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An external electric field changes the dispersion law of waves on the surface of a liquid. Besides
the usual capillary term (}k3, k is the wave number! and gravitational term (}k), a term
quadratic in the wave vector appears in the expression for the square of the frequency in a
homogeneous field. These excitations are associated with the variation of the coefficient
of surface tension of the liquid at low temperatures. In the case of a large field tangent to the
surface, the correction is proportional toT8/3, unlike theT7/3 correction in the absence of a field.
© 1997 American Institute of Physics.@S1063-7761~97!01804-0#
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The temperature dependence of the coefficient of sur
tension close to absolute zero is associated with low-ene
excitations of the liquid–gas boundary~surface waves!.1 The
usual classification separates capillary and gravitatio
waves. The properties of the former are mainly determin
by surface-tension forces, which are substantial in the li
of small wavelengths. The gravitational forces, on the ot
hand, correspond to long wavelengths. This paper discu
the spectral variation effect associated with an external e
tric field constant in time. It is substantial in the region i
termediate~in wavelength! between the capillary and grav
tational regimes.

Let us find the dispersion relation for a surface wa
propagating in the presence of external fieldE0 ~for definite-
ness, letE0 be the field outside the liquid!. Thex axis is in
the wave-propagation direction, while thez axis is upward,
perpendicular to the surface of the unperturbed liquid. T
surface displacement from the equilibrium position in th
wave is described by a function of the form

z5z~x,t !5zeikx2 ivt.

Assuming that the liquid is incompressible, the continu
condition of Ref. 2 is imposed on the velocityv and takes the
form

div v50. ~1!

The Euler equation in the linear approximation~deviations
from equilibrium are considered small! gives a second con
dition for the velocity:

]v i
]t

5
1

r

]s ik

]xk
, ~2!

where

s ik52~rgz1P!d ik2
E2

8pF«2rS ]«

]r D
T

J d ik1
«EiEk

4p

~3!

is the stress tensor.3 HereP is the pressure corresponding
the same densityr in the absence of a field, and« is the
permittivity of the liquid. The electric field itself obeys th
following equations~all the velocities are much less than th
velocity of light, and the liquid is assumed not to have a
free charges!:
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div E50, curlE50. ~4!

The corresponding field distribution, periodic along thex
axis, has the form

Eg5E01Aeikx2kz, El5E0
l 1Beikx1kz,

where the superscriptsl and g refer to the liquid and gas
respectively, with

Ax52 iAz52 iA, Bx5 iBz5 iB, Ay5By50.

The possibility of making the following transformatio
of the right-hand side of Eq.~2! by using Eq.~4! is essential
for the subsequent treatment:

]v i
]t
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]s ik

]xk
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]

]xiF2~rgz1P!1
E2

8p
rS ]«

]r D
T

G .
As a consequence, the motion of the liquid is irrotation
i.e., v5“c. Using Eq.~1!, we get

c5 ż
ekz

k
52z

iv

k
eikx1kz2 ivt.

Euler’s equation itself in terms of the potentialc takes the
form

]c

]t
52S gz1P

r D1
E2

8pS ]«

]r D
T

. ~5!

At the interface, the electric field satisfies3

Ei
g5Ei

l , E'
g5«E'

l .

We can use the surfacez50 for the interface~we assume
kz!1). After elementary transformations, we get

E0x5E0x
l , E0y5E0y

l , E0z5«E0z
l ,

A5kz
«21

«11
~E0z2 iE0x!, B5kz

«21

«11SE0z

«
1 iE0xD .

~6!

Using explicit expressions fors i j
g and s i j

l in the boundary
conditions for the stress tensor,

s i j
g nj5s i j

l nj2a
]2z

]x2
ni
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~heren is the unit vector normal to the interface, whilea is
the coefficient of surface tension!, we get the equation for the
pressure at the boundary:

P5const52a
]2z

]x2
1
El2r

8p S ]«

]r D
T

2
«21

8p
~«E'

l21Ei
l2!. ~7!

Finally, substituting Eq.~7! into Eq. ~5! and using Eq.~6!,
we find

v25gk1
a

r
k31

~«21!2

4pr«~«11!
~«Ei

2 cos2u2E'
2 !k2. ~8!

Above, for brevity, we have omitted the subscript 0 in t
field and have introduced into the treatment the angleu be-
tween the wave vectork and the projection of fieldE onto
the horizontal plane. It is clear that the dispersion relation
surface waves in a liquid in a magnetic field is obtained fr
Eq. ~8! by replacing the permittivity by the permeability. I
fact, in the particular cases of tangential and normal fie
our result coincides with that of Ref. 4.

The resulting formula is inapplicable for large vertic
fields. The unperturbed surface of the liquid in this case c
not be regarded as a horizontal plane. For such a surfac
be stable, the quantityv2 must be positive for allk, since
otherwise the amplitudes of the waves with the correspo
ing wave vectors will grow without limit. It is easy to obtai
the required limitation on the field:

~«21!4E'
4,64p2rag«2~«11!2.

For example, in water, the density isr51 g/cm3, «581,
a573 dyne/cm, and the critical field isE52.5 kV/mm. In
the limit «→`, corresponding to a conductor, the stabil
condition goes over to the inequalityE'

4,64p2rag ~Ya. I.
Frenkel’, 1935; see, for example, Ref. 3, section 5!.

The generalization of the dispersion relationship to
weakly inhomogeneous external field is obvious. If the ch
acteristic scalel over whichE0

2 varies is much larger than th
corresponding scale of the wave (z or 1/k), the only thing
that changes in Eq.~8! is the coefficientg ~which, of course,
will no longer mean the acceleration of gravity, but w
characterize the force acting on unit mass of the materia
the combined electric and gravitational fields!. For example,
in the geometry of a charged jet surrounded by a cylindr
layer of liquid with radiusr ,

g5
«21

4p«

E0
2

rr
.

HereE0 is the field at the surface, gravitation is consider
small, and the applicability condition isz!r .

In a strong horizontal field, when the capillary and gra
tational terms can be neglected,v } kucosuu, and the group
velocity is independent ofk and is always parallel to the
field. The surface thus becomes effectively rigid in the dir
tion of the field.

The correctionda to the coefficient of surface tensio
~relative to the value atT50) equals the derivative of th
‘‘quasi-partial’’ ~associated with the surface waves! potential
V with respect to the surface area:
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da5S ]V

]SD
T

,

for an ideal two-dimensional Bose gas, it is determined b5

da5T E ln F12expS 2
\v

T D G d2k4p2.

Assuming that the variation of the spectrum associated w
the field is small, we get

da52
T

8p2E
0

2p

duE
0

` k2

eq21
dq

'2GS 73D zS 73D r2/3T7/3

4pa2/3\4/3

1GS 53D zS 53D ~«21!2r1/3~«Ei
222E'

2 !T5/3

48p2«~«11!a4/3\2/3

'20.1341
r2/3T7/3

a2/3\4/3

10.004
~«21!2r1/3~«Ei

222E'
2 !T5/3

«~«11!a4/3\2/3 ,

whereq5\v/T. In the opposite case of a strong tangent
field, however,

da'A3 T8

a\5A«11

p3

2r5/6

~«21!E E
0

`

drE
0

`

ds ln @1

2exp~2Ar 21s3!#'20.59
r5/6T8/3A«11

a1/3\5/3~«21!E
.

We should point out that it is convenient to use wav
propagating perpendicular to the field direction to expe
mentally measure the surface tension. Their dispersion r
tionship depends on the field only via the renormalized s
face tension. Atkins’s theory is actually applicable only
liquid helium and hydrogen. Since the former is only ve
weakly polarizable («51.047), the effect under conside
ation apparently cannot be measured with present-day
perimental technique. The susceptibility is much larger
hydrogen («51.231), while a fairly low temperature can b
attained. Thus, it is preferable to choose hydrogen for m
suring the correction to the surface tension.

A stimulating discussion with A. F. Andreev, K. O
Keshishev, and A. Ya. Parshin was essential to the writing
this article. We would also like to thank Yu. A. Kosevich fo
pointing out Ref. 4.
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