Лекция 11. Контактные явления в полупроводниках. Построение энергетических диаграмм контактов полупроводников.

Квантовая макрофизика.

В.Н.Глазков, «Квантовая макрофизика», 12.04.2022

Немного про туннелирование в сверхпроводниках

ВАХ туннельных контактов: эксперимент.

Кривые вольт-амперной характеристики туннельного Al-Al2O3-Pb. Температура сверхпроводящего перехода в свинце 7.2К, в алюминии 1.2К. Верхний ряд: алюминий в нормальном состоянии. Слева: при разных температурах. Справа: в разных магнитных полях. Снизу: туннелирование в SIS-переходе при температуре ниже температуры сверхпроводящего перехода в алюминии, в масштабе рисунка виден только пик, связанный с переходами термоактивированных возбуждений. Из нобелевской лекции Гьявера

Ivar Giaever, Electron Tunneling and Superconductivity, Nobel Prize Lecture, (1973)

Дифференциальная проводимость SINконтакта и измерение щели

Производная вольт-амперной характеристики туннельного NIS-перехода между иглой туннельного микроскопа и образцом сверхпроводящего NbSe2. Внешнее магнитное поле B=0, температура 1.45К. На вставке: зависимость щели от температуры.

H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid, Physical Review Letters, 62, 214 (1989)

Производная вольт-амперной характеристики туннельного NS-перехода между иглой туннельного микроскопа и образцом сверхпроводящего NbSe2 в разных точках. Верхняя кривая: центр вихря, средняя кривая: на расстоянии 75 Å от центра вихря, нижняя кривая: на расстоянии 2000 Å от вихря. Внешнее поле 0.02 Тл, температура 1.85 К. Кривые сдвинуты вертикально для наглядности, постоянный уровень на больших напряжениях одинаков для всех кривых. Особенности плотности состояний в сердцевине вихря вероятно связаны с тем, что движение электронов в коре вихря вообще говоря ограничено в поперечном направлении границей с нормальной фазой, что приводит к некоторым эффектам типа размерного квантования.

H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid, Physical Review Letters, 62, 214 (1989)

«Фотография» вихрей в сверхпроводнике.

Øystein Fischer, Martin Kugler, Ivan Maggio-Aprile, Christophe Berthod, and Christoph Renner, Scanning tunneling spectroscopy of high-temperature superconductors, Review of Modern Physics, 79, 353 (2007)

вихревая решётка в NbSe2 в поле 1Тл при температуре 1.8К.

H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr., and J. V. Waszczak, Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid, Physical Review Letters, 62, 214 (1989)

Кинохроника вихрей

Контакты полупроводников

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Glaever, Brian D. Josephson

Share this: 🚹 📴 💟 🚼 🔄 🛛

Leo Esaki - Facts

Leo Esaki

Born: 12 March 1925. Osaka, Japan

Affiliation at the time of the award: IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Prize motivation: "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

Field: condensed matter physics, semiconductors

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Giaever, Brian D. Josephson

Share this: 🚹 📴 💟 🔂 🔄 👔

Leo Esaki - Facts

The Nobel Prize in Physics 2000 Zhores Alferov, Herbert Kroemer, Jack Kilby

Share this: 🚹 🔤 🔽 🚰 🚳

Leo

Bor

Affi

awa

NY,

Herbert Kroemer - Facts

Herbert Kroemer

Born: 25 August 1928, Weimar, Germany

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Giaever, Brian D. Josephson

Share this: 🚹 📴 💟 🚼 🔄 3

Leo Esaki - Facts

Leo

Bor

NY,

The Nobel Prize in Physics 2000 Zhores Alferov, Herbert Kroemer, Jack Kilby Share this: 🚹 🔤 🗾 音 🔄 6

The Nobel Prize in Physics 2000 Zhores Alferov, Herbert Kroemer, Jack Kilby

Zhores Alferov - Facts

Zhores I. Alferov

Born: 15 March 1930, Vitebsk, Belorussia, USSR (now Belarus)

Affiliation at the time of the award: A.F. loffe Physico-Technical Institute, St. Petersburg, Russia

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Glaever, Brian D. Josephson

Share this: 🚹 📴 🗾 🔂 🔄 🧣

Leo Esaki - Facts

Whenever I teach my semiconductor device course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of «Kroemer's Lemma of Proven Ignorance»:

- If, in discussing a semiconductor problem you cannot draw an Energy Band Diagram, this shows that you don't know what you are talking about with the corollary.
- If you can draw one, but don't, then your audience won't know what you are talking about.

H.Kroemer, Nobel Prize Lecture, 2000

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics. Instrumentation

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Giaever, Brian D. Josephson

Share this: 🚹 📴 💟 🔂 🔄 3

Leo Esaki - Facts

NY.

The Nobel Prize in Physic Zhores Alferov, Herbert K Leo Share this: 🚹 🔤 🗾 🔛 Bor Affi Herbert Kro awa Res Priz exp tuni sem SUD Field sem Priz

Whenever I teach my semiconductor device course, one of the central messages I try to get across early is the importance of energy band diagrams. I often put this in the form of «Kroemer's Lemma of Proven Ignorance»:

- If, in discussing a semiconductor problem you cannot draw an **Energy Band Diagram**, this shows that you don't know what you are talking about with the corollary.
- If you can draw one, but don't, then your audience won't know what you are talking about.

H.Kroemer, Nobel Prize Lecture, 2000

Prize motivation: "for developing semiconductor heterostructures used in high-speed- and opto-electronics"

Field: condensed matter physics, instrumentation

Часть 1. Энергетическая диаграмма p-n перехода

Энергетическая диаграмма

полупроводника

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и п-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и п-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

р-п переход

Упрощённая геометрия:

- два «бруска» полупроводника р и п-типа
- гладкая граница
- один «родительский» полупроводник, одинаковое расположение зон.

Условия равновесия на р-п переходе

 $\mu(\vec{r}) - e\phi(\vec{r}) = const$

Условия равновесия на р-п переходе

Условия равновесия на р-п переходе

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

$$d_a N_a = d_d N_d$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

Электронейтральность:

$$d_a N_a = d_d N_d$$

Контактная разность потенциалов:

Z

$$\Delta \varphi = \varphi_d - \varphi_a = \frac{1}{e} (\mu_d - \mu_a) =$$
$$= \frac{E_g + E_d - E_a}{2e} \approx \frac{E_g}{e}$$

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

Электронейтральность:

$$d_a N_a = d_d N_d$$

Контактная разность потенциалов:

$$\Delta \varphi = \varphi_d - \varphi_a = \frac{1}{e} (\mu_d - \mu_a) =$$
$$= \frac{E_g + E_d - E_a}{2e} \approx \frac{E_g}{e}$$

Уравнения на потенциал:

$$\varepsilon \frac{d^2 \varphi}{dx^2} = -4 \pi e N_d$$
$$\varepsilon \frac{d^2 \varphi}{dx^2} = 4 \pi e N_a$$

«Конденсаторное приближение»

«Конденсаторное приближение»

Часть 2. Энергетические диаграммы p-n перехода под напряжением

Энергетическая диаграмма p-n перехода с приложенным напряжением

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

= $D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$

с приложенным напряжением

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

= $D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$

с приложенным напряжением

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

= $D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$

с приложенным напряжением

$$\frac{d J_{1 \to 2}^{(e)}}{d \varepsilon} \propto D N_1 n_1 N_2 (1 - n_2) =$$

= $D N_1 N_2 \times \frac{1}{e^{(\varepsilon - \mu_1)/T} + 1} \times \frac{1}{e^{-(\varepsilon - \mu_2)/T} + 1}$

Часть З. Туннельный диод Лео Есаки

The Nobel Prize in Physics 1973 Leo Esaki, Ivar Glaever, Brian D. Josephson

Share this: 🚹 📴 💟 👥 🔄 💈

Leo Esaki - Facts

Leo Esaki

Born: 12 March 1925, Osaka, Japan

Affiliation at the time of the award: IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

Prize motivation: "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively"

Field: condensed matter physics, semiconductors

Контакт сильно легированных полупроводников

Контакт сильно легированных полупроводников

Контакт сильно легированных полупроводников

Энергетические диаграммы туннельного диода под напряжением

Из нобелевской лекции Л.Есаки

Из нобелевской лекции Л.Есаки

Из нобелевской лекции Л.Есаки

Часть 4. Гетероструктуры

Правило Андерсона

Правило Андерсона

Отложить	ОТ	ур	овня			
минимально	энергии					
электрона	В	вак	ууме			
сродство к	электр	оону.	Это			
определит	положе	ение	дна			
зоны провод	ы проводимости.					

Гетеропереход. Типы гетероперехода.

Гетеропереход. Типы гетероперехода.

Гетеропереход. Типы гетероперехода.

Технология: требования к материалам для гетероперехода.

- разные ширина запрещённой зоны и сродство полупроводника
- возможность получения атомно-гладкой границы (в т.ч.: близкие периоды решётки!)
- технологичность (чистота, стабильность, возможность легирования)

Структура GaAs

Ga-Al-As

	AlAs	GaAs	
период решётки, Å	5.6611	5.6533	
ширина зоны, эВ	2.16	1.42	
сродство, эВ	3.5	4.1	
тип проводимости	(l) «n»	(D) «p»	

Al_xGa_{1-x}As

Ga-Al-As

				+	Al _x Ga _{1-x} As		
1 1 1 advances	III	IV	v			AIAs	GaAs
	P 5	C 6	N 7	-	период решётки, Å	5.6611	5.6533
	b 10,811 b op 1 3 Al 13 26,9815	С 12.01115 Углерод Si 14 28.086	Азот 14.0067 Р 15 30.9738		ширина зоны, эВ	2.16	1.42
	Алюминий 21 Sc 44,956 Скандий	Кремний 22 Ті 47,90	Фосфор 23 V 50,942 Ванадий		сродство, эВ	3.5	4.1
	Ga 31 ^{69,72} Галлий	Ge 32 72,59 Германий	As ³³ _{74,9216} Мышьяк		тип проводимости	(l) «n»	(D) «p»

http://www.hemi.nsu.ru/mends.htm

Ga-Al-As

Зонная структура прямозонного полупроводника GaAs

Энергетическая диаграмма гетероперехода nAlAs-pGaAs

Энергетическая диаграмма гетероперехода nAlAs-pGaAs

«Реалистичная» энергетическая диаграмма для сильно легированного n-AlAs

«Реалистичная» энергетическая диаграмма для сильно легированного n-AlAs

Основное на этой лекции.

$$\mu(\vec{r}) - e\phi(\vec{r}) = const$$

• Изгиб зон.

 Возможность формирования квантовой ямы на границе полупроводников.

