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I. H ISTORICAL B A C K G R O U N D

In 1923, during the infancy of the quantum theory, de Broglie (1) intro-
duced a new fundamental hypothesis that matter may be endowed with a
dualistic nature - particles may also have the characteristics of waves. This
hypothesis, in the hands of Schrodinger (2) found expression in the definite
form now known as the Schrödinger wave equation, whereby an electron or a
particle is assumed to be represented by a solution to this equation. The
continuous nonzero nature of such solutions, even in classically forbidden
regions of negative kinetic energy, implies an ability to penetrate such for-
bidden regions and a probability of tunneling from one classically allowed
region to another. The concept of tunneling, indeed, arises from this quan-
tum-mechanical result. The subsequent experimental manifestations of this
concept can be regarded as one of the early triumphs of the quantum theory.

In 1928, theoretical physicists believed that tunneling could occur by the
distortion, lowering or thinning, of a potential barrier under an externally
applied high electric field. Oppenheimer (3) attributed the autoionization of
excited states of atomic hydrogen to the tunnel effect: The coulombic poten-
tial well which binds an atomic electron could be distorted by a strong electric
field so that the electron would see a finite potential barrier through which
it could tunnel.

Fowler and Nordheim (4) explained, on the basis of electron tunneling, the
main features of the phenomenon of electron emission from cold metals by
high external electric fields, which had been unexplained since its observa-
tion by Lilienfeld (5) in 1922. They proposed a one-dimensional model.
Metal electrons are confined by a potential wall whose height is determined
by the work function ψ plus the fermi energy E f, and the wall thickness is
substantillay decreased with an externally applied high electric field, allowing
electrons to tunnel through the potential wall, as shown in Fig. 1. They
successfully derived the well-known Fowler-Nordheim formula for the current
as a function of electric field F:

An application of these ideas which followed almost immediately came in
the model for a decay as a tunneling process put forth by Gamow (6) and
Gurney and Condon. (7) Subsequently, Rice (8) extended this theory to the
description of molecular dissociation.
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The next important development was an attempt to invoke tunneling in or-
der to understand transport properties of electrical contacts between two sol-
id conductors. The problems of metal-to-metal and semiconductor-to-metal
contacts are important technically, because they are directly related to electri-
cal switches and rectifiers or detectors.

In 1930, Frenkel (9) proposed that the anomalous temperature indepen-
dence of contact resistance between metals could be explained in terms of
tunneling across a narrow vacuum separation. Holm and Meissner (10)
then did careful measurements of contact resistances and showed that the
magnitude and temperature independence of the resistance of insulating sur-
face layers were in agreement with an explanation based on tunneling through
a vacuum-like space. These measurements probably constitute the first cor-
rectly interpreted observations of tunneling currents in solids, (11) since the
vacuum-like space was a solid insulating oxide layer.

In 1932, Wilson, (12) Frenkel and Joffe, (13) and Nordheim (14) applied
quantum mechanical tunneling to the interpretation of metal-semiconductor
contacts - rectifiers such as those made from selenium or cuprous oxide. From
a most simplified energy diagram, shown in Fig. 2, the following well-known
current-voltage relationship was derived:

Apparently, this theory was accepted for a number of years until it was finally
discarded after it was realized that it predicted rectification in the wrong di-
rection for the ordinary practical diodes. It is now clear that, in the usual
circumstance, the surface barriers found by the semiconductors in contact
with metals, as illustrated in Fig. 2, are much too thick to observe tunneling
current. There existed a general tendency in those early days of quantum
mechanics to try to explain any unusual effects in terms of tunneling. In
many cases, however, conclusive experimental evidence of tunneling was lack-
ing, primarily because of the rudimentary stage of material science.

In 1934, the development of the energy-band theory of solids prompted
Zener (15) to propose interband tunneling, or internal field emission, as an
explanation for dielectric breakdown. He calculated the rate of transitions



118 Physics 1973

semiconductor

Fig. 2. Early model of metal-semicon-
ductor rectifiers.

from a filled band to a next-higher unfilled band by the application of an
electric field. In effect, he showed that an energy gap could be treated in the
manner of a potential barrier. This approach was refined by Houston (16)
in 1940. The Zener mechanism in dielectric breakdown, however, has never
been proved to be important in reality. If a high electric field is applied to
the bulk crystal of a dielectric or a semiconductor, avalanche breakdown
(electron-hole pair generation) generally precedes tunneling, and thus the
field never reaches a critical value for tunneling.

II. T U N N E L  D I O D E

Around 1950, the technology of Ge p-n junction diodes, being basic to
transistors, was developed, and efforts were made to understand the junction
properties. In explaining the reverse-bias characteristic, McAfee et al. (17)
applied a modified Zener theory and asserted that low-voltage breakdown in,
Ge diodes (specifically, they showed a 10-V breakdown) resulted from inter-
band tunneling from the valence band in the p-type region to the empty con-
duction band in the n-type region. The work of McAfee et al. inspired a
number of other investigations of breakdown in p-n junctions. Results of those
later studies (18) indicated that most Ge junctions broke down by avalanche,
but by that time the name “Zener diodes” had already been given to the
low-breakdown Si diodes., Actually, these diodes are almost always avalanche
diodes. In 1957, Chynoweth and McKay (19) examined Si junctions of
low-voltage breakdown and claimed that they had finally observed tunneling.
In this circumstance, in 1956, I initiated the investigation of interband tunnel-
ing or internal field emission in semiconductor diodes primarily to scrutinize
the elctronic structure of narrow (width) p-n junctions. This information,
at the time, was also important from a technological point of view.

The built-in field distribution in p-n junctions is determined by the profile
of impurities - donors and acceptors. If both the impurity distributions are
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Fig. 4. Semilog plots of current-voltage characteristics in a tunnel diode, where
N

A
~ 5 x 1019c m-3 and ND ~ 1.8 x 1019c m-3.

are degenerate, that is, the fermi energies are located well inside the conduc-
tion or valence band.

In this study, we first obtained a backward diode which was more conduc-
tive in the reverse direction than in the forward direction. In this respect it
agreed with the rectification direction predicted by the previously-mentioned
old tunneling rectifier theory. The calculated junction width at zero bias was
approximately 200Å, which was confirmed by capacitance measurements. In
this junction, the possiblity of an avalanche was completely excluded because
the breakdown occurs at much less than the threshold voltage for electron-
hole pair production. The current-voltage characteristic at room temperature
indicated not only that the major current-flow mechanism was convincingly
tunneling in the reverse direction but also that tunneling might be responsible
for current flow even in the low-voltage range of the forward direction. When
the unit was cooled, we saw, for the first time, a negative resistance, appear-
ing, as shown in Fig. 3. By further narrowing the junction width (thereby
further decreasing the tunneling path), through a further increase in the
doping level, the negative resistance was clearly seen at all temperatures, as
shown in Fig. 4. (20)

The characteristic was analyzed in terms of interband tunneling. In the
tunneling process, if it is elastic, the electron energy will be conserved. Figures
5 (a), (b), (c), and (d) show the energy diagrams of the tunnel diode at
zero bias and with applied voltages, V I, E’s, and V3, respectively. As the bias
is increased up to the voltage Vi, the interband tunnel current continues to
increase, as shown by an arrow in Fig. 5 (b). However, as the conduction
band in the n-type side becomes uncrossed with the valence band in the p-type
side, with further increase in applied voltages, as shown in Fig. 5 (c), the
current decreases because of the lack of allowed states of corresponding ener-
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Fig. 5. Energy diagrams at varying bias-conditions in the tunnel diode.

Fig. 6. Current-voltage characteristics in a Si tunnel diode at 4.2, 80 and 298 K.
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gies for tunneling. When the voltage reaches V2, or higher, the normal diffu-
sion (or thermal) current will dominate as in the case of the usual p-n diode.
Semiconductor materials other than Ge were quickly explored to obtain tun-
nel diodes: Si, InSb, GaAs, InAs, PbTe, GaSb, SiC, etc.

In our early study of the Si tunnel diode, (21) a surprisingly fine structure
was found in the current-voltage curve at 4.2 K, indicating the existence of
inelastic tunneling, as shown in Fig. 6. We were impressed with the fact that
four voltages at the singularities shown in the figure agreed almost exactly
with four characteristic energies due to acoustic and optical phonons, obtained
from the optical absorption spectra (22) and also derived from the analysis
of intrinsic recombination radiation (23) in pure silicon. The analysis of
tunneling current in detail reveals not only the electronic states in the systems
involved, but also the interactions of tunneling electrons with phonons, pho-
tons, plasmons, or even vibrational modes of molecular species in barriers.
(24) As a result of the rich amount of information which can be obtained
from a study of tunneling processes, a field called tunneling spectroscopy has
emerged.

III. N EGATIVE R ESISTANCE IN M E T A L- OX I D E- SE M I C O N D U C T O R  JU N C T I O N S

This talk, however, is not intended as a comprehensive review of the many
theoretical and experimental investigations of tunneling, which is available
elsewhere. (25) Instead, I would like to focus on only one aspect for the rest
of the talk: negative resistance phenomena in semiconductors which can be
observed in novel tunnel structures.

Differential negative resistance occurs only in particular circumstances,
where the total number of tunneling electrons transmitted across a barrier
structure per second decreases, rather than increases as in the usual case,
with an increase in applied voltage. The negative resistance phenomena them-
selves are not only important in solid-state electronics because of possible
signal amplification, but also shed light on some fundamental aspects of tun-
neling.

Before proceeding to the main subject, I would like to briefly outline the
independent-electron theory of tunneling. (26) In tunneling, we usually deal
with a one-dimensional potential barrier V(x). The transmission coefficient
D for such a barrier is defined as the ratio of the intensity of the transmitted
electron wave to that of the incident wave. The most common approximation
for D is the use of the semiclassical WKB form

where E x is the kinetic energy in the direction normal to the barrier, and
the quantities x1 and x2 are the classical turning points of an electron of energy
E x at the edges of the potential barrier. If the boundary regions are sharp,
we first construct wave functions by matching values of functions as well as



Fig. 7. Current-voltage characteristics in SnTe and GeTe tunnel junctions at 4.2 K.

their derivatives at each boundary, then calculate the transmission coefficient
D.

The tunneling expression should include two basic conservation laws:
1) Conservation of the total electron energy; and 2) Conservation of the com-
ponent of the electron wave vector parallel to the plane of the junction. The
velocity of an incident electron associated with a state of wave number k x

is given by l/h aE/ak, in a one-particle approximation. Then, the tunnel-
ing current per unit area is written by

where f is the fermi distribution function or occupation probability, and E and
E’ are the energy of the incident electron and that of the transmitted one,
respectively. The front factor 2/(2π) 3 comes from the fact that the volume
of a state occupied by two electrons of the opposite spin is (2π)3 in the wave-
vector space for a unit volume crystal.

The previously-mentioned tunnel diode is probably the first structure in
which the negative resistance effect was observed. But, now, I will demon-
strate that a similar characteristic can be obtained in a metal-oxide-semi-
conductor tunnel junction, (27) where the origin of the negative resistance
is quite different from that in the tunnel diode. The semiconductors involved
here (SnTe and GeTe) are rather unusual-more metallic than semicon-
ducting; both of them are nonstoichiometric and higly p-type owing to high
concentrations of Sn or Ge vacancies with typical carrier concentrations about
8 x 1020 and 2 x 1020c m-3, respectively. The tunnel junctions were prepared
by evaporating SnTe or GeTe onto an oxidized evaporated stripe of Al on
quartz or sapphire substrates. In contrast to the p-n junction diodes, all ma-
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semi -
conductor metal

Fig, 8. Energy diagrams at varying bias-conditions in Al-Al2O3)SnTe or-GeTe tunnel
junctions.

terials involved in these junctions are polycrystalline, although the Al oxide
is possibly amorphous.

Figure 7 illustrates the current-voltage curves at 4.2 K of typical SnTe and
GeTe junctions and Fig. 8 shows their energy diagrams at zero bias, and at
applied voltages V I and V 2 from the left to the right. As is the case in the
tunnel diode, until the bias voltage is increased such that the fermi level in
the metal side coincides with the top of the valence band in the semiconduc-
tor side (Fig. 8 (b) ), the tunnel current continues to increase. When the bias
voltage is further increased (Fig. 8 (c) ), however, the total number of empty
allowed states or holes in the degenerate p-type semiconductor is unchanged,
whereas the tunneling barrier height is raised, for instance from E  B V 1 t o

E B V2 , resulting in a decrease in tunneling probability determined by the
exponential term, e-l , where R - 2d ( 2mEHv)li2/h,  and E  BV and d are the
barrier height and width, respectively. Thus a negative resistance is ex-
hibited in the current-voltage curve. When the bias voltage becomes higher
than the level corresponding to the bottom of the conduction band in the
semiconductor, a new tunneling path from the metal to the conduction band
is opened and one sees the current again increasing with the voltage. The
rectification direction in this junction is again backward as is the case in the
tunnel diode.

We might add that, in this treatment, the tunneling exponent is assumed to
be determined only by the energy difference between the bottom of the con-
duction band in the oxide and the metal fermi energy. This assumption should
be valid because this energy difference is probably much smaller than that
between the top of the valence band in the oxide and the metal fermi energy.



Fig. 9. Energy diagrams at varying bias-conditions in a double-barrier tunnel junction,
indicating the resonant transmission in (b) and (d).

IV. N EGATIVE RESISTANCE DUE TO R E S O N A N T  T R A N S M I S S I O N

It has been known that there is a phenomenon called the resonant trans-
mission. Historically, resonant transmission was first demonstrated in the scat-
tering of electrons by atoms of noble gases and is known as the Ramsauer
effect. In many textbooks (28) on quantum mechanics, the resonant trans-
mission in tunneling or scattering is one of the more favored topics. In a
one-dimensional double potential barrier, (29) the narrow central potential
well has weakly-quantized (or quasi-stationary) bound states, of which the
energies are denoted by E 1 and E 2 in Fig. 9 (a). If the energy of incident
electrons coincides with these energies, the electrons may tunnel through both
barriers without any attenuation. As seen in Fig. 10 (two curves at V = 0),
the transmission coefficient reaches unity at the electron energy E = El o r
E 2. Since E 1 is a more strongly quantized state than E 2, the resonance peak
at E1 is much sharper than that at E2. Although this sharpness depends upon
the barrier thickness, one can achieve at some energy a resonance condition
of 100%  transmission, whatever thickness is given to the two barriers.

This effect is quite intriguing because the transmission coefficient (or the
attenuation factor) for two barriers is usually thought of as the product of
two transmission coefficients, one for each barrier, resulting in a very small
value for overall transmission. The situation, however, is somewhat analogous
to the Fabry-Perot type interference filter in optics. The high transmissivity
arises because, for certain wavelengths, the reflected waves from inside inter-
fere destructively with the incident waves, so that only a transmitted wave
remains.
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This resonating condition can be extended to a periodic barrier structure.
In the Kronig-Penney model of a one-dimensional crystal which consists of a
series of equally-spaced potential barriers, it is well known that allowed bands
of perfect transmission are separated by forbidden bands of attenuation. These
one-dimensional mathematical problems can often be elegantly treated, lead-
ing to exact analytical solutions in textbooks of quantum mechanics. Many
of these problems, however, are considered to be pure mathematical fantasy,
Ear from reality.

We, recently, initiated an experimental project to materialize one-dimen-
sional potential barriers in monocrystalline semiconductors in order to ob-
serve the predicted quantum-mechanical effects. (30) We choose n-type GaAs
as a host semiconductor or a matrix in which potential barriers with the
height of a fraction of one electron volt are made by inserting thin layers of
G a1-r

.Al,As  or AlAs.  Because of the similar properties of the chemical
bond of Ga and Al together with their almost equal ion size, the introduction
of AlAs into GaAs makes the least disturbance to the quality of single crystals.
And yet the difference in the electronic structure between the two materials
makes a sharp potential barrier inside the host semiconductor. We prepare
the multi-layer structure with the technique of molecular beam epitaxy in
ultra-high vacuum environment. Precise control of thickness and composition
has been achieved by using a process control computer. (31)

With this facility, a double potential barrier structure has been prepared,
(32) in which the barrier height and width are about 0.4 eV and a few tens
of angstroms, respectively, and the width of the central well is as narrow
as 40-50Å. From these data, the first two energies, E 1 and E 2, of the weakly-
quantized states in the well are estimated to be 0.08 and 0.30 eV.

We have measured the current-voltage characteristic as well as the conduc-
tance dI/dV as a function of applied voltages in this double tunnel junction.
The results at 77 K are shown in Fig. 11, and they clearly indicate two singu-
larities in each polarity and even show a negative resistance around +0.8 volt
or -0.55 volt. The applied voltages at the singularities, averaged in both
polarities, are roughly twice as much as the calculated bound-state energies.
This general feature is not much different a 4.2 K, although no structure is
seen at room temperature.

The energy diagrams at zero bias and at applied voltages V1, V2 and V3

are shown in Fig. 9. The electron densities on both the left and right GaAs
sides are about 1018c m-3 which gives a fermi energy of 0.04 eV at zero
temperature. These electrons are considered to be classical free carriers with
the effective mass, m”, of which the kinetic energy E is given by

On the other hand, the electrons in the central well have the weakly-quantized
levels, E l, E2, . . ., for motion in the x direction perpendicular to the walls
with a continuum for motion in the y-z  plane parallel to the walls. These
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Fig. 10. Transmission coefficient versus electron energy, indicating the resonant transmis-
sion.

electrons are nearly two-dimensional, which is to say the kinetic energy E is
given by

An approximation is made that the same electron effective mass, m*, exists
throughout the structure. Then an expression for the tunneling current in this
structure (33) can be derived in the framework of the previously-described

tunneling formalism in Eq. 2. Using aE/ak,  = aE,/ak,, 2nk,dk,  = dk,dk,
and T (temperature) = 0, the current is given by

(3)



Fig. 11. Current, I, and conductance, dI/dV, versus voltage curves in a double barrier
tunnel junction.

where V is the applied voltage, on which the transmission coefficient D(E x)
depends. The above expression can be integrated over the transverse wave
number kt, giving

In both Eqs. 3 and 4, the second term is nonzero only for eV <Ef = 0.04
eV.

Now, the transmission coefficient D v ( Ex) can be derived for each ap-
plied voltage from wave functions which are constructed by matching their
values as well as derivatives at each boundary. Figure 10 shows one example
of calculated D as a function of the electron energy for applied voltages



Fig. 12. Construction of shadows of energy surfaces on two ky-kz planes corresponding
to two barriers.

between zero and 0.5 volt. The energy zero is taken at the bottom of the con-
duction band on the left as shown in Fig. 9. In this example, the well width
is taken to be 45Å and the barrier height 0.4 eV at zero bias. The square
shape for barriers and well is assumed for simplicity of calculation, although
they are actually trapezoidal at any applied voltage.

Referring to Figs. 9 and 10, both the absolute values and the positions in
energy for the maxima of the transmission coefficient decrease with increasing
applied voltages, the origin of energy being the conduction band edge for
the left outer GaAs layer. The current maxima occur at applied voltages such
that the electron energies on the left coincide with the bound-state energies,
as illustrated in Figs. 9 (b) and (d). This resonant transmission has been
experimentally verified as shown in Fig. 11. The transmission coefficient it-
self at this resonance, however, is appreciably less than unity as indicated in



Fig. 10, primarily because of the asymmetric nature of the potential profile
at applied voltages.

To gain an insight into this tunneling problem, particularly in view of the
transverse wave-vector conservation (specular tunneling), a representation in
the wave-vector space is useful and is shown in Fig. 12. Two k y-kz, planes
are shown parallel to the junction plane, corresponding to the two barriers.
Figures 12 (a) and (b) show two different bias-voltage conditions. First, the
Fermi sphere on the left is projected on the first screen, making a circle. A
similar projection, of the two-dimensional electrons in the central well which
have the same total energies as electrons in the Fermi sphere on the left at the
particular applied voltage, will form a circle (Fig. 12 (a) ), or a ring (Fig.
12 (b) ), depending upon the value of applied voltage. If the two projected
patterns have no overlap, there will be no specular tunneling current. The
situation on the right screen is slightly different, since an energy sphere on
the right, in which electrons have the same total energies as electrons in the
Fermi sphere on the left, is rather large; mereover, its size will be increased
as the applied voltage increases. Thus in this case the two projected patterns
always overlap. Figures 12 (a) and (b) correspond to the bias conditions
in Figs. 9 (b) and (c), respectively. With an increase in applied voltage from
V1 to V2, the current will decrease because of a disappearance of overlapping
regions, thereby causing a negative resistance. Since the current density is
dependent upon the half-width of the resonant peaks shown in Fig. 10, we
have observed a clear negative resistance associated with the second bound-
state which is not swamped by possible excess currents arising for a variety
of reasons.

V. PERIODIC STRUCTURE -SUPERLATTICE

The natural extension of double barriers will be to construct a series of tunnel
junctions by a periodic variation of alloy composition. (30) By using the same
facilities for computer-controlled molecular beam epitaxy, we tried to pre-
pare a Kronig-Penney type one-dimensional periodic structure-a man-made
superlattice with a period of 100Å. (31) The materials used here are again
GaAs and AlAs or Gal _ .Al,As.

The composition profile of such a structure (34) has been verified by the
simultaneous use of ion sputter-etching of the specimen surface and Auger
electron spectroscopy and is shown in Fig. 13. The amplitudes of the Al
Auger signals serve as a measure of Al concentration near the surface within
a sampling depth of only 10Å or so. The damping of the oscillatory behavior
evident in the experimental data is not due to thermal diffusion or other
reasons but due to a surface-roughening effect or non-uniformity in the sput-
ter-etching process. The actual profile, therefore, is believed to be one which
is illustrated by the solid line in Fig. 13. This is certainly one of the highest
resolution structures ever built in monocrystalline semiconductors.

It should be recognized that the period of this superlattice is ~ 100Å--still
large in comparison with the crystal lattice constant. If this period 1, how-
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Fig. 13. Composition profile of a superlattice structure measured by a combination of
ion sputter-etching and Auger electron spectroscopy.

Fig. 14. Current-voltage characteristic at room temperature of a 70Å-period, GaAs-
Ga0,5Al0,5As superlattice.



ever, is still shorter than the electron mean free path, a series of narrow
allowed and forbidden bands is expected, due to the subdivision of the original
Brillouin zone into a series of minizones. If the electron scattering time τ,
and an applied electric field F, meet a threshold condition: eFzL/h  > 1 ,
the combined effect of the narrow energy band and the narrow wave-vector
zone makes it possible for electrons to be excited beyond an inflection point
in the energy-wave vector relation. This would result in a negative resistance
for electrical transport in the direction of the superlattice. This can be seen in
another way. The de Broglie wavelength of conduction electrons having an
energy of, for instance, 0.03 eV in n-type GaAs (the effective mass ~ 0.1 m).
is of the order of 200Å. Therefore, an interaction of these electron waves with
the Kronig-Penney type potential with a period of 100Å can be expected, and
will give rise to a nonlinear transport property.

We have begun to observe such current-voltage characteristic as shown in
Fig. 14. The observed negative resistance may be interesting not only from
the scientific aspect but also from a practical viewpoint because one can ex-
pect, at least theoretically, that the upper limit of operating frequencies would
be higher than that for any known semiconductor devices.

VI. C O N C L U S I O N

I am, of course, deeply aware of important contributions made by many col-

leagues and my friends throughout this long journey. The subject of Section
II was carried out when I was in Japan and all the rest (35) has been per-
formed in the United States of America. Since my journey into tunneling is
still continuing, I do not come to any conclusions in this talk. However, I
would like to point out that many high barriers exist in this world: Barriers
between nations, races and creeds. Unfortunately, some barriers are thick
and strong. But I hope, with determination, we will find a way to tunnel
through these barriers easily and freely, to bring the world together so that
everyone can share in the legacy of Alfred Nobel.
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