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It is generally agreed that crystallization waves, i.e.,
weakly damped oscillations that arise because of the
periodic melting and crystallization at the surface of a
quantum crystal contacting the superfluid liquid phase
[1, 2], are only possible at an atomically rough bound-
ary, but not at an atomically smooth one (i.e., on a crys-
tal face). The point is that, for the existence of crystal-
lization waves, it is necessary that the melting and crys-
tallization processes be virtually nondissipative. This
condition is satisfied at sufficiently low temperatures
for the atomically rough surface of a helium crystal.
The rough surface is characterized by a fast increase in
the kinetic growth coefficient with decreasing tempera-
ture in contrast to the smooth surface, for which the
growth coefficient is exponentially small in supersatu-
ration at any temperature (a review concerning this
problem and other problems of the kinetics and thermo-
dynamics of helium crystal surfaces can be found in
[3]).

A vicinal surface, i.e., a surface close in its orienta-
tion to one of the crystal faces, remains in the atomi-
cally rough state up to the temperature of the corre-
sponding roughening transition. Therefore, the crystal-
lization waves on this surface do not basically differ
from the crystallization waves on other rough surfaces.
At the same time, the vicinal surface can be considered
as an echelon of elementary steps of the same “sign.”
Hence, the growth and melting processes on the vicinal
surface can be interpreted as a result of the motion of
elementary steps. From this point of view, a wave with
the wave vector perpendicular to the step line is nothing
but the step density wave (see Fig. 1). Since all of the
steps are of the same sign, the amplitude of the surface
slopes in this wave is bounded by the angle 

 

θ

 

 between
the unperturbed vicinal surface and the initial face. It
should also be noted that, for the surface to be consid-
ered as a stepped one, it is necessary that the average
distance between the steps be small compared to the

effective step width 

 

ξ

 

, which can be widely different for
different faces and, in particular, can be much greater
than the step height 

 

a

 

 [3]. In other words, the value of
the angle 

 

θ

 

 itself is bounded by the condition 

 

θ
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Now, the question arises as to whether the waves
simultaneously containing steps of both signs are pos-
sible. In this respect, the case of an initial surface con-
taining no steps at all, i.e., the case of an atomically
smooth initial surface, seems to be of most interest
(Fig. 2). The answer to this question is the purpose of
the present paper.

First of all, we note that the propagation of the wave
shown in Fig. 2 is only associated with the motion of
the existing steps rather than with the formation of new
steps (or their disappearance). Therefore, at sufficiently
low temperatures, at which the mobility of the steps is
high, such a process should be virtually nondissipative.
We stress that this consideration refers to traveling
waves rather than standing ones. However, it is still
unclear whether waves of this type are possible. In
addition, for the experiment, it is important to know
how these waves can be excited.
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Fig. 1.

 

 Schematic representation of a crystallization wave
on a vicinal surface. The ratio between the height of the ele-
mentary step and the wave amplitude is artificially
increased for the sake of illustration.
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We limit our consideration to plane waves 
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x
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t

 

)
with a macroscopic amplitude 

 

ζ

 

0

 

. We assume that the
liquid and the crystal are incompressible and the ampli-
tude is sufficiently small compared to the wavelength,
so that 
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x

 

|
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. Then, the equation of motion for the
surface can be represented in the form (compare [4])

(1)

where 

 

ρ

 

c

 

 and 

 

ρ

 

l

 

 are the densities of the crystal and the
liquid, respectively;  is the surface stiffness; and 

 

R

 

 is
the surface size in the direction perpendicular to the 

 

x

 

axis.
Equation (1) represents the local (for a given 

 

x

 

)
equilibrium condition for the surface. According to the
aforementioned, this condition can be considered satis-
fied only within the sloping (rough) parts of the surface
(

 

ζ

 

x

 

 

 

≠

 

 0). Within atomically smooth areas (

 

ζ

 

x

 

 = 0), the

condition  = 0 is satisfied instead of Eq. (1). Hence,
the integration in Eq. (1) is actually performed over the
same region within which the solution is sought, i.e., in
the region where 

 

ζ

 

x

 

 

 

≠

 

 0. In view of the condition 
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, we discuss here the vicinal surfaces, for which,
according to the existing concepts (see [3]), we can
assume that  = 

 

γ|ζ

 

x

 

|

 

.
We seek the solution to Eq. (1) in the form of a trav-

eling wave 

 

ζ

 

(

 

x

 

, 

 

t

 

) = 

 

ζ

 

(

 

x

 

 – 

 

Vt

 

) with a wavelength 

 

λ

 

. Let
the wave have the simplest form (as in Fig. 2), where
sequential half-waves differ only in the sign of 

 

ζ

 

x

 

 (i.e.,

 

ζ

 

x

 

(

 

x

 

 + 

 

λ

 

/2) = –

 

ζ

 

x

 

(

 

x

 

) while, within each single half-wave,

 

ζ

 

x

 

 does not change sign. Then, in Eq. (1), we can per-
form the preliminary summation over individual half-
waves and the integration within one half-wave. As a
result, we obtain (for 

 

x

 

 within one half-wave with 

 

ζ

 

x

 

 

 

≥

 

 0)

(2)

This equation cannot be solved analytically (except for
one specific case, see below). Therefore, we seek the
solution numerically, by the variational method. The
corresponding functional is nothing but the energy (per
unit area of the surface) in the frame of reference mov-
ing with a velocity 

 

V

 

:

(3)

As already mentioned, the desired function 

 

ζ

 

x

 

 can be
nonzero not within the whole interval (–

 

λ

 

/4, 

 

λ

 

/4), but
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only within its part (–λε/4, λε/4), where the value of ε
is to be determined. In addition, at a given velocity V
and a given amplitude ζ0, the wavelength λ is also
determined by the minimum condition for functional
(3). In fact, the variation can be conveniently performed
by representing Eq. (3) in the form

(4)

where ν = λ/λ0,  = , and the function

f = ζx is normalized by the condition dy = 1.

Functional (4) reaches its minimum value Fmin =
−0.893 at ε = 0.612, ν = 1.221, and f(y) of the form

(5)

where Un are the Chebyshev polynomials of the second
kind with coefficients rapidly decreasing as n increases:
C0 = 1, C2 = 9.3 × 10–4, C4 = 1.8 × 10–5, C6 < 5 × 10–7,
and C1 = C3 = C5 = 0. We note the additional symmetry
of this solution: the function f is an even function. As ε
and ν depart from the point of the aforementioned min-
imum, the value of the functional F increases rapidly,
which, presumably, precludes the presence of other
minima. However, we cannot completely exclude the
possibility of the existence of asymmetric solutions,
because (as one can easily show) the violation of sym-
metry leads to stepwise changes in the coefficients Cn

(as in the case of a first-order phase transition).

Thus, the solution found above corresponds to the
wave shown in Fig. 2, in which plane regions alternate
with curved ones. This wave is stable to small perturba-
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Fig. 2. Crystallization wave on an atomically smooth sur-
face.
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tions of its form and of the parameters λ and ε; it prop-
agates with a velocity depending on the amplitude. The
dispersion law for such a wave can be represented as

(6)

where k = 2π/λ is the wave number. From the compari-
son with conventional crystallization waves, for which

(7)

we see that dispersion law (6) corresponds to the effec-

tive surface stiffness  = γν2kζ0. Here, it should

be noted that, throughout this paper, we ignore the pres-
ence of the field of gravity. In doing so, we assume that
both the wavelength and the wave amplitude are small
compared to the effective capillary length determined

as leff =  (for the (0001) face of the 4He
crystal, leff ~ 1 mm [3]). This requirement together with
the conditions formulated earlier determines the
domain of applicability of the results obtained.

Now, we consider the particular case where ε  0
while the product εν remains finite. In this case, Eq. (2)
actually describes a solitary half-wave (a kink) of
height 2ζ0 and length ∆ = ενλ0/2, because the interac-
tion with other kinks separated by distances that are
multiples of νλ0/2 can be ignored. Instead of F, the
functional to be varied in this case is

(8)

which reaches its minimum at

(9)

The stability of this solution can be verified by repre-
senting a small perturbation δζ (normalized by 2ζ0) in
the form of a series expansion in Chebyshev polynomi-
als by analogy with Eq. (5). The corresponding varia-
tion of F1 is an essentially positive quantity:

(10)

The necessary integrals of the Chebyshev polynomials
can be found, e.g., in [5].

As in the case of periodic waves, one can easily ver-
ify that solution (9) satisfies the necessary conditions in
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wide ranges of velocities, amplitudes, and lengths ∆,
which are related by the formula

(11)

It is quite probable that the initial equation (1) also
has other solutions stable to small perturbations, e.g.,
solutions corresponding to different combinations of
solitary waves or periodic wave configurations more
complicated than the one considered above. The inves-
tigation of all these possibilities, as well as various non-
stationary processes, goes beyond the scope of this
paper.

The excitation of the waves under study at the sur-
face of a real helium crystal is basically possible by
using the same methods as those used for the excitation
of ordinary crystallization waves, for example, by an
electric field [2, 3]. However, an important distinctive
feature should be taken into account: in the case under
study, the excitation of crystallization waves is of a
threshold character, because it is associated with the
growth and/or melting of the atomically smooth sur-
face. The threshold magnitude (the difference between
the chemical potentials of the crystal and the liquid) can
be estimated as δµ ≈ 2β/Ra, where β and α are the
energy per unit length and the height of the elementary
step, respectively, and R is the critical nucleus size. The
electric field E gives rise to δµ = (�c – �l)E2/8π, where
�c – �l is the difference between the dielectric constants
of the crystal and the liquid. Then, the threshold electric
field strength is

(12)

For β/a = 0.014 erg/cm2 (the value corresponding to the
(0001) face of the 4He crystal) and R = 10–3 cm, we
obtain Etr ≈ 105 V/cm, which is quite attainable in a real
experiment [2, 3].

Earlier, few observations of solitary waves at the
faces of 4He [6] and 3He [7] crystals in the absence of
an electric field were reported in the literature, but these
observations were made after shaking the experimental
cell or in the course of the rapid growth or melting of
the crystals. The experimental conditions of all of these
observations were far from being stationary, which
does not allow us to interpret them as an experimental
corroboration of the existence of waves discussed in
this paper.
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