Модельно-независимое исследование поверхности кремнезоля методом рентгеновского рассеяния

А. М. Тихонов^{*1)}, В. Е. Асадчиков⁺, Ю. О. Волков⁺, Б. С. Рощин⁺, В. Хонкимаки^{×2)}, М. В. Бланко^{×2)} *Институт физических проблем им. П.Л. Капицы РАН, 119334 Москва, Россия

⁺Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, 119333 Москва, Россия

 \times European Synchrotron Radiation Facility, 38000 Grenoble, France

Поступила в редакцию 13 февраля 2018 г.

Методами рефлектометрии и диффузного рассеяния синхротронного излучения с энергией фотонов \approx 71 кэВ исследована структура адсорбционного слоя щелочных ионов на поверхности коллоидных растворов кремнезема с размером частиц 27 нм. В рамках самосогласованного безмодельного подхода по экспериментальным данным восстановлены профили электронной концентрации перпендикулярно поверхности и получены спектры корреляционной функции высот в плоскости поверхности. Обнаруженное отклонение интегральных и частотных характеристик спектров шероховатости поверхности гидрозолей от предсказаний теории капиллярных волн носит принципиальный характер и обусловлено вкладом шероховатостей с низкими пространственными частотами $\nu < 10^{-4}$ нм⁻¹, а также интерференцией диффузного рассеяния от различных межслойных границ приповерхностной структуры.

DOI: 10.7868/S0370274X18060115

Поверхность коллоидного раствора наночастиц SiO₂, стабилизированного гидроксидом щелочного металла, сильно поляризована за счет разницы в потенциалах сил "электрического изображения" одновалентных катионов металлов и несущих большой отрицательный заряд частиц (макроионов) [1]. В работе [2] сообщалось, что тяжелые ионы Cs⁺ селективно накапливаются на границе гидрозоль–воздух, вытесняя легкие ионы Na⁺. Полученная в работах [3, 4] зависимость электростатической свободной энергии заряженной сферы на границе двух диэлектрических сред вода–воздух от ее радиуса r позволяет объяснить замещение катионами Cs⁺ с большим радиусом $r \approx 1.8$ Å ионов Na⁺ с меньшим $r \approx 1.2$ Å [5].

В настоящей работе мы приводим новые экспериментальные данные по диффузному рассеянию в условиях полного внешнего отражения и рефлектометрии синхротронного излучения с энергией фотонов ≈ 71 кэВ для поверхности кремнезоля как стабилизированного NaOH, так и обогащенного CsOH. При анализе данных, в отличие от предыдущих исследований, нами применен самосогласованный подход, позволяющий без использования какой-либо априорной информации о приповерхностной структуре, восстановить по экспериментальным данным

как профили электронной концентрации перпендикулярно поверхности гидрозоля, так и спектры корреляционной функции высот в плоскости поверхности [6, 7].

На рис. 1 представлена качественная четырехслойная модель структуры границы гидрозоль-

Рис. 1. Четырехслойная модель поперечного строения переходного слоя на границе кремнеземный гидрозольвоздух [2, 8]. Ионы щелочных металлов с поверхностной концентрацией ~ 10^{19} м⁻² располагаются в двух слоях: слой 1 подвешенных ионов с низкой плотностью и толщиной ~ 8 Å и слой 2 гидратированных ионов толщиной ~ 13 Å. Слой 3 с низкой концентрацией электролита имеет толщину ~ 10 нм, а толщина монослоя наночастиц (слой 4) определяется их диаметром

воздух, предложенная в работах [2, 8]. Она основана на структурных параметрах, извлеченных из данных рентгеновской рефлектометрии синхротронного излучения с энергией фотонов ≈ 15 кэВ. При этом

¹⁾e-mail: tikhonov@kapitza.ras.ru

²⁾V. Honkimäki, M. V. Blanco

использовался стандартный модельный подход (см. например [9-11]) с построением профилей для электронной концентрации на основе функции ошибок, используемой в теории капиллярных волн Баффа с соавторами [12]. Полная ширина приповерхностного переходного слоя составляет порядка дебаевской длины экранирования в растворе (>200 Å при pH < 10). Первый слой (толщиной ~ 8 Å) – слой "подвешенных" металлических ионов с оценочной поверхностной концентрацией ~4 · 10¹⁸ м⁻². Второй слой (толщиной $\sim 13 \text{ Å}$) – слой пространственного заряда гидратированных ионов Na⁺ с оценочной поверхностной концентрацией ионов натрия $\sim 8 \cdot 10^{18} \,\mathrm{m}^{-2}$, которая не зависит от присутствия тяжелых ионов в объеме гидрозоля. Обедненный слой 3 с низкой концентрацией электролита (толщиной ~ 10 нм) отделяет первые два слоя от отрицательно заряженных частиц в четвертом слое. Наконец, толщина слоя 4 такая же, как диаметр коллоидных наночастиц в растворе, а их поверхностная концентрация значительно выше, чем в объеме раствора. Эта модель находится в согласии с данными малоуглового скользящего рассеяния и скользящей дифракции [1, 13].

Образцы кремнезолей приготавливались и изучались в герметичной ячейке с рентгенопрозрачными окнами в соответствии с методикой, описанной в работе [8]. Исходный концентрированный монодисперсный золь Ludox TM-50, стабилизированный гидроксидом натрия, поставлялся компанией Grace Davison (pH = 9, 50% – SiO₂ и 0.2% – Na, по массе). Далее золь либо разбавлялся деионизированной водой (ELGA, PURELAB Option-Q), либо обогащался путем смешивания в колбе (взбалтывая и помещая затем в ультразвуковую ванну Bandelin) с pacтвором гидроксида цезия в деионизированной воде до раствора с массовой концентрацией SiO₂ ≈ 30 %. Концентрация ионов Na⁺ в растворах составляла ~ 0.06 моль/л (Ph = 9), а концентрация Cs⁺ в обогащенном растворе ~ 0.6 моль/л (pH = 12). Твердый гидрат $CsOH \cdot x(H_2O)$ (99.9% – по содержанию металла и 15-20 % Н₂О по массе) приобретен у компании Alfa Aesar.

Согласно данным малоуглового рассеяния исходная суспензия Ludox TM-50 содержит однородные аморфные частицы кремнезема с характерным диаметром ~ 27 нм [14]. Добавляя CsOH в исходный гидрозоль, стабилизированный NaOH (pH ~ 9), можно получить раствор с высокой объемной концентрацией Cs⁺ (pH < 12), который в герметичном контейнере при комнатной температуре остается жидкостью, по крайней мере, в течение месяца [15, 16]. При очень высокой концентрации гидроксида цезия (pH > 12.5)

золи Ludox обычно становятся мутными и за время порядка недели затвердевают в гель. При этом распределение частиц SiO_2 по размерам существенно не меняется [17].

Измерения коэффициента отражения R и интенсивности поверхностного диффузного рентгеновского рассеяния I_d на границе гидрозоль-воздух проведены при нормальных условиях на станции ID31 синхротрона ESRF [18]. В экспериментах интенсивность I_0 сфокусированного монохроматического луча фотонов с длиной волны $\lambda = 0.1747 \pm 0.0003$ Å (энергия кванта ≈ 71 кэВ) составляла $\sim 10^{10}$ ф/с при поперечных размерах ~ 10 мкм по высоте и ~ 250 мкм в горизонтальной плоскости. Совместное использование данных рефлектометрии и диффузного рассеяния уже применялось нами ранее для определения структур межфазных границ жидкость-воздух и жидкость-жидкость, но в рамках модельного подхода [19–21].

В скользящей геометрии кинематику рассеяния на макроскопически плоской межфазной границе, ориентированной силой гравитации, удобно описывать в системе координат, в которой начало О лежит в центре области засветки. Плоскость xy совпадает с границей между монослоем и водой, ось Ох перпендикулярна к направлению луча, а ось Ог направлена по нормали к поверхности противоположно силе тяжести (см. вставку на рис. 2). Пусть \mathbf{k}_{in} , \mathbf{k}_{sc} – волновые вектора с амплитудой $k_0 = 2\pi/\lambda$ падающего и рассеянного луча в направлении точки наблюдения, соответственно. α – угол скольжения в плоскости yz, а β – угол рассеяния, причем $\alpha, \beta \ll 1$. ϕ – угол между направлениями падающего луча и направлением рассеяния в плоскости ху. Таким образом, компоненты вектора рассеяния $\mathbf{q} = \mathbf{k}_{\rm in} - \mathbf{k}_{\rm sc}$ в плоскости межфазной границы $q_x = k_0 \cos \beta \sin \phi$ и $q_y = k_0(\cos\beta\cos\phi - \cos\alpha)$, а проекция на ось Oz $q_z = k_0(\sin\alpha + \sin\beta).$

Образцы поверхностей приготавливались и изучались при $T = 298 \,\mathrm{K}$ во фторопластовой тарелке диаметром 100 мм, помещенной в герметичный одноступенчатый термостат. Значение угла полного внешнего отражения $\alpha_c = \lambda \sqrt{r_e \rho_b / \pi} \approx 3 \cdot 10^{-4} \,\mathrm{pag}$ (где $r_e = 2.814 \cdot 10^{-5} \,\mathrm{\AA}$ – классический радиус электрона) для границ золь-воздух определяется объемной электронной концентрацией $\rho_b \approx 1.2 \rho_w$ в растворах, где $\rho_w = 0.333 \,\mathrm{e}^-/\mathrm{\AA}^3$ – электронная концентрация в воде при нормальных условиях.

При зеркальном отражении ($\alpha = \beta, \phi = 0$) вектор рассеяния **q** направлен вдоль $Oz \ q = q_z \approx 2k_0\alpha$. На рис. 2 показаны зависимости $R(q_z)$ для поверхности стабилизированного NaOH (1) и обогащенного

Рис. 2. Зависимости коэффициента отражения $R(q_z)$, полученные при нормальных условиях, для поверхности стабилизированного NaOH 1 и обогащенного CsOH 2 кремнезолей. Вставка: кинематика рассеяния на поверхности жидкости

С
s (2) золей. При $q_z < q_c = (4\pi/\lambda)\alpha_c \approx 0.025 \text{ Å}^{-1}$ падающий луч испытывает полное внешнее отражение $R \approx 1$.

На рис. З изображена двумерная карта распределения интенсивности поверхностного рассеяния как

Рис. 3. Двумерная карта рассеяния при $\alpha \approx 0.012^{\circ}$ на поверхности кремнезоля частицы SiO₂ ~ 27 нм с объемной концентрацией Na $c_{\rm Na}^+ \approx 0.06$ моль/л

функция углов β и ϕ для гидрозоля, стабилизированного NaOH. Она получена при фиксированном угле скольжения $\alpha \approx 2.1 \cdot 10^{-4}$ рад ($\approx 0.012^{\circ}$). На рис. 4 представлены данные для интенсивности поверхностного диффузного (незеркального) рассеяния $I_d(\beta)$, полученные для поверхности стабилизированного NaOH (1) и обогащенного CsOH (2) золей при том же значении α и $\phi = 0$ (см. вставку на

Рис. 4. Интенсивность диффузного рассеяния $I_d(\beta)$ для поверхностей стабилизированного NaOH (1) и обогащенного CsOH (2) золей при фиксированном $\alpha \approx 0.012^{\circ}$. Вставка: схема измерений диффузного рассеяния

рис. 4). На этих кривых самый интенсивный пик соответствует зеркальному отражению при $\beta \approx 0.7 \alpha_c$.

В настоящей работе для совместного анализа данных рассеяния и рефлектометрии был применен итерационный подход, который подробно изложен в [7]. Анализ кривых зеркального отражения проводился в рамках модельно-независимого метода, основанного на экстраполяции асимптотики угловой зависимости коэффициента зеркального отражения $R(q_z)$ в область больших q_z, не используя при этом никаких априорных предположений о структуре поверхности образца. Полученный таким образом профиль поляризуемости $\delta(z)$ однозначно задает распределение электронной плотности по оси $Oz \ \rho(z) \approx$ $\approx 2\pi\delta(z)/(r_0\lambda^2)$ [22]. Ранее с помощью этого подхода нами были изучены структура и кинетика формирования макроскопически плоских липидных мембран на поверхности гидрозоля [23-25].

Анализ диффузного рассеяния проводился в рамках теории возмущений по величине функции $\zeta(x, y)$, описывающей рельеф поверхности в плоскости границы раздела среда-воздух (шероховатость). Для конформных шероховатостей (функция $\zeta(x, y)$ не зависит от распределения поляризуемости по оси Oz и $\langle \zeta(x, y) \rangle = 0$) двумерное распределение интенсивности рассеяния от поверхности (индикатриса рассеяния) имеет вид [26, 27]:

$$I_d(\mathbf{k}_{\rm in}, \mathbf{k}_{\rm sc}) = \frac{k_0^4}{(4\pi)^2 \sin \alpha} \times \left| \int \psi(z, \mathbf{k}_{\rm in}) \psi(z, \mathbf{k}_{\rm sc}) \frac{d\varepsilon}{dz} dz \right|^2 \bar{C}(\nu), \tag{1}$$

где $\bar{C}(\nu)$ – функция спектральной плотности мощности шероховатости ("power spectral density function"), которая представляет собой Фурье-образ автокорреляционной функции рельефа (корреляционной функции высот) и зависит от модуля вектора пространственной частоты $\nu = q_y/(2\pi)$. Распределение диэлектрической проницаемости вблизи поверхности $\varepsilon(z) \approx 1 - \delta(z)$, а $\psi(z, \mathbf{k})$ – распределение комплексной амплитуды волны в образце, которое находится численно как решение одномерного волнового уравнения с учетом профиля $\varepsilon(z)$.

С одной стороны, поскольку поверхность жидкости является изотропной, то для расчета функции $\bar{C}(\nu)$ достаточно рассмотреть только индикатрису в плоскости отражения ($\phi = 0$). При этом не надо делать каких-либо априорных предположений о статистике распределения ее высот. Требуемая для этого информация о распределении $\delta(z)$ может быть получена из анализа угловой зависимости кривой отражения $R(q_z)$.

С другой стороны, в экспериментально регистрируемом коэффициенте отражения также присутствует вклад диффузного рассеяния на шероховатостях, который для конформных шероховатостей описывается формулой Нево–Кроса [28]:

$$R(q_z) = R_0(q_z) \exp\left(-\sigma^2 q_z \sqrt{q_z^2 - \frac{k_0^2 \delta}{4}}\right), \quad (2)$$

где $\delta \approx 1.1 \cdot 10^{-7}$ для $\lambda = 0.1747$ Å, $R_0(q_z)$ – коэффициент отражения от поверхности с профилем $\rho(z)$ в отсутствие шероховатости (т.е. $\zeta(x, y) \equiv 0$ для любых (x, y)), а среднеквадратичная высота шероховатости

$$\sigma^2 = \int_0^\infty \bar{C}(\nu) d\nu.$$
 (3)

Таким образом, в рамках использованного нами подхода при каждой последующей итерации поочередно проводилась сперва реконструкция профиля поляризуемости $\delta(z)$ поверхности с учетом параметров шероховатости, найденных на предыдущем шаге, а затем рассчитывался спектр шероховатости $\bar{C}(\nu)$ с учетом вновь найденного профиля.

На рис. 5 и 6 показаны восстановленные профили электронной концентрации $\rho(z)$, нормированные на электронную концентрацию в воде $\rho_w = 0.333 \,\mathrm{e}^-/\mathrm{\AA}^3$,

Рис. 5. Восстановленные профили распределений $\rho(z)$, нормированные на электронную концентрацию в воде $\rho_w = 0.333 \,\mathrm{e}^-/\mathrm{\AA}^3$, для поверхности золей частиц 27 нм стабилизированного NaOH (непрерывная линия 1) и обогащенного CsOH (штриховая линия 2)

Рис. 6. Спектры шероховатости $\bar{C}(\nu)$ по данным диффузного рассеяния для поверхности золей частиц 27 нм стабилизированного NaOH (непрерывная линия 1) и обогащенного CsOH (штриховая линия 2). Штрих-пунктирная линия иллюстрирует теоретический спектр корреляционной функции высот капиллярных волн [29]

и спектры шероховатости $\bar{C}(\nu)$ для поверхности золей частиц 27 нм стабилизированного NaOH (1) и обогащенного CsOH (2). Отметим, что для достижения стабильного решения, при котором последующие профили поляризуемости и спектры шероховатости не отличаются друг от друга, оказалось достаточно трех итераций.

На обоих профилях электронной плотности (см. рис. 5) присутствует пик толщиной $d = 15 \div 20$ Å вблизи поверхности, соответствующий слою адсорбированных ионов. Оценка поверхностной концентрации ионов Na⁺ $\Theta = [\int_{-d}^{0} \rho(z) dz]/n_e$ ($n_e = 10$ – число электронов в Na⁺) составляет $\Theta = (7 \pm 1) \cdot 10^{18} \text{ м}^{-2}$. При обогащении золя гидроксидом цезия наблюдается увеличение электронной концентрации в приповерхностном слое, которое соответствует $\delta\Theta = (5 \pm 1) \cdot 10^{18} \text{ м}^{-2}$ ионам Cs⁺ ($n_e = 54$). Эти величины неплохо согласуются с полученными ранее в рамках капиллярно-волновых моделей [2, 8, 13].

В свою очередь, эффективная высота шероховатости σ , рассчитанная по функциям $\bar{C}(\nu)$ в экспериментально доступном интервале пространственных частот $\nu = 10^{-5} \div 10^{-2} \,\mathrm{mm}^{-1}$ (рис. 6), составила 5.7 \pm 0.3 Å для поверхности стабилизированного NaOH золя и $\sigma = 2.8 \pm 0.3$ Å для золя обогащенного цезием. Отметим, что расчетное значение высоты шероховатости, обусловленной капиллярными волнами на поверхности кремнезоля, составляет 2.8 ± 0.2 Å и практически не зависит от ионного состава раствора [8]. Доступный в эксперименте интервал ν ограничен шириной прямого пучка и максимальным значением β , при котором возможно отделить поверхностное рассеяние от рассеяния в объеме.

Интегральная характеристика σ спектра шероховатости обогащенного цезием золя хорошо согласуется с предсказанием теории, в то время как для стабилизированного NaOH раствора она существенно больше. Сопоставление экспериментального спектра (штриховая линия на рис. 6) с расчетом в рамках теории капиллярных волн [29] (штрих-пунктирная прямая линия на рис. 6) показывает, что в области низких пространственных частот $\nu < 10^{-4}$ нм⁻¹ значения функции $\bar{C}(\nu)$ для раствора, стабилизированного NaOH, существенно превышают капиллярноволновые значения. Это возможно, если на поверхности золя, присутствуют двумерные пространственные неоднородности с длинами корреляции 10 ÷ 100 мкм, которые не описываются формализмом капиллярных волн, а статистика их распределения отклоняется от нормального закона.

Помимо этого, на обеих полученных зависимостях $\bar{C}(\nu)$ наблюдаются осцилляции, указывающие на интерференцию диффузного рассеяния от различных межслойных границ приповерхностной структуры [30]. Поскольку толщина слоя адсорбированных ионов на поверхности ≈ 20 Å меньше характерной глубины проникновения излучения в области полного внешнего отражения $\approx \lambda/(2\pi\alpha_c) \approx 80$ Å (например, см. [31]), то наблюдаемые осцилляции спектров шероховатости, предположительно, обусловлены диффузным рассеянием на внутренней границе слой 2 – обедненный слой 3. Для извлечения информации о шероховатости этих скрытых интерфейсов требуется дополнительный анализ с помощью расширенной процедуры, описанной в [7], что выходит за рамки данной работы.

Среднее расстояние между катионами Na⁺ в слоях 1 и 2 составляет ~ 5-6 Å, что меньше, чем радиус Бьерума для одновалентных ионов в водной среде ~7 Å. Многие авторы считают, что адсорбированные с такой высокой плотностью ионы, например, на поверхности заряженных частиц (макроионов) в коллоидном растворе, образуют сильно коррелированную двумерную жидкость, в которой ближний порядок близок к вигнеровскому кристаллу [32–38].

Отметим также, что ионы щелочных металлов на поверхности кремнезоля можно рассматривать как тяжелый и очень плотный аналог двумерной системы "классических" электронов, подвешенных над поверхностью некоторых криогенных диэлектриков (жидкий ³He, ⁴He, жидкий и твердый водород) силами электрического изображения и внешним электрическим полем [39]. Ранее наблюдалась твердая фаза двумерных электронов (кристалл Вигнера) на поверхности жидкого гелия [40, 41]. В этих экспериментах температура была значительно ниже комнатной (~0.5 К), но и экспериментально достижимая плотность электронного газа на поверхности гелия в $\sim 10^4$ раз меньше, чем плотность щелочных ионов на поверхности гидрозоля. На данный момент, вопрос о возможности возникновения дальнего порядка на свободной поверхности коллоидного раствора остается до конца не выясненным, так как, например, наблюдаемая трансляционная длина корреляции между ионами Na⁺ на поверхности стабилизированного NaOH золя составляет менее ~ 30 Å [13].

Таким образом, в работе продемонстрирована возможность использования данных диффузного рассеяния, собранных в условиях полного внешнего отражения для получения информации о статистических свойствах поверхности жидкости без использования какой-либо априорной информации о ее структуре. По экспериментальным данным восстановлены профили электронной концентрации и получены спектры корреляционной функции высот. Согласно этому анализу плотность "подвешенных" катионов Cs⁺ на поверхности золя, обогащенного CsOH, составляет (5 ± 1) $\cdot 10^{18}$ м⁻², что хорошо

согласуется с данными из работы [8]. Обнаруженное отклонение интегральных и частотных характеристик спектра шероховатости поверхности гидрозоля от предсказаний теории капиллярных волн носит принципиальный характер и обусловлено вкладом шероховатостей с низкими пространственными частотами $\nu < 10^{-4} \, \mathrm{mm^{-1}}$, а также интерференцией диффузного рассеяния от различных межслойных границ приповерхностной структуры. Ранее об отклонении интегральной характеристики σ спектра $\bar{C}(\nu)$ от расчетных значений теории капиллярных волн сообщалось, например, для границ масло-вода в [42, 43]. При этом, как правило, спектральные особенности $C(\nu)$, обуславливающие это отклонение, в этих работах не уточняются, а интерпретация сводится к предположению о наличии какой-то собственной структуры.

Эксперименты на станции ID31 проводились в рамках исследовательских проектов SC-4246 и SC-4461 Европейского источника синхротронного излучения (ESRF), Гренобль, Франция. Авторы благодарны Т. Буслапсу (ESRF) за помощь в использовании станции ID31, а также Х. Райхерту и И. В. Кожевникову за искренний интерес и полезные обсуждения результатов экспериментов. Работа выполнена при частичной поддержке (В. Е. Асадчиков, Ю. О. Волков, Б. С. Рощин) Федерального агентства научных организаций (соглашение #007-ГЗ/ЧЗ363/26).

- 1. A. M. Tikhonov, J. Phys. Chem. B 110, 2746 (2006).
- 2. A.M. Tikhonov, J. Phys. Chem. C 111, 930 (2007).
- Y.I. Kharkats and J. Ulstrup, J. Electroanal. Chem. 308, 17 (1991).
- J. Ulstrup and Yu.I. Kharkats, Russ. J. Electrochem. 29, 299 (1993).
- B.S. Gourary and F.S. Adrian, Solid State Phys. 10, 127 (1960).
- I. V. Kozhevnikov, Nucl. Instr. Meth. Phys. Res. A 508, 519 (2003).
- I.V. Kozhevnikov, L. Peverini, and E. Ziegler, Phys. Rev. B 85, 125439 (2012).
- 8. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).
- P. S. Venkatesh, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispersion Science and Technology 27, 715 (2006).
- 10. A.M. Tikhonov, J. Chem. Phys. 124, 164704 (2006).
- A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter **19**, 375101 (2007).
- F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

- 13. A. M. Tikhonov, J. Chem. Phys. 126, 171102 (2007).
- В. Е. Асадчиков, В. В. Волков, Ю. О. Волков, К. А. Дембо, И. В. Кожевников, Б. С. Рощин, Д. А. Фролов, А. М. Тихонов, Письма в ЖЭТФ 94, 625 (2011).
- L. H. Allen and E. Matijevic, J. Colloid and Interface Sci. 31, 287 (1969).
- A. C. J. H. Johnson, P. Greenwood, M. Hagstrom, Z. Abbas, and S. Wall, Langmuir 24, 12798 (2008).
- 17. В. В. Волков, частное сообщение.
- V. Honkimaki, H. Reichert, J. Okasinski, and H. Dosch, J. Synchrotron Rad. 13, 426 (2006).
- M. Li, D.J. Chaiko, A.M. Tikhonov, and M.L. Schlossman, Phys. Rev. Lett. 86, 5934 (2001).
- A. M. Tikhonov, M. Li, and M. L. Schlossman, J. Phys. Chem. B 105, 8065 (2001).
- 21. А.М. Тихонов, Письма в ЖЭТФ 104, 318 (2016).
- B. L. Henke, E. M. Gullikson, and J. C. Davis, Atomic Data and Nuclear Data Tables 54, 181 (1993).
- 23. А.М. Тихонов, Письма в ЖЭТФ 92, 394 (2010).
- 24. А. М. Тихонов, В. Е. Асадчиков, Ю. О. Волков, Письма в ЖЭТФ **102**, 536 (2015).
- А. М. Тихонов, В. Е. Асадчиков, Ю. О. Волков, Б. С. Рощин, И. С. Монахов, И. С. Смирнов, Письма в ЖЭТФ 104, 880 (2016).
- I. V. Kozhevnikov and M. V. Pyatakhin, J. X-ray Sci. Technol. 8, 253 (2000).
- 27. И.В. Кожевников, Кристаллография 57, 558 (2012).
- 28. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).
- A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).
- A. Yu. Karabekov and I. V. Kozhevnikov, J. X-ray Sci. Technol. 4, 37 (1993).
- M. Tolan, X-ray Scattering from Soft-Matter Thin Films, Springer Tracts in Modern Physics 148, Springer (1999).
- M. A. Vorotyntsev and S. N. Ivanov, JETP 88, 1729 (1985).
- I. Rouzina and V.A. Bloomfield, J. Phys. Chem. 100, 9977 (1996).
- N. Gronbech-Jensen, R. J. Mashl, R. F. Bruinsma, and W. M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).
- 35. B. I. Shklovskii, Phys. Rev. Lett. 82, 3268 (1999).
- 36. J. J. Arenzon, J. F. Stilck, and Y. Levin, Eur. Phys. J. B 12, 79 (1999).
- 37. B. I. Shklovskii, Phys. Rev. E 60, 5208 (1999).
- Y. Burak, D. Andelman, and H. Orland, Phys. Rev. E 70, 016102 (2004).
- 39. V.S. Edel'man, Sov. Phys. Uspekhi 23, 227 (1980).
- R. S. Crandall and R. Williams, Phys. Lett. A 34, 404 (1971).
- C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).
- A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).
- 43. А.М. Тихонов, Письма в ЖЭТФ **106**, 743 (2017).

Письма в ЖЭТФ том 107 вып. 5-6 2018