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1. INTRODUCTION

As is well known, a faceted crystal grows due to the
propagation of elementary steps over faces, continuous
growth being possible either in the presence of contin-
uously operating sources of steps (such as screw dislo-
cations and Frank–Read sources) or by means of new
step generation via two-dimensional nucleation. The
steps can propagate either due to the surface diffusion
or by the attachment of particles of another phase (liq-
uid or vapor) occurring in contact with the growing
crystal. Under usual conditions, the velocity of step prop-
agation is rather low, so that the kinetic energy of this
motion (being small compared to the rest energy) is fre-
quently ignored in the analysis of step dynamics [1, 2].
Evidently, in the other limiting case, the laws of conser-
vation of the energy and momentum admit, for an
appropriate law of dispersion, the decay of a propagat-
ing step into two, three or more new steps. With allow-
ance for the boundary conditions at infinity, we may
speak of the generation of pairs of steps with opposite
signs, that is, of the generation of a new atomic layer by
a rapidly propagating step.

According to the classical theory of crystal growth,
the growing steps do not intersect. This condition

means that configurations possessing large excess
energy—such as overgrowth of one atomic layer over
another that corresponds to the intersection of steps of
the same sign—are excluded from consideration. As for
the steps of opposite signs, this condition implies that
the intersection (collision) of two such steps leads to
their annihilation in the region of contact, which
reduces the total length and, accordingly, decreases the
energy of steps. This property of steps must certainly be
retained in the quasi-static case, whereby steps are
propagating at a sufficiently low velocity so that every
part of a step at any moment of time can be considered
as occurring in equilibrium, and the kinetic energy of a
step can be neglected. The quasi-static approximation
implies that the relaxation time is small compared to the
“collision time” 

 

w

 

/

 

V

 

, where 

 

V

 

 is the relative velocity of
steps and 

 

w

 

 is the characteristic step width (typically,
on the order of interatomic distance). This condition is
usually well satisfied, but it can be readily violated in
the case of a helium crystal surface at very low temper-
atures, where the rate of energy dissipation tends to
zero. Accordingly, the relaxation time exhibits infinite
growth and, hence, the steps can propagate at very high
velocities, up to the velocity of sound [3]. It is natural
to suggest that, in this case, the colliding steps of oppo-
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site signs are not necessarily annihilated and can either
pass “by inertia” one over another, thus forming a new
atomic layer (see Fig. 1), or reflect from each other.

This paper theoretically demonstrates that, under
certain conditions, all the aforementioned nonclassical
processes can actually take place. As a result, the
growth kinetics of crystals with atomically smooth
faces significantly deviates from predictions of the clas-
sical theory. In the concluding section, we will discuss
the experimental opportunities offered by this circum-
stance. A brief outline of certain results was previously
presented in [4].

2. MAIN EQUATIONS

In order to study dynamical growth processes
involving elementary steps, it is necessary to develop a
quite realistic model capable of describing displace-
ments of a helium crystal surface on a microscopic
scale. In formulating such a model, we must take into
account that the interface between superfluid and solid
helium features large quantum fluctuations [5], so that
the correlation length and, hence, the effective step
width become large compared to the interatomic dis-
tance [6]. Under such conditions, the most appropriate
model for our purposes is that of the sine-Gordon type
with a continuous variable 

 

ζ

 

(

 

r

 

) representing the fluctu-
ation-average local displacement of the surface relative
to the equilibrium positions in an effective periodic
potential that describes the surface coupling to the crys-
tal lattice [6–8]. The effective pinning potential proves
to be small as compared to the surface energy, which
corresponds to the weak coupling approximation that is
widely used (see, e.g., [9]) in the theory of phase tran-
sitions related to the onset of crystal faceting (rough-
ness transition). In addition, the presence of such a vari-
able makes it possible to apply equations of macro-
scopic hydrodynamics to the description of liquid
motions accompanying the crystallization and melting
processes.

The standard theory using the weak coupling approx-
imation for the description of step dynamics [9, 10] does
not take into account the kinetic energy of the system;
that is, it restricts the consideration to quasi-stationary
processes. Making allowance for the kinetic energy
expands the field of applicability of the modified theory
up to the limits of validity of the concept of nondissipa-
tive crystallization [5]. According to modern experi-
mental data (see the recent review [11]), this domain
extends at least up to velocities on the order of sound
velocity in liquid helium (

 

c

 

 = 3.6 

 

×

 

 10

 

4

 

 cm/s) and fre-
quencies on the order of 10

 

11

 

 Hz. As for the permissible
temperature range, this is limited only by the tempera-
ture 

 

T

 

R

 

 of the roughening phase transition on the sur-
face of a given orientation (e.g., for (0001) face of a

 

4

 

He crystal, 

 

T

 

R

 

 = 1.3 K). In fact, below we assume
everywhere except Section 4.2 that the temperature is
sufficiently low to ignore the dissipation. In addition,

we restrict the consideration to step velocities below the
velocity of sound, so that the liquid (as well as the crys-
tal) phase can be considered incompressible.

The Lagrange function for the system under consid-
eration can be written as

(1)

where 

 

a

 

 is the interplanar distance (step height); 

 

α

 

 is the
surface tension (we neglect the anisotropy of 

 

α

 

 and,
accordingly, do not differentiate between the surface
energy and stiffness); 

 

ρ

 

l

 

 and 

 

v

 

l

 

 are the density and
velocity of the liquid phase, respectively; and the factor

 

U

 

0

 

 can be expressed in terms of the energy 

 

β

 

 per unit
length of the immobile step:

(2)

The last two terms in expression (1) describe the kinetic
energy of the system. The first of these terms, repre-
senting the surface contribution related to the rear-
rangement of atoms in the surface layer on the passage
from liquid to crystalline state [12], is relatively small
and does not qualitatively influence the results of anal-
ysis. As for the second (volume) term, it can be trans-
formed into a surface integral by assuming that the
incompressible liquid fills the half-space 

 

z 

 

> 0 and by

L
α
2
--- ∇ζ( )2 U0 1 2πζ

a
---------cos–⎝ ⎠
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Fig. 1. 

 

Schematic diagrams illustrating the collisions of
steps (a) with annihilation (a quasi-classical case) and
(b) with the formation of a new layer (dynamic case). Adja-
cent atomic layers are indicated by different cross-hatching.
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taking into account the mass conservation in the course
of crystallization:

(3)

where 

 

ρ

 

c

 

 is the helium crystal density. Retaining only
this term in the kinetic energy, we obtain the equation
of motion for the crystal surface,

(4)

and the corresponding integrals of motion—the total
energy

(5)

and the total momentum

(6)

The dimensionless coordinates 

 

x

 

 and 

 

y

 

 in Eqs. (4)–(6)
are measured in units of 

 

ξ

 

, and the dimensionless time,
in units of 

 

τ

 

:

(7)

For the (0001) face of the 

 

4

 

He crystal, the values of
parameters are as follows: 

 

α

 

 = 0.25 erg/cm

 

2

 

 [13–15],

 

β

 

/

 

a

 

 = 0.014 erg/cm

 

2

 

 [15], and

(8)

It should be noted that Eq. (4) was obtained using the
condition 

 

|∇ζ|

 

 

 

�

 

 1, or 

 

|∇ϕ|

 

 

 

�

 

 2

 

πξ

 

/

 

a

 

. Taking into
account the numerical values (8), we can conclude that
this condition is well satisfied for the (0001) face, since

ρl

2
----v l

2 Vd∫
ρc ρl–( )2

4πρl
----------------------=

× ∂ζ t r,( )
∂t

------------------∂ζ t r ',( )
∂t

--------------------d2rd2r '
r r '–

------------------,∫

1
2π
------ ∂2ϕ t r ',( )

∂t2
----------------------- d2r '

r r '–
---------------∫ ∆ϕ– ϕsin+ 0,=

E
1

4π
------ ∂ϕ t r,( )

∂t
-------------------∂ϕ t r ',( )

∂t
--------------------d2rd2r '

r r '–
------------------∫=

+
1
2
--- ∇ϕ( )2 1 ϕcos–+ d2r∫

P
1

2π
------ ∇ϕ t r,( )∂ϕ t r ',( )

∂t
--------------------d2rd2r '

r r '–
------------------.∫–=

ξ αa2

4π2U0

---------------,=

τ
ρc ρl–( )2

ρl
---------------------- a2

4π2U0

---------------ξ,=

ϕ 2πζ
a

---------.=

U0 1.5 10 3– α, ξ× 4a, τ 5 10 12–  s,×≈ ≈ ≈

V0 ξ/τ 2.8 104 cm/s× c< 3.6 104 cm/s.×≈ ≈=

the characteristic values of |∇ϕ| in Eq. (4) are in the
general case on the order of unity. On the other hand,
the condition of applicability of the weak coupling
approximation, which is expressed as a/ξ � 1, is satis-
fied for this face with a small margin. Moreover, V0 is
only slightly below the velocity of sound in liquid
helium. For these reasons, the results presented below
offer only a qualitatively correct description of the
properties of steps on the (0001) face. As for the other
faces, the corresponding values of U0 and, hence, V0 are
significantly lower [11], which ensures validity of all
the necessary conditions.

Real steps on the crystal surface are always slightly
curved, but the curvature is usually so small that the
curvature radius R is large compared to ξ. In this case,
it is possible to ignore in Eq. (4) the dependence on one
of the coordinates (e.g., on y). The integral exhibits log-
arithmic divergence and should be truncated either at
the face size (provided that it is smaller than R) or at R
(expressed in ξ units, which eventually yields

(9)

3. METHODS OF NUMERICAL SOLUTION

The entire variety of numerical calculations can be
subdivided into three types in terms of complexity.
A simpler case was used to verify the correctness of
solution obtained for a more complex variant. These
types are as follows: (i) stationary motion of a single
step (one-dimensional problem); (ii) evolution of an
arbitrary profile (one-dimensional problem); and
(iii) a symmetric two-dimensional (2D) problem.

3.1. Stationary Case 

The general one-dimensional equation of motion (9)
for the stationary propagation of a single step at a veloc-
ity V can be reduced to an ordinary integro-differential
equation and written as

(10)

where ϕ = f(x – Vt), ϕ(–∞) = 0, ϕ(+∞) = ±2π. The pro-
file f was determined by iterations using the target
method in the following sequence. The initial approxi-
mation was chosen in the form of an immobile step
profile

(11)

and used to calculate the convolution in the right-hand
part of Eq. (10). Then, the equation was integrated

1
π
--- R

x ' x–
---------------⎝ ⎠

⎛ ⎞ ∂2ϕ
∂t2
---------ln x 'd∫ ∂2ϕ

∂x2
--------- ϕ.sin–=

d2 f

dx2
-------- fsin–

V2

π
------ R

x x '–
---------------⎝ ⎠

⎛ ⎞ d2 f

x '
2

d
---------ln x 'd∫=

=  
V2

π
------ fd

x 'd
------- 1

x ' x–
------------- x ',d∫

f 0 4 exarctan=
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using the fourth-order Runge–Kutta method with an
f '(0) slope at the initial point. The derivative was cho-
sen so as to fit the solution at the end of the interval
x = 20 to the asymptotic behavior, which is described
(according to Eq. (10)) by the following expression:

(12)

The obtained solution was substituted into the right-
hand part of Eq. (10) and the procedure was repeated.
For the velocities V < 1, the convergence is exponential,
which implies that the slope at x = 0 depends on the
number of iterations as is well approximated by the
formula

(13)

where p ~ 1 for the velocities V ≤ 0.9. For somewhat
greater V, the rate of convergence decreases and the
parameter p reaches ~5 for V ≈ 1. For still greater veloc-
ities, we failed to find a stationary profile using this
simple method.

3.2. Evolution of a One-Dimensional Profile 

Physically reasonable processes of collision, annihi-
lation, and reflection of steps under arbitrary initial
conditions and velocities lead to the surface profile of a
general form, so that it is necessary to solve Eq. (9)
directly. For solving problems of this type, we have
developed a finite difference scheme of integration. In
the symmetric case, it is possible to implement a more
effective Fourier transform and, in addition, to estimate
the accuracy of employed calculation algorithms.

In the general case, Eq. (9) can be converted using
the Hilbert transform to the following form with an
explicit derivative with respect to time:

. (14)

Integrating by parts, we obtain a cumbersome expres-
sion that is nevertheless more convenient for construct-
ing an effective calculation scheme:

(15)

where a singular kernel in the integrand converges as
1/x2. Since we assume that the profile is described by a

f x( ) π 1 x( )sgn+( )∼ 2V2

x
---------.+

f n' f ∞' const n
p
---–⎝ ⎠

⎛ ⎞ ,exp–=

∂2ϕ
∂t2
---------

1
π
--- ∂

∂x '
------- ∂2ϕ

∂x '2
--------- ϕsin–⎝ ⎠

⎛ ⎞ x 'd
x ' x–
-------------∫–=

∂2ϕ
∂t2
---------

1
π
--- ∂2ϕ

∂x2
--------- ϕsin–⎝ ⎠

⎛ ⎞
x '

∫–=

– ∂2ϕ
∂x2
--------- ϕsin–⎝ ⎠

⎛ ⎞
x

dx '

x ' x–( )2
--------------------,

continuous function possessing continuous derivatives
at least up to the fourth order, the expression in the
right-hand part of Eq. (15) (as well as in Eqs. (14) and
(10)) is principal-value integrable. Replacing deriva-
tives by second-order finite differences, we constructed
an explicit scheme of solution with a temporal step ∆t
and a spatial step ∆x. The general integration formulas
(trapezoidal, etc.) without allowance for the kernel sin-
gularity do not provide for the necessary accuracy of
convolution calculations and lead to unstable solutions.
For this reason, the integration was performed using an
algorithm described in Appendix. The solution is stable
(robust) provided that

(16)

which is analogous to the Courant condition for the
hyperbolic equations. In most cases, the coordinate step
was ∆x = 0.1 and the temporal step was ∆t = 0.02, while
the number of nodes in the finite difference scheme grid
was varied between 1000 and 10000 depending on the
system evolution scale. The solution accuracy was eval-
uated on a grid with a spatial step of 0.05 and a tempo-
ral step of 0.005. The differences did not exceed 1%.

In the case of collision of symmetric steps with
equal and opposite velocities, we used effective Fourier
transform techniques. Equation (14) for the Fourier
components takes the following form:

(17)

where ϕk is the profile harmonic with a wavevector k
and Fk(sinϕ) is a Fourier transform for the sine of the
profile. In these terms, the problem reduces to solving a
system of ordinary differential equations coupled by a
function in the right-hand part. At each time step, inte-
gration of the system of equation was followed by an
inverse Fourier transform that restored the step profile.
Then, the Fourier transform of the sine of this function
was used to construct the next iteration. The even char-
acter of ϕ allowed using fast Fourier transform with
respect to cosine only.

As was noted above, the correctness and conver-
gence of calculation methods was checked on test prob-
lems. For the method described in this section, the test
consisted in calculating step profiles for a series of
velocities and comparing the established profile with
the results obtained in a stationary case as described in
Section 3.1 for the initial profile corresponding to an
immobile step (11). Another criterion of accuracy was
provided by a comparison of the scenarios of symmet-
ric collisions of steps obtained by both methods. The
results of such verification showed that a disadvantage
of the proposed algorithm in application to an arbitrary
profile was an insufficiently high accuracy of convolu-

∆t2

∆x3
--------- 1,<

d2ϕk

dt2
----------- k 3ϕk+ k Fk ϕsin( ),–=
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tion calculations, which led to smoothening of the step
profile and a related increase in the critical values of
velocities (see below). A comparison of the results of
calculations using this scheme to those provided by the
more accurate calculations of step profile, energy, and
momentum for a stationary step (Section 3.1) and the
calculations of symmetric step collisions gave an esti-
mate of the solution accuracy. The maximum difference
between the obtained values of parameters did not
exceed 10%, which can be considered as the accuracy
provided by the given computational scheme.

An additional criterion of correctness for the
obtained solution consisted in the verification of the
law of energy conservation as

(18)

This check was made for several velocities and showed
that the energy remained constant with time to within
5–10%, which provided an additional estimate for the
solution accuracy.

3.3. Two-Dimensional Case 

Calculations of the propagation of steps in the 2D
case require significantly greater computational facili-
ties as compared to the one-dimensional case. This cir-
cumstance restricted our possibilities to solving a sym-
metric problem for colliding steps. The high symmetry
of the problem made possible the use of an effective
method based on the Fourier transform analogous to

E
1

2π
------ R

x ' x–
---------------⎝ ⎠

⎛ ⎞ ∂ϕ x( )
∂t

--------------∂ϕ x '( )
∂t

----------------ln x x 'dd∫=

+
1
2
--- ∂ϕ

∂x
------⎝ ⎠

⎛ ⎞
2

1 ϕcos–+ x.d∫

that described in the preceding section. In the general
case, the equation of motion was as follows:

(19)

Applying the Fourier transform, we obtain

(20)

where fkm is the amplitude of a harmonic with the
wavevector k. We obtained a system of M × N ordinary
differential equations. Owing to the symmetry of the
problem, the expansion into series was performed for
cosines only, which reduced the number of equations
by half. Specific features of the Fourier transform addi-
tionally reduced this number by a factor of 4.

The solution algorithm was verified by solving a
one-dimensional problem (one-dimensional step mov-
ing in the 2D case, profile determination, symmetric
collisions). The obtained solutions showed good coin-
cidence (to within the accuracy indicated above) both
with respect to the evolution of step profiles and the val-
ues of critical velocity.

4. MODELING THE MOTION 
OF A SINGLE STEP

4.1. Profile, Energy, and Momentum of a Single Step 

A solution to Eq. (1) for V = 0 is a monotonic func-
tion of x. As the velocity increases, the profile acquires
two symmetric humps (Fig. 2) and decays at the infinity
according to a power law (instead of the exponent)
according to Eq. (12). Substituting this profile into
expressions for the energy and momentum,

(21)

with the parameter M expressed as

(22)

we can determine the law of dispersion. The results of
these calculations are presented in Fig. 3. At small
velocities, the energy is a quadratic function of the
momentum. As the velocity approaches unity, this
dependence becomes virtually linear (“relativistic”
case). It should be noted that the parameter M is not
equivalent to a “mass” per unit step length, since this
quantity also depends on the profile shape, that is, on
the velocity. We have separately considered the ques-
tion as to how the energy and momentum values depend

1
2π
------ ∂2ϕ

∂t2
--------- d2r '

r r '–
---------------∫ ∆ϕ ϕ.sin–=

d2 f km

dt2
------------- k 3 f km+ k Fkm ϕsin( ),–=

E
MV2

2
-----------

1
2
--- ∂ϕ

∂x
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⎛ ⎞
2

1 ϕcos–+ x,d∫+=

P MV ,=

M
1
π
--- R

x ' x–
---------------⎝ ⎠

⎛ ⎞ ∂ϕ x '( )
∂x '

----------------∂ϕ x( )
∂x

--------------ln x x ',dd∫=

8
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2

Fig. 2. Profiles of single steps uniformly propagating at var-
ious velocities. Vertical scale corresponds to an interplanar
spacing of 2π.
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on the radius of integration in Eqs. (21) and (22). It was
found that the values of parameters exhibit a rather
insignificant (logarithmic) dependence on the size of
the integration domain. This can be illustrated by the
ratios of parameters obtained using the integration
domains of radii 100 (a) and 1000 (b) for two veloci-
ties: V = 0.2. Eb/Ea = 1.06, Pb/Pa = 1.44; V = 0.95.
Eb/Ea = 1.24, Pb/Pa = 1.32.

4.2. Step Propagation under Conditions
of Supersaturation and Dissipation

In the general case, the surface motion is accompa-
nied by the energy dissipation. At low temperatures, the
dissipation is related predominantly to the interaction
with phonons. This interaction has an essentially non-
local character and its description goes far beyond the
framework of the model used in our study. For a quali-
tative description of the dissipation phenomena, let us
introduce a term proportional to ∂ϕ/∂t into the general
equation of motion (4). In the presence of dissipation,
the stationary propagation of a step must be supported
by a supersaturation in the system, which is equivalent to
adding a constant term into the equation of motion. As a
result, we obtain the following equation instead of (9):

(23)

Generally speaking, friction modifies the step
shape. Since the parameters δ and γ introduced in this
way are small at low temperatures, the shape distortions
will be small. The results of numerical calculations
using the scheme outlined in Section 3.1 showed that,
for γ = 0.1, the maximum velocity, and the correspond-
ing supersaturation, the change in the profile caused by
the dissipation did not exceed several percent.

The rate of variation of the total energy of the step
in the presence of supersaturation and dissipation is

(24)

In the stationary case, the friction losses are compen-
sated by the supersaturation and we obtain the follow-
ing relation for the velocity of step propagation:

(25)

As can be seen from this formula, the velocity is pro-
portional to the supersaturation only in the region of
small values. As the velocity grows, a change in the step
shape leads to deviations from the linear dependence.
The results of numerical calculations of the dependence

1
π
--- R

x x '–
---------------⎝ ⎠

⎛ ⎞ ∂2ϕ
∂t2
---------ln x 'd∫

=  
∂2ϕ
∂x2
--------- ϕsin– δ γ ∂ϕ

∂t
------.–+

dE
dt
------- δ d

dt
----- ϕ xd∫( ) γ ∂ϕ

∂t
------⎝ ⎠

⎛ ⎞
2

x.d∫–=

V
2πδ

γ ∂ϕ
∂x
------⎝ ⎠

⎛ ⎞
2

xd∫
---------------------------.=

of the velocity on the supersaturation are presented in
Fig. 4.

The presence of supersaturation leads to accelera-
tion of the step. Let us estimate the time required for
attaining a critical velocity sufficient for the appearance
of a new layer. As can be seen from Fig. 3, for V ≤ Vc
the energy is approximately a quadratic function of the
velocity and we can use the relation

(26)

dE
dt
------- d

dt
----- MV2

2
----------- const+⎝ ⎠

⎛ ⎞ MV
dV
dt
------- 2πδV ,=≈≈

V
2πδ
M

---------t.=
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Fig. 3. A plot of the energy E versus momentum P of a single
step P. Figures at the points indicate the step velocities.
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Fig. 4. Plots of the velocity of stationary motion of a single
step in the presence of dissipation and supersaturation.
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According to this expression, the characteristic time
of acceleration for the experimentally reasonable
supersaturations of δ ≤ 0.1 is on the order of M/δ ~
103−104.

4.3. Small Oscillations 

The spectrum of small surface oscillations (rip-
plons) in the absence of steps can be readily determined
by linearizing Eq. (4), which yields

(27)

The minimum phase velocity for this law of dispersion

is . This result implies that the motion of steps with

velocities not exceeding  is not accompanied by the
emission of ripplons.

The spectrum of small oscillations of the steps
depends on the velocity of propagation. Within the
framework of the model adopted, each oscillation is
characterized by a wavevector q directed along the step
(y axis) and by the number of the corresponding mode.
Since the step profile is described by a function of the
continuous variable x, there is, generally speaking, an
infinite number of modes. Among these, there is one
gapless mode corresponding to bending oscillations of
the step. The law of dispersion on this mode for small q
and arbitrary V can be determined as described below.

Let us seek for a solution to Eq. (4) in the following
form:

(28)

where f is a small deviation from the stationary profile ϕ0.
The linearized Eq. (4) can be written in terms of the
Fourier components as

(29)

For fk = ikϕ0k + ψk , where ψk  0 at q  0 (and
ω  0), we obtain (upon multiplying by kϕ0k and
integrating) the following relation:

(30)

ω2 k2 1+( ) k .=

2

2

ϕ ϕ0 x Vt–( ) f x Vt–( )e iωt– iqy+ ,+=

k2 q2 1 ω kV+( )2

k2 q2+
------------------------–+ +

⎝ ⎠
⎜ ⎟
⎛ ⎞

f k Ik ' k– f k ' k ',d∫=

Ik
1

2π
------ 1 ϕ0 x( )cos–( )eikx x.d∫=

ω kV+( )2

k2 q2+
------------------------ k V2– k2V2

k2 q2+
--------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

ϕ0k
2 k2 kd

∞–

∞

∫ 0,=

which can be rewritten as

(31)

For a small velocity, we have

which yields (in a logarithmic approximation with
respect to q)

(32)

The question concerning a gap in the spectrum of “opti-
cal” oscillations is briefly considered in the next
section.

4.4. Stability of Steps 

As can be seen from Eq. (31), the frequency of the
bending oscillations remains substantially positive for
all velocities. This implies that a moving step, as well
as a propagating one, is stable with respect to the onset
of bending oscillations (at least log-wavelength ones).
On the other hand, a step can be unstable with respect
to the oscillations of some other type involving a
change in the step shape (including the case of q = 0).

The possibility of such instabilities is related to the
fact that the law of dispersion presented in Fig. 3 has a
decay character. It can be shown that a minimum veloc-
ity at which the decay is possible corresponds to the
separation of a step into three components with equal
momenta and energies (the decay into two steps is
impossible for the given boundary conditions at the
infinity). This phenomenon provides a qualitatively
new mechanism of step multiplication either in the
same atomic layer or with the formation of a new layer,
depending on which one of the three possible scenarios
is realized (Fig. 5). A numerical estimate based on the
spectrum of Fig. 3 gives a critical velocity of about
0.77. The fact of attainment of this critical velocity
level does not imply that the process would necessarily
begin. This condition only indicates that the state of a
propagating isolated step becomes metastable. Decay
of this state can be induced by any inhomogeneity, in
particular, by a local curvature of the step. A threshold-
less multiplication of steps begins upon reaching a limit
of absolute instability.
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Let us consider the propagation of an isolated step at
a constant velocity V in the case of a deviation from the
equilibrium shape ϕ0:

(33)

Assuming the deviation to be small and neglecting the
terms of higher orders, we obtain the following equa-
tion of motion for this deviation:

(34)

Accomplishing the Fourier transform, we arrive at the
following dispersion equation:

(35)

The onset of absolute instability corresponds to the case
in which the frequency is zero.

However, instead of solving this equation, it was a
simpler approach to model the decay of a step by
directly solving the two-dimensional equation of
motion (4). The small initial inhomogeneity was intro-
duced in the form of a slight bending of the step. The
results of calculations for V = 0.95 are presented in
Fig. 6. It should be noted that a control calculation per-
formed for a straight step propagating with the same
velocity did show the appearance of a new layer within
the same period of time, which agrees with the above
statement concerning the metastability of such steps.
As can be seen from Fig. 6, the surface begins to rise in
the middle of the step (where the curvature radius is
maximum). As a result, the nucleus of a new layer is
formed by the time t = 50 and keeps growing (t = 60).

Numerical modeling showed only one of the three
possible scenarios of step decay depicted in Fig. 5
(namely, the scenario presented in Fig. 5b). According
to this variant, a new atomic layer is formed with the
same sign of the leading front as that of the initial step.
The critical velocity for this process at a small initial
perturbation is close to unity. As for the two other vari-
ants of step decay, the question concerning the condi-
tions for their realization has remained unstudied.

As was noted above, in solving the one-dimensional
problem we failed to find a stationary step profile for
V > 1. This velocity level probably corresponds to the
point of absolute instability. An example of the evolu-
tion of a one-dimensional profile for a step propagating
at a velocity of V = 1.2 is presented in Fig. 7, where the
step moving leftward generates a nucleus of the next
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layer, which subsequently expands with time. It is inter-
esting to note that a step with a double height keeps
moving in the initial direction. As can be seen from
Fig. 6, this peculiarity is retained in the 2D case, at least
over a period of time used in the calculations. Elucida-
tion of the question concerning stability of the double
step requires additional investigation.

5. COLLIDING STEPS

In calculating the collisions of steps, we assumed
that the supersaturation and dissipation did not signifi-
cantly influence the scenarios of collisions (i.e., δ and γ
values were assumed to be zero). This assumption was
justified by the estimates presented in Section 4.2. As
will be shown below, the collision time falls within
10−100 units. During this period, the energy of the sys-
tem cannot change more than by 1%, which is within
the accuracy of our calculations. Therefore, we can
consider the process as the collision of steps moving by
inertia.

5.1. One-Dimensional Case 

In order to avoid time losses for establishing the sta-
tionary shape of steps, we used the profiles calculated
for a given velocity as described in Section 3.1 as the
initial approximation for the problems with colliding
steps.

The collision of steps propagating with equal and
opposite velocities was played using two scenarios. In
the region of small velocities (until reaching a critical
value), the steps always exhibited annihilation accom-
panied by the emission of a packet of ripplons (Fig. 8).
For the velocities above the critical level (Vc), we
always observed the formation of a new layer as
depicted in Fig. 9. This was also accompanied by the

(b)(c)

Fig. 5. Possible scenarios of step decay at a velocity above
the critical value (V = 0.77): (a) initial step (arrow indicates
the propagation direction, dashed line shows the level of
growing plane); the appearance of a nucleus in the new
layer behind the step front; (b) the formation of a nucleus
ahead of the step front; (c) decay of a single step into three
steps.

(a)
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formation of ripplons, which propagated at a velocity
exceeding the velocity of steps. As can be seen from
Fig. 9, the velocity of steps changed rather insignifi-
cantly, so that the energy of emitted ripplons was small

as compared to the energy of steps. The critical velocity
determined using the Fourier method in a symmetric
case was about 0.4, which was somewhat lower than the
value (≈0.45) given by the general method for an arbi-

0 40 80 120 160 200

Fig. 7. The decay of a step propagating at a velocity of
V = 1.2.

–60 –40 –20 0 20 6040
x

Fig. 8. Symmetric collision of steps with annihilation.

0 20

4030

6050

Fog. 6. Diagrams illustrating the development of instability at a velocity (V = 0.95) admitting the decay of a step. The initial step is
slightly bent. Figures indicate the current time.
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trary step profile. To summarize these results, even the
collisions of steps propagating at velocities significantly
lower than the sound velocity lead to the formation of a
new atomic layer and the growth of a crystal face.

As was noted above, the collisions of steps with
arbitrary initial velocities were calculated using the
general method. In this case, the scenarios of collision

processes become more diverse. In addition to the pro-
cesses of annihilation and new layer formation
described in the preceding section, we observed the
mutual reflection of steps and the formation of a new
layer with retention of the pair of steps in the old layer
(i.e., the formation of a new pair of steps). The former
case is illustrated in Fig. 10. In this process, the emis-
sion of ripplons was insignificant, and the steps

–80 –40 –20 0 20 8040
x

–60 60

Fig. 9. Symmetric collision of steps with formation of a new
layer and the emergence of ripplons. A small change in the
step velocity indicates that ripplons carry away a rather
insignificant part of the energy.

0 40 80 12020 60 100
x

Fig. 10. Mutual reflection of steps having different veloci-
ties. As a result, the steps exchange their velocities and
propagate in opposite directions.

0 40 80 16020 60 100
x

140120

Fig. 11. Collision of steps having different velocities. As a
result, a new layer is formed, the parent steps are retained in
the old layer, and the newborn steps move away from the
parent couple.

–0.5

–1.0

1.0

1.0–0.5–1.0 0

0.5

0.5

Transmission

Reflection

Annihilation

Reflection

Transmission

V1

V2

Fig. 12. Schematic diagram summarizing the results of cal-
culations for the step collisions in the one-dimensional case.
The inner region correspond to the annihilation of colliding
steps. The regions of high velocities feature step transmis-
sion with the formation of a new layer; outside these
regions, the steps exhibit mutual reflection.
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exchanged energies without practically changing their
velocities. The second scenario is realized at higher
velocities and the pattern is more complicated, which is
illustrated in Fig. 11. Here, the initial energy is redis-
tributed between four steps. It is interesting to note that

the pair of steps in the new layer propagates in the
direction determined by the left initial step.

Figure 12 gives a summary of the scenarios of colli-
sions for arbitrary velocity relations. Regions corre-
sponding to different regimes are apparently symmetric

Fig. 13. Diagrams illustrating the collision of symmetric round steps propagating at V = 0.6. Right-hand images show the step pro-
files in two mutually perpendicular planes passing through the center of symmetry.

40

12

200–20–40

6

0
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relative to the bisectors of quadrants. This pattern pro-
vides the possibility of an additional evaluation of the
accuracy of numerical calculations.

5.2. Two-Dimensional Case 

Under real conditions, purely one-dimensional col-
lisions of straight parallel steps considered above are
low probable. Steps generated by 2D nucleation,
Frank–Read sources, and spiral growth are curved. Pre-
viously, it was pointed out [4] that the collisions of
steps with large radii of curvature must proceed accord-
ing to a scenario close to that for the one-dimensional
case. This conclusion is based on the fact that a pertur-
bation arising at the intersection site does not accumu-
late with time, since the point of intersection is moving
at a velocity exceeding the velocity of perturbation
transfer along the steps (as long as the size of the inter-
section region is small compared to the curvature
radius).

Verification of this statement and investigation of
the collision of curved steps required the solution of a
2D problem. We used a rectangular calculation region
with a side length ratio of 1 : 2 for monitoring a single
collision of two ring steps with the initial velocities set
along their radii. The spatial and temporal steps (0.20
and 0.02, respectively) were chosen so as to ensure sta-
bility of the algorithm (see relation (16)). In the first
stage, we simulated the collisions of steps with small
radii (~5). It was established that the critical velocity in
this case increases to reach a level of about 0.85. The
influence of the step curvature on the critical velocity
value was not specially studied. In the second stage, the
calculation region had dimensions 512 × 1024, the step
radius was set to about half of the smaller size (~50),
and the calculations were performed for the velocities
0.3, 0.4, and 0.6.

Figure 13 (left column) shows the evolution of the
surface upon the collision of steps propagating at a
velocity of 0.6; the right column presents the mutually
perpendicular cross sections by planes passing through
the center of symmetry of the system (solid and dashed
curves refer to the profiles parallel to the short and long
sides of the calculation region; the scales of all curves
are identical, as indicated in the bottom right plot). The
solid profile, which is perpendicular to the steps at the
point of contact, is analogous to the profile obtained in
a one-dimensional case. As can be seen, the temporal
evolution of this profile is actually analogous to the
results obtained on solving the one-dimensional prob-
lem (see Fig. 9), in agreement with what was suggested
in [4]. The results of numerical calculations revealed a
fine structure of the surface upon collision, which could
not be determined proceeding from qualitative consid-
erations. Indeed, the velocity of perturbation transfer
along the step in the initial stage was smaller (as indi-
cated in [4]) than the velocity of the geometric point of
intersection. According to the results of calculations,
this leads to a retardation of this region and the forma-

tion of the next layer, as manifested by two symmetric
peaks near the nucleus of the new layer. The angle point
on the intersection line is rectified rather slowly, and
these peaks are retained until the end of the calculation.
A detailed plot shows that waves are spreading from the
angle point both along the step and over the entire sur-
face. Once formed, the nucleus of the new layer keeps
increasing in size and changes in shape from oval to
spheroidal.

The results of calculations performed for a velocity
of 0.4 showed that the central nucleus in this case is not
formed, but two symmetric long-lived peaks that reach
the level of the next layer appear at the point of inter-
section. During the time of calculations, these peaks
moved away from the center of the system, neither
changing in size nor decaying, showing evidence for a
rather long lifetime. At a velocity of 0.3, these peaks did
not reach the next layer and decayed to vanish with
time.

Thus, we can ascertain that the collision of curved
steps leads to the nucleation of a new layer, in agree-
ment with what was declared previously [4]. New qual-
itative evidence is that the steps of smaller curvature
radius must possess a higher velocity for the formation
of a new crystalline layer. The appearance of peaks on
the surface at the point of intersection is probably also
a general property of collisions. The results of simula-
tions revealed a large variety of scenarios of the colli-
sions of steps propagating over a crystal surface. For
example, calculations performed for the collisions of

1

0 0.1

δp, mbar

T, K0.2

2

Fig. 14. A comparison of the experimental data for the
“burstlike” growth [3] to the results of calculations using
formula (26). Circles correspond to supersaturations at
which this growth takes place. The curve shows δp values at
which the stationary velocity of steps reaches a critical level
of about 0.4. As can be seen, small supersaturations at tem-
peratures below 0.15 are sufficient to accelerate steps up to
velocities admitting their kinematic multiplication.
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steps having sinusoidal shapes showed that a collapse
of the isolated region gives rise to a peak even at a
rather small velocity. Therefore, it is not excluded that
some geometric features of the steps can both increase
and decrease in the critical velocity.

6. CONCLUSIONS

The results of numerical simulation of the propaga-
tion of elementary steps on the surface of helium crys-
tals and the collisions of such steps showed that, at a
sufficiently high velocity, nuclei of a new atomic layer
can be generated both by a single propagating step and
due to the collision of steps with opposite signs involv-
ing a “transfer” to the adjacent layer; alternatively, the
colliding steps can exhibit mutual reflection from each
other. Thus, a qualitatively new mechanism is proposed
for the growth of crystals, which is based on the phe-
nomenon of kinematic multiplication of elementary
steps.

As was pointed out in the Introduction, the assump-
tion that the growing steps do not intersect underlies the
classical theory of growth of the atomically smooth
crystal faces, in particular, the theory of spiral growth.
One of the main features of this growth mechanism—a
noncumulative character whereby the growth rate is
independent of the number of growth dislocations—is
a direct consequence of the absence of such intersec-
tions [2]. With allowance for the phenomena of kine-
matic multiplication of steps, the dependence of the
spiral growth rate on the number of dislocations can be
expected. Naturally, the dependence of the growth rate
on the degree of supersaturation must change as well.
Thus, the existing theoretical interpretation of the
experimental data on the spiral growth of helium crys-
tals [3] may need serious correction.

As was pointed out above, the conditions of applica-
bility of the theory proposed in this study are well sat-
isfied for all faces of 4He crystals except for (0001),
where they are valid with a small margin. Therefore,
predictions of the proposed theory in this case may not
be valid on a strict quantitative level. However, virtually
all the available experimental data with a few excep-
tions refer to this very face. From this standpoint, of
most interest are the experimental investigations into
qualitatively new phenomena in which the predicted
effects can be manifested.

The kinematic multiplication of steps probably
plays an important role in the phenomenon of “burst-
like” growth on a dislocation-free (0001) face of 4He
crystals. Figure 14 shows experimental data [3] on the
average values of supersaturation for which the (0001)
face exhibited a transition to the fast growth. The solid
curve presents the results of calculations of a critical
velocity for the step mobility (friction) taken from
experimental results of the same study. As can be seen,
at temperatures up to 0.15 K, the supersaturations are
sufficient for accelerating the steps to a critical velocity

at which their kinematic multiplication begins. At
higher temperatures, the situation is reversed. However,
one should not expect the exact coincidence of this
approximate estimate with experiment: the process of
burstlike growth has a very complicated character,
which can hardly be explained by a single factor such
as the appearance of a qualitatively growth mechanism
on a dislocation-free crystal face. This is clear if we
take into account that, for example, a transition to the
fast growth takes place after a rather long action of
supersaturation on the crystal face, that is, depends on
the sample prehistory. However, since the observed
supersaturations accelerate the steps to nearly critical
velocities, the kinematic multiplication of steps is evi-
dently a significant factor of the “burstlike” growth.

Another interesting phenomenon is the observation
of anomalously high growth rates for crystal faces at
temperatures within 0.2–0.8 K on a freely growing 4He
crystal (see short review [16]). This effect can also be
related to the kinematic multiplication of steps. The
whole body of experimental data available at present
suggests with a high probability that the anomalous
growth as well as the burstlike growth have a common
physical origin. Therefore, the above considerations
may equally refer to the anomalous growth. Low values
of the supersaturation, which are definitely insufficient
for the breakage of faceting boundaries and for the 2D
nucleation, can nevertheless lead to the transformation
of faces and to an increase in their growth rate by two
to three orders of magnitude. At least no mechanism
other that the kinematic multiplication of steps is
known that can so substantially change the surface
kinetics at such small deviations from the equilibrium
state.

Finally, it should be also noted that recently Abe
et al. [17] showed that the kinematic multiplication of
steps during their collisions well explains the observed
fast growth of the (0001) faces on helium crystals under
the action of a high-intensity acoustic wave.
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APPENDIX

An integral of the type

(A.1)

exhibits principal-value convergence, provided that the

I
f x( ) f 0( )–

x2
---------------------------- xd∫=
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function f is doubly continuously differentiable. We
separate the singularity in the integrand as

(A.2)

and formulate a numerical scheme assuming that the
function f is well approximated by a second-order poly-
nomial on a segment of sufficiently small length 2h.
This approximation allows the singularity (second term
in (A.2) to be integrated. The x axis is divided into seg-
ments of 2h length and the f function on each segment
is approximated by the polynomial

(A.3)

where the coefficients ai on each segment are deter-
mined from the condition of equality of the values of f
and the polynomial at the ends and in the middle of
each segment. Substituting polynomials (A.3) into
expression (A.2), explicitly calculating the integrals,
and collecting terms, we obtain the desired numerical
scheme:

(A.4)

With increasing the number n, the coefficients decrease
as 1/n.
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