Effect of an electric field on the surface tension of a liquid at low temperatures
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An external electric field changes the dispersion law of waves on the surface of a liquid. Besides
the usual capillary terme(k®, k is the wave numbgrand gravitational termsk), a term

quadratic in the wave vector appears in the expression for the square of the frequency in a
homogeneous field. These excitations are associated with the variation of the coefficient

of surface tension of the liquid at low temperatures. In the case of a large field tangent to the
surface, the correction is proportional T8/, unlike theT”® correction in the absence of a field.
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The temperature dependence of the coefficient of surface  div E=0, curlE=0. (4)
tension close to absolute zero is associated with Iow-energ1\5 ) . o o
excitations of the liquid—gas boundafsurface waves' The he corresponding field distribution, periodic along the
usual classification separates capillary and gravitationaX!S: has the form
waves. The properties of the former are mainly determined E9=E,+Aek Kz El= El 4+ Beikxtkz
by surface-tension forces, which are substantial in the limit ’ 0 '
of small wavelengths. The gravitational forces, on the othewhere the superscriptsand g refer to the liquid and gas,
hand, correspond to long wavelengths. This paper discussesspectively, with
the spectral variation effect associated with an external elec- , i ) ,
tric field constant in time. It is substantial in the region in- A= ~1A;=—IA, B,=iB,=IB, A,=B,=0.
termediate(in wavelength between the capillary and gravi- The possibility of making the following transformation

tational regimes. of the right-hand side of Eq2) by using Eq.(4) is essential
Let us find the dispersion relation for a surface wavefor the subsequent treatment:

propagating in the presence of external fiEld(for definite- )

ness, letE, be the field outside the liquidThex axis is in vy _1doy 1 9 ~(pgzt P)+E— de

the wave-propagation direction, while tkeaxis is upward, A p IXe p X P9 gn P

perpendicular to the surface of the unperturbed liquid. The

surface displacement from the equilibrium position in thisAs a consequence, the motion of the liquid is irrotational;

dp

wave is described by a function of the form i.e.,v=V. Using Eq.(1), we get
z={(x,t)=ge'*iet, . e 1O kot
{//—Z ?— —§ ? e .

Assuming that the liquid is incompressible, the continuity
condition of Ref. 2 is imposed on the velociand takes the  gyjer's equation itself in terms of the potentigltakes the

form form
diV v=0. (1) &l!/ P E2 Je
i e o oot (oS s
The Euler equation in the linear approximatiGteviations ot p| 8m\dp/,
from equilibrium are considered smadjives a second con- _ o )
dition for the velocity: At the interface, the electric field satisfles
dvi 1 doi @ Ef=E|, Ef{=sE..
at p ax’ We can use the surface=0 for the interfacelwe assume
where k{<1). After elementary transformations, we get
i) E2 ((98) ] ¢EiEy Eo=Eox Eoy=Eoy, Eor=2Eqy
oix=—(p9Z+P)ok—g— e=p| — ik
| " 8 p T | 4 —K e—1 . —k e—1/Eo, .
3) A=KE ——7(Bo,—1Eo0),  B=KE ———| ——+iEo|-
is the stress tensSHereP is the pressure corresponding to ©®

the same density in the absence of a field, andis the  Using explicit expressions fos and o}; in the boundary
permittivity of the liquid. The electric field itself obeys the conditions for the stress tensor,
following equationdall the velocities are much less than the
. g o 2
velocity of light, and the liquid is assumed not to have any g _ 9L
O'i-nj—O'i-nj_a ——3 N
free charges ! ! ax
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(heren is the unit vector normal to the interface, whieis Q.

the coefficient of surface tensigmwe get the equation for the Sa= ( g) ;

pressure at the boundary: T

for an ideal two-dimensional Bose gas, it is determined by

32 E|2 de e—1
P—const —a s —p( —) N Y S ho)\dk
axc 8m\dp/, 8w Sa=T [ In|l—exp ——=| |5
T /|4
Finally, substituting Eq(7) into Eq. (5 and using Eq(6),  Assuming that the variation of the spectrum associated with
we find the field is small, we get
_ 2 2
2 a g (e—1) ) 22 T (o S ¢
@ gk+p K +47Tp8(8+1)(6EH cos6-EDK". (8) 6(1__W 0 do 0 mdq
Above, for brevity, we have omitted the subscript 0 in the 7\ [T\ p?RT73
field and have introduced into the treatment the aryhee- ~—F(§)§(§> 1723573

tween the wave vectdr and the projection of field&E onto
the horizontal plane. It is clear that the dispersion relation for F( 5) (

surface waves in a liquid in a magnetic field is obtained from 3 ¢

5) (e—1)%p"3(eEF —2E2) T3
Eq. (8) by replacing the permittivity by the permeability. In

3/ 487%(e+1)a**n??

fact, in the particular cases of tangential and normal fields, ~—0 1341P2/3T7/3
our result coincides with that of Ref. 4. - ’ PETIE

The resulting formula is inapplicable for large vertical 5 13, 2 2.—5/3
fields. The unperturbed surface of the liquid in this case can- 40 004(8_1) p~~(eE—2ED)T
not be regarded as a horizontal plane. For such a surface to ' e(e+1)a*?p?3
be staple, the quar.1t|ty)2 must be posmve_ for alk, since whereq=rfw/T. In the opposite case of a strong tangential
otherwise the amplitudes of the waves with the correspondﬁeld however
ing wave vectors will grow without limit. It is easy to obtain ' '

the required limitation on the field: 5 3 [T8 [e+1 2p°/6 fxd del )
A= Nand P (e—1E Jo ro sin(

(e—1)*E} <64m?page?(s+1)2.
p5/6-|-8/3\/m

a5 S(e—1)E

For example, in water, the density js=1 glcn?, e=81, —exp(—\/r—ms)]~—0.59
a=73 dyne/cm, and the critical field E=2.5 kV/mm. In
the limit & —cc, corresponding to a c40nductor, the stability  \ve should point out that it is convenient to use waves
condition goes over to the |nequaI|E/L<64772p_ag (Ya. . propagating perpendicular to the field direction to experi-
Frenkel’, 1935; see, for example, Ref. 3, section 5 mentally measure the surface tension. Their dispersion rela-
The generalization of the dispersion relationship 10 &;onship depends on the field only via the renormalized sur-
weakly inhomogeneous external field is obvious. If the charssce tension. Atkins’s theory is actually applicable only to
acteristic scalé overwhichEé varies is much larger than the liquid helium and hydrogen. Since the former is only very
corresponding scale of the wavg or 1k), the only thing  \yeakly polarizable §=1.047), the effect under consider-
that changes in E@8) is the coefficieng (which, of course,  a4ion apparently cannot be measured with present-day ex-
will no longer mean the acceleration of gravity, but will herimental technique. The susceptibility is much larger in
characterize the force acting on unit mass of the material ihydrogen ¢ =1.231), while a fairly low temperature can be
the combined electric and gravitational figldsor example,  4itained. Thus, it is preferable to choose hydrogen for mea-
in the ge_omgtry_of a charged jet surrounded by a cyIindricaguring the correction to the surface tension.
layer of liquid with radiusr, A stimulating discussion with A. F. Andreev, K. O.
e—1E2 Keshishev, and A. Ya. Parshin was essential to the writing of
— this article. We would also like to thank Yu. A. Kosevich for
4me pr pointing out Ref. 4.
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