков (барионного заряда), числа и типа лептонов

предположительно нарушалось в момент рождения Вселенной, что объясняет барионную асимметрию (преобладание вещества над антивеществом)

"Не для всех": странность, шарм, чётность

нарушаются только для слабого взаимодействия (при взаимопревращиении кварков или лептонов)

О странном (и о странности)

П-Мезоны (заряженные 140 МэВ, нейтральный 135 МэВ)

$$\pi^{0} = \frac{u\overline{u} - d\overline{d}}{\sqrt{2}}; \pi^{+} = u\overline{d}; \pi^{-} = d\overline{u}$$

К-мезоны (заряженные 494 МэВ, нейтральный 498 МэВ)

$$K^+ = u \bar{s}; K^- = \bar{u} s; K^0 = d \bar{s}$$

Электрически нейтральная, но не совпадает со своей античастицей Нейтральный К-мезон живёт 10⁻⁸ ... 10⁻¹⁰ сек, на гамма кванты не распадается

Было предположено существование дополнительного "заряда" - странности, который тоже должен сохраняться.

В кварковой модели странность равна минус числу странных кварков

Чётность и распад каонов.

Четность каонов и пионов отрицательна (известно из независимых экспериментов)

Эксперимент Ву

Различие числа отсчётов счётчика бета-частиц при разном направлении поляризующего магнитного поля. В момент t=0 достигалась минимальная температура образца кобальта, затем образец нагревался из-за теплоподвода и выделения тепла при распаде, и поляризация пропадала. Анизотропия бета распада поляризованных ядер характеризуется различием числа отсчётов в момент t=0. Из работы Ц.Ву

Чётность не сохраняется при слабом взаимодействии

Мюонная спектроскопия

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \tilde{\nu}_{\mu}$$

Аналогично опыту Ву, позитроны вылетают преимущественно в направлении спина мюона

Получение мюонов

$$p + p \rightarrow \pi^+ + p + n$$

тормозится в мишени и в состоянии покоя за 10⁻⁸ сек распадается далее

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Мишень для производства мюонов в Институте Поля Шерера. http://www.psi.ch/

Схема опыта

Осцилляции асимметрии распада мюона, имплантированного в образец, позволяют измерить локальное магнитное поле

Основное на лекции

