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Low Temperature Mobility of Steps on the 4He
Crystal Facets: Effects of 3He Impurities

Alexander Ya. Parshin

P.L.Kapitza Institute for Physical Problems, ul Kosygina 2, 117334, Moscow,
Russia

At low temperatures, the dissipation due to scattering of thermal
phonons by elementary steps on the facets of helium crystals is very small;

He impurities may dominate in dissipative processes even at low concentra-
tions. We calculate the step mobility determined by collisions of the step with
impurities in bulk liquid and impurities absorbed on the liquid-solid interface,
in different temperature and concentration regions.

PACS numbers: 67.80.-s, 67.40.Yv, 68.45.Da

1. INTRODUCTION

Experiments on the spiral growth of helium crystals at ultralow tem-
peratures provide an excellent opportunity to study dynamic properties and
the structure of individual elementary steps on the solid-superfluid helium
interface1 . These properties are of great interest owing to the essentially
quantum nature of the step motion2 .

Kinetic characteristics of steps in pure 4He have been measured1,3 and
discussed theoretically4,5 . In the limit of low temperatures and small driving
forces, where only thermal phonons contribute to the total dissipation, the
step mobility u is independent on the driving force and tends to infinity
as T- 3. Under these conditions, the mobility may be very sensitive to the
presence of impurities.

When discussing possible effects of 3He impurities on the step mobili-
ty, one may neglect impurities dissolved in the solid phase, because at low
temperatures, well below 0.3K, their concentration is very small. Instead,
one should take into account absorption of 3He on the liquid-solid interface.
According to6,7 , absorbed 3He behaves as a 2D Fermi gas of quasiparticles
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with effective mass m2 = 2.3m (m is the bare mass of 3He atoms), saturation
density nsat = 2.5 x 1014cm- 2, the band width A = 0.7K, and the binding
energy at the interface es = 4K. In this paper we consider elastic collisions of
both types of impurities, 3D (in the bulk liquid) and 2D (on the interface),
with a moving step, and their contributions to the total friction. We also
briefly discuss possible inelastic processes.

2. ELASTIC SCATTERING OF 3D IMPURITIES

The mobility u is the ratio of the step velocity v to the friction force
F per unit length of the step. It is convenient to calculate this friction in
the reference frame moving with the step. In the following, .we assume that
the liquid is situated at z > 0, the step is parallel to y axis, and x is the
direction of their motion. The specific friction (resistance) is:
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where n is the impurities distribution function (in the moving frame) and Q
is the average x-component of the momentum transferred per unit time at
collisions of 3He particles (with a given wave vector k) with the step:

where kx and k'x are x-components of wavevectors of incident and scattered
particles respectively, m3 is their effective mass, q = /K2 — k2y and a is the
scattering cross section.

The value of Q, generally speaking, depends on the step height a and
on its structure on the microscopic scale. We calculate Q in the long-wave
limit, ka < 1, in the first approximation of standard diffraction theory.
Consider first the case of very low temperature and low density of impurities
n3, when their characteristic wavelength is even larger than the step width,
and the step structure is not important. In this limit the 3He-step scattering
amplitude can be written as

From Eqs. (1), (2) and (3) we obtain for nondegenerate and degenerate
3He gas respectively (TF3 is the Fermi temperature):



Now turn to the case of higher temperatures (or higher densities), when
the impurity wavelength becomes on the order of the step width. Here we
should take into account high frequency, zero-point oscillations of the step.
In fact, in the presence of high-frequency oscillations an incident particle
see an average profile of the step. The amplitude of such oscillations £0

is much larger than the correlation length £ = 2a in the ”weak coupling”
approximation3 . Indeed, we may regard the step as a quantum string with
linear tension /9 and the oscillation spectrum8
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and

where ps and pi are the densities of solid and liquid helium respectively. In
the harmonic approximation the mean square displacement of such a step is

where 0D is the characteristic Debye temperature.
In Eq. (7) only high-frequency oscillations (0D > hw > T) are taken

into account. The value of £o depends very weakly on the parameters of this
cut-off. Numerically, at T ~ lOmK, £o = 3nm = 5£. We conclude that the
effective width of the step is determined mainly by zero-point oscillations.
In the same approximation, the step effective profile looks as follows:

We have now instead of Eq. (3)

For higher temperatures, T >h 2 /m3^o (and low densities, TF3 < T,), Eq.
(9) yields

while for T<h2 /m3£o we return to Eq. (4). In the opposite case of higher
densities, n 3 $ > 1 (and low temperatures, T < T F 3 ) , we have



with U0 = 3mK.
Owing to rather large value of £o, this well turns out to be sufficiently

deep for 3He atoms: U0 ~ h2/m2£o. The coefficient of elastic reflection of
3He quasiparticles from such a well R is a function of the x component of
their momentum. This function can not be calculated using the perturba-
tion theory; R=1 at Kx£0 < 1 and is exponentially small at kx£0 >
1(see9). In the following, we assume for simplicity R= 1 at kx£0 < 1 and
R= 0 at kx£0 > 1. We neglect also the difference between real (unknown)
spectrum of the 2D quasiparticles and simple quadratic spectrum with con-
stant mass. Such an approximation seems to be sufficiently accurate in two
different limits: almost empty, or almost saturated band. In the latter case
instead of 3He quasiparticles we should speak about holes. For the interval
between these limits our approximation should be regarded just as a simple
interpolation.

Elastic collisions of 2D impurities (or holes) with moving steps result in
additional resistance. Instead of Eqs.(l),(2), we have to write in this case

where n(k) is now the distribution function of 2D impurities, again in the
moving frame.

Further calculations are straightforward. In the limit of low densities
(n2E0 < 1) and temperatures(T< h2/m2E20 ) we obtain
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3. ELASTIC COLLISIONS WITH 2D IMPURITIES

For 3He impurities absorbed on the interface, the step plays the role
of a potential well U ( x ) , uniform in y direction. According to7 , the depth
of this well can be estimated as 9mK, with the well width 4£. Taking into
account large value of E0 and the step effective profile described by Eq.(8),
we should assume the following form of the effective potential:

and

where TF 2 is the Fermi temperature of the 2D impurities. At higher tem-
peratures (and still low densities) the result is



while at higher densities (n2E20 > 1, but of course n2 < n sat /2), we have

(here we have assumed for simplicity the mass of 2D holes equal to m3 ). At
v > vc, the step mobility significantly decreases provided that 2D band is
saturated and n3 is small. However, at such high speeds even in absence of
impurities other nonlinear effects are expected1,5 , which can disguise the
effect of ”sweep off”.
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which should be regarded as rather crude estimate (see above).

4. INELASTIC PROCESSES

Generally speaking, scattering of impurities by a step may be accom-
panied by emission and absorption of quanta of the step oscillations (Eq.6).
The cross section of such inelastic process is determined by the impurity-step
interaction. The main term in this interaction may be written in the form

where p is the operator of momentum of a 3He particle and vs is the operator
of superfluid velocity at a given point in the vicinity of oscillating step.

In the first Born approximation this Hamiltonian yields

This result should be compared with the values of average elastic scattering
cross sections, following from Eq.(3) and Eq.(9), cei ~ a2k and aei ~ a2/£o
respectively. Similar situation takes place in 2D case, where aei ~ a < R >.
We conclude that inelastic scattering results in small corrections to the step
mobility, which should be neglected within our accuracy.

One more type of inelastic processes, ”sweep off” of 2D impurities, be-
comes possible at sufficiently high step speeds. The minimum critical veloc-
ity for this process is rather high,
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Fig. 1. Schematic plot of the impurities contribution to the resistance 1/u
versus q for a constant T.

5. DISCUSSION

In real experimental situation, both types of impurities, 2D and 3D,
contribute to the total resistance. However, owing to rather large value
of Es, at low temperatures actually only one of them can be active at a
given chemical potential of the impurities Q . At low values of Q , in the
range of energies of 2D band, when the contribution of 2D impurities is
large, the equilibrium density of bulk impurities is exponentially small, n3 ~
exp (—Es / T ) , and their contribution is negligible. With increasing O, the 2D
band becomes saturated, and both contributions turn out to be small. At
further increase of o, the resistance due to bulk 3He increases in proportion
to n3 (see Fig. 1).

To clarify the significance of the 2D and 3D 3He contributions com-
pared to the phonon one, imagine a cell of 1cm3 with an interface of 1cm2.
Assuming that there is no absorption of the impurities on the cell walls, we
can calculate the total resistance for a given number N of 3He atoms in the
cell at different temperatures. Fig. 2 shows the smoothed results of such
calculations for N from 1010 to 1019 (the latter case corresponds to the bulk
concentration X3 w 400ppm).
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The contribution of the 2D impurities dominates at N < 2 • 1014 (at
N = 1014 the 2D band is almost half-filled); note that numerically it may be
even larger than the 3D contribution at X3 up to 103ppm. On the contrary,
at N > 1015 we may neglect the effect of the 2D 3He. Such a situation is
favourable from the experimental point of view, since it allows to study these
two contributions separately. However, possible trapping of 3He on the cell
walls, or on vortices, may create serious difficulties in the determination of
the remaining amount of the impurities, especially at small values of N (see,
for example,7). Therefore, it is important to take care of accurate control of
the 3He chemical potential in the cell, which is not very easy to do in a real
experiment.

As one can see also from Fig. 2, the effect of impurities may exceed
the phonon resistance at temperatures below 0.1K in a wide range of con-
centrations. It could be observed in experiments on spiral growth of helium
facets, like1 , or in measurements of low temperature mobility of vicinal sur-
faces with very low density of steps, like3 . Such experimental data would
give valuable information on the microscopic structure of elementary steps
and their interaction with impurities. Of special interest is the possibility
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Fig. 2. The total resistance l/z as a function of temperature for different
N. The dashed line is the phonon contribution according to Ref. 4.
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to study dynamic properties of the 2D 3He gas on the helium crystal facet,
which may be regarded as a perfect substrate.
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