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Goals
Antiferromagnetic resonance (AFMR) is a very sensitive technique to study collective excitations of
antiferromagnet.  It  measures  resonance  absorption  of  microwave radiation  due  to  excitation  of

q=0  spin waves (magnons). So being limited to Brillouine zone center, AFMR spectroscopy has
very high energy resolution – resolution of 1...5 GHz in the frequency domain is quite a routine,
which corresponds to ~0.01 meV energy resolution, the later value is far below resolution limits of
inelastic neutron scattering and other spectroscopic techniques. Thus, AFMR technique strongly
compliments other spectroscopic methods.

AFMR eigenfrequencies are field dependent, the f (H )  dependence can be measured in multi-
frequency  experiment.  This  dependence  frequently  reveal  zero-field  gaps,  which  are q=0
magnon  gaps,  it  usually  features  discontinuities  of  some  sort  at  various  spin-reorientation
transitions,  its  field  dependence  strongly  depends  on  mutual  orientation  of  magnetic  field  and
antiferromagnetic  order  parameter.  Thus,  analysis  of  AFMR  f (H )  curves  could  provide
essential information on the type of ordering, orientation of the order parameter and various phase
transitions.

AFMR f (H ) curve could be described via semi-classical mean-field sublattices formalism [1]
[2],  through  a  cumbersome  Holstein-Primakoff  approach  (which  is  described  in  numerous
textbooks, e.g., [3]) or through a hydrodynamic approach [4]. In any case analytical expressions for
a particular field orientation can be hard to handle. Hydrodynamic approach allows quite general
numeric implementation of calculations, we have earlier developed such an implementation for a
noncollinear antiferromagnet [5]. 

Here  we  present  similar   implementation  for  the  case  of  collinear  antiferromagnet  written  for
Octave1 software  [6].  The Octave  script  can be easily modified  to  include arbitrary anisotropy
energy, magnetic field direction and value. We hope that this script can be of use for community.

Theoretical model and its numerical implementation
We will use hydrodynamic approach of Ref.[4]. This approach is limited to the small fields (with
respect  to  exchange  fields),  it  can  not  describe  spin-flip  transition  and  similar  phenomena.  It

1 Script was tested in Octave 4.4.1. Script uses statistics package (used for generation of random initial guesses), it
should be loaded by pkg load statistics command in Octave command line prompt if necessary.
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describes low-energy dynamics of an antiferromagnet as oscillations of the order parameter field,
which is described by Lagrangian density

L=
χ ⊥

2γ
2 (

˙⃗l +γ [ l⃗ ×H⃗ ])
2
−U A ,

here unit vector  l⃗ is an antiferromagnetic order parameter and  U A( l⃗ ) is the anisopy energy
dependent on order parameter orientation.  For the case of collinear antiferromagnet Lagrangian
depends on two independent variables (e.g., polar and asimuthal angle) which yields two possible
eigenfrequencies.

General procedure requires to find equilibrium position of the order parameter, which corresponds
to the minimum of potential energy

Π=−
χ⊥

2
[ l⃗ ×H⃗ ]

2
+U A=−

χ⊥ H 2

2
+

χ⊥

2
( l⃗ ⋅H⃗ )

2
+U A

and then to solve set of Euler-Lagrange equations

d
d t

∂ L
∂ φ̇ i

−
∂ L
∂φ i

=0 ,

here  φ i are independent variables. We will assume  φ i=0  in equilibrium to simplify further
notations.

Numerical implementation of this approach has two hidden dangers. First, due to finite accuracy of
potential minimum determination, determined minimum position  l⃗ 0  could be slightly off-set.
This could result in error in Euler-Lagrange equations. To avoid this problem we follow solution of
Ref.[5] and replace “true” potential energy with its quadratic expansion 

Π( l⃗ )≈Π0+
1
2∑α , β

( ∂Π
∂φα∂φ β)0

φαφ β ,

here Hessian matrix is calculated at the numerically found position l⃗ 0 . 

Second, polar and azimuthal angle became ill defined close to Z-axis, leading to the sort of gimbal
lock problem. To avoid this problem we perform a technical rotation of the polar axis to quite
arbitrary position (Euler angles of this rotation are set to 0.2π ,  0.1π  and  0.15π , values
quite unlikely to appear in any real problem).

These precautions guarantee absence of numerical problems and Euler-Lagrange equations end up
in two-by-two secular equation 

det M =0 ,

where 

M α ,β=−ω
2 χ⊥

γ
2 ( ∂ l⃗

∂φα
)( ∂ l⃗

∂ φβ
)+2i ω

χ⊥

γ (H⃗ [( ∂ l⃗
∂ φα

)×( ∂ l⃗
∂φ β

)])+( ∂
2
Π

∂φα∂φ β
) .
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This secular equation ends up in quadratic equation on ω
2  which is easily solvable2. The only

problem-dependent parameters in the equations above are magnetic field vector H⃗ , anisotropy

energy U A  and contribution of the anisotropy energy to Hessian matrix 
∂U A

∂φ 1 ∂φ 2
. 

Note  also  that,  unless  it  is  specially  desirable  to  reproduce  magnetization  curve  of  the
antiferromagnet, parameter  χ ⊥  (transverse susceptibility of the antiferromagnet) can be set to
arbitrary value, e.g. to unity.  Such substitution results in simple scaling of all other parameters.
Since  cyclic  frequency  enters  equations  as  (ω/ γ) one  can  directly  calculate  frequency  of
oscillations by choosing value of gyromagnetic ratio γ  in frequency units (GHz/kOe). Finally let
us note that exchange symmetry based theory [4] assumes, strictly speaking, gyromagnetic ratio to
be equal to free electron value of 2.80 GHz/kOe ( γ f.e.=2μB /h ). 

User guide and test example
Algorithm is implemented in Octave (Matlab) script AFMR_collinear.m. Following description is
applicable to the version 1.0 dated as February 12, 2019. Version and issue date are shown in the
first line of the original script

To accommodate script to a particular problem user have to modify three code fragments:

1. To  set  model  parameters:  magnetic  field  direction  and  sweep  range,  anisotropy energy
parameters.

2. To set  the  form of  potential  energy,  which  includes  anisotropy energy  U A and static

magnetic field contribution: U =U A+
χ⊥

2
( l⃗ H⃗ )

2
. 

3. To set the form of Hessian matrix 
∂U

∂φ 1 ∂φ 2
.

Details are given below.

Setting model parameters

Model parameters are set between commented separators:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%  SETTING MODEL PARAMETERS  %%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 9-11 of original script) and

2 Note  that  complex  part  is  off-diagonal  and  Im M 12=−Im M 21 .  Thus  we  obtain  equation

Aω
4
+Bω

2
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% END OF MODEL PARAMETERS SETTINGS   %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 42-44 of original script).

Parameters include:

• Parameters used in energy calculations. For the test example in the original script these are
transverse susceptibility chi, gyromagnetic ratio gamma and anysotropy parameters a1 and
a2. All these parameters are combined into vector parameters, which will be used in call to
all function calculations. All necessary parameters of particular problem should be included
in this vector of parameters, which is then properly unbound in energy calculations.

• Magnetic  field  parameters.  These  are  modeled  field  scan  limits  Hstart  and  Hstop,  field
increment  Hstep and  field  direction  given  as  polar  and  azimuthal  angle  in  the  same
crystallographic frame of reference as used for anisotropy energy definition.

• Number of random minimum search attempts Ntries. As numerical algorithm looks for local
minimum  of  the  energy,  initial  approximation  have  to  be  choosen  accurately.  Scripts
calculated energy for  Ntries randomly distributed orientations of the order parameter and
uses the one that gives minimal energy as an initial approximation.

• Filename to save modeled curves name.

Setting the form of potential energy

Model specific calculations are done between the commented separators

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% U(l) CALCULATIONS START   %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 123-125 of the original script) and

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% U(l) CALCULATIONS END     %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 135-137 of the original script).  

Calculation of the anisotropy energy includes unbundling of the parameters vector (lines 127-130 in
the test example of the original script):

chi=parameters(1);
gamma=parameters(2);
a1=parameters(3);
a2=parameters(4);

Parameters definition should be in agreement with the above section.

Then anisotropy energy is calculated. Calculations can use standard vector operations (scalar and
vector product) . Predefined parameters are vecH for magnetic field vector,  Hx,  Hy and Hz for its
projections, l for antiferromagnetic order parameter vector and lx, ly, lz for its projections. E.g. for

orthorhombic anisotropy  U A=
a1

2
l x

2
+

a2

2
l y

2 ,  potential  energy is  U A=
a1

2
l x

2
+

a2

2
l y

2
+

χ⊥

2
( l⃗ H⃗ )

2

and calculations in the script are written as (lines 132-133 of the original script)

value=0.5*a1*(lx)^2+0.5*a2*(ly)^2;
value+=0.5*chi*(dot(l,vecH))^2;
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Setting the form of Hessian matrix

Element (ij)  of the Hessian matrix 
∂U

∂φ i ∂φ j
is calculated between the commented separators

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% HESSIAN (ij) CALCULATIONS START   %%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 165-167 of the original script) and 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%   HESSIAN (ij) CALCULATIONS END   %%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(lines 177-179 of the original script).

Calculations  are  done  similarly  to  the  potential  energy calculations.  Besides  of  the  predefined
magnetic field and order parameters vectors  vecH and  l, derivatives of order parameter and their
projections are predefined as well:

• dl_i and  dl_j for  
∂ l⃗

∂φ i , j
,  and  dlx_i,  dly_i,  dlz_i,  dlx_j,  dly_y,  dlz_j for  corresponding

projections.

• d2l_ij for 
∂

2 l⃗
∂φ i ∂φ j

and d2lx_ij, d2ly_ij, d2lz_ij for corresponding projections.

Output and save file format

Saved file is six-columns tabulation separated file. First column is magnetic field, second and third
columns are eigenfrequencies, last three columns are order parameter components. f (H )  curve
is also plotted during the script execution.
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Test example

Model  test  example  included  in  the  original  script  corresponds  to  anisotropy  energy

U A=
a1

2
l x

2
+

a2

2
l y

2 with  a1=4  and  a2=1 ,  χ ⊥  and  γ were  both  set  to  unity.  This

anisotropy energy corresponds to bi-axial case with Z being the easy axis and X being the hard axis.
Gap values are 2 and 1, for the field applied along Z axis spin-flop should be observed at H=1 .
Results of the modeling for H⃗∥Z  and for H⃗  inclined by 100 toward Y and X axes are shown
on the Figure 1. 
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Figure  1 Results  of  the  test  modeling  of  AFMR  f (H )  dependence  (left  panel)  and  order
parameter  equilibrium orientation  (right panels).  Solid (blue) curves –  H⃗∥Z , short-dashed
(red) curves – field inclined by 100 towards Y-axis, long-dashed (brown) curves – field inclined by
100 toward X-axis.
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