Задачи домашнего задания к лекции 3. Излучение абсолютно чёрного тела

Задача 1

Известно, что мощность солнечного излучения при входе в атмосферу Земли составляет примерно $1400~{\rm Bt/m^2}$. Из эйнштейновской эквивалентности массы и энергии, оцените скорость уменьшения массы ("худения") Солнца. Расстояние от Солнца до Земли принять равным $150~{\rm млн}$. км.

Задача 2

Шар с зачерненной поверхностью находится в космическом пространстве на некотором расстоянии r от Солнца. Найти равновесную температуру шара, если он находится от Солнца на расстояниях, равных радиусам орбит Венеры, Земли, Марса и Юпитера, равных (в млн. км) r_s =108 , r_s =150 , r_s =228 , r_s =780 . Солнце считать источником равновесного теплового излучения с температурой T_c =6000 К и радиусом R_c =7100 км . Считать, что вся поверхность шара имеет одинаковую температуру. Сравнить полученные величины со средними температурами освещенной части поверхностей планет Венеры, Земли, Марса и Юпитера: T_s =735 K , T_s =275 K , T_M =235 K , T_{IO} =135 K . Чем можно объяснить большое расхождение рассчитанной таким образом и полученной в измерениях температуры поверхности Венеры?