НИУ ВШЭ, Базовая кафедра физики низких температур

1	2	3	4	5	6	7	8	9	10	31	32	33	34	Σ	«10

Полусеместровая контрольная работа по курсу «Спектроскопия конденсированных сред» Правила оценки:

- 1. Первая часть работы: 10 тестовых вопросов, 1 балл за вопрос
- 2. Вторая часть работы: 4 задачи, 5 баллов за задачу
- 3. Конвертирование суммарного балла в 10-бальную и 5-бальную оценку по таблице ниже

	отлично			ор	удо	ЭВЛ		неуд	
10	9	8	7	6	5	4	3	2	1
27-30	24-26	21-23	16-20	12-15	9-11	7-8	5-6	3-4	0-2

Часть 1

- 1. Оценить максимальную частоту акустического фонона в кристалле с периодом элементарной ячейки a=3Å и скоростью звука $s=3\,\kappa\text{M}/ce\kappa$.
- 2. Как может быть измерена частота оптического фонона?
- 3. Какая физическая величина определяет поглощение энергии в системе при некотором внешнем воздействии на неё (например, при приложении переменного электрического или магнитного поля)?
- 4. В кристалле имеются атомы двух сортов, массы которых равны m и $M\!=\!2\mathrm{m}$. Как будут отличаться частоты акустической и оптической фононных мод на границе зоны Бриллюэна?
- 5. Как зависит от волнового вектора частота колебаний в спиновой волне в ферромагнетике (можно указать только асимптотику для длинных волн)?
- 6. Какой статистике подчиняются квазичастицы, являющиеся квантами колебаний кристаллической структуры (фононы, магноны)?
- 7. Какие электронные состояния в хорошем металле заняты при Т=0?
- 8. К каким последствиям для спектра электронов в металле приводит взаимодействие электронов с периодическим потенциалом кристалла?
- 9. Привести один-два примера (только названия) экспериментальных методов определения структуры кристаллов или спектров элементарных возбуждений в кристалле.
- 10. Привести один-два примера (только названия) экспериментальных методов определения параметров электронного спектра в металлах

Часть2

Задача 1

В модельном одномерном кристалле все атомы имеют одинаковую массу m, но эффективные жёсткости связей между атомами чередуются, поочерёдно принимая значения C и 2C . Каков будет спектр упругих продольных колебаний (фононов) в таком кристалле?

Задача 2

На поверхности жидкого гелия (остающегося жидким вплоть до T=0 при не слишком больших давлениях) могут распространяться волны (капиллярные волны, кванты этих волн называют *риплонами*) со спектром $\omega^2 = \sigma K/\rho$, где σ — коэффициент поверхностного натяжения и ρ — плотность. Найти вклад этих колебаний в низкотемпературную теплоёмкость гелия.

Указание: поверхность гелия можно считать двумерной плоскостью, поляризация у таких волн единственная.

Для сравнения: в сверхтекучем гелии-4 при температурах меньше $0.8 \mathrm{K}$ основными возбуждениями являются фононы и «объёмный» вклад в теплоёмкость $C_{vol} \propto T^3$

Задача 3

В ферромагнетике каждый магнон уменьшает полную намагниченность ферромагнетика на величину $g\mu_{B}$ (g — спектроскопический g-фактор, μ_{B} — магнетон Бора). Для ферромагнетика на трёхмерной решётке вычислить, как при низких температурах будет уменьшаться его намагниченность с ростом температуры

Задача 4

В модельном одномерном металле учёт взаимодействия электронов с кристаллом привёл к формированию зонной структуры с законами дисперсии для первой разрешенной зоны

$$E_1 = E_0 (1 - \cos k \, a)$$
 и для второй разрешенной зоны $E_2 = 4 \, E_0 + \frac{E_0}{2} \cos k a$, где a —

период кристалла. Для случая, когда в элементарной ячейке такого кристалла содержится 3 электрона, показать (или описать) заполненные при T=0 электронные состояния и найти энергию Ферми.