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According to Landau, at T ¼ 0 the equilibrium crystal surface consists of an infinite number of facets

lying in all directions with rational Miller indices—the so-called devil’s staircase phenomenon. We have

discovered 11 new types of facets on the surface of 4He crystals, in addition to the three observed before.

Some of the new facets are of very high order, lying at angles as small as 4� to the basal c facet, thus

forming the predicted devil’s staircase. The estimated step energies depend rather weakly on interplanar

distance which we explain by the strong anisotropy of the steps.
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Faceting is probably the most exciting phenomenon
taking place on the crystal surface. Facets reflect the dis-
crete nature of the crystal, and they are stabilized by the
periodic potential induced by the crystal lattice. Ordinary
crystals typically show only a few types of facets because
the surface phenomena are masked by the bulk effects such
as mass and heat diffusion, so that only basic, low order
facets can manifest themselves. In contrast, helium crystals
at low temperatures present a unique model system to
study crystal surfaces, because the latent heat is very small
and the liquid phase surrounding the crystals is superfluid,
providing fast mass and heat transport.

Landau was the first to recognize that the physical
reason for the appearance of a facet on the crystal surface
is the discontinuity of the derivative of the surface tension
d�=d� at the corresponding orientation [1]. Landau con-
sidered the surface vicinal to the atomically flat facet as a
set of terraces separated by steps. If the energy of the step is
positive, the surface tension increases linearly with the
absolute value of the tilt angle �ð�Þ ¼ �0 þ �j�j=d (�
and d are the step energy and height, correspondingly) and
has a cusp at the orientation of the facet. The equilibrium
size L of the facet is proportional to the value of the break
d�=d�j�¼þ0 � d�=d�j�¼�0 or, to the step energy, L�
�=ð��dÞ, where � is the curvature of the rough surface
close to the facet [1]. A facet of high order consists of
terraces of a basal facet separated by equidistant steps. The
(secondary) step on such a high order facet appears as a
change of the width of a single terrace by one interatomic
distance. Landau has shown that the free energy of such a
secondary step is finite because of the interaction between
primary, basal steps. Thus, at low temperatures the crystal
surface in equilibrium consists of an infinite number of
facets at any rational direction, that is, the so-called devil’s
staircase phenomenon [1].

To date, in 4He crystals only three types of facets—
[0001] (c), ½10�10� (a), and ½10�11� (s)—have been observed
long ago by groups in Haifa, Moscow, and Paris using
optical cryostats [2]. High order facets have small step
energies, and, in equilibrium, they can be observed only

on the surfaces which have very small curvature. However,
facets with a size much larger than the equilibrium one can
be observed on slowly growing crystals. Atomically
smooth facets grow by the spiral motion of steps provided
by screw dislocations—the so-called spiral growth. At
small enough overpressures, the facet is immobile, while
the rough surfaces near the facet grow easily and reach the
plane of a facet which thus increases in size. Because of the
finite size of the crystal, there is always a Laplace over-
pressure on the facets: �pF ¼ ���L=��SL. Thus the high
order facets with small step energies should be searched on
the top of large, very slowly growing crystals.
In this Letter, we report on our investigations on hcp 4He

crystals carried out with a low temperature Fabry-Pérot
interferometer [3]. An original histogram method has been
used for detecting flat areas on the crystal surface with low
average curvature. As a result, 11 new types of facets have
been observed on the surfaces of slowly growing crystals,
and the step energies of the new facets have been
estimated.
The interfering light which passes through a crystal

gains a phase shift proportional to the crystal thickness.
A facet is seen in an interferogram as a set of parallel
equidistant fringes, which corresponds to a linear change
of the crystal height. In Fig. 1 are shown the c and s facets
together with two new, ½10�12� and ½30�34� facets. However,
a simple inspection of the interferograms to detect plane
areas is not sufficient to identify high order facets, because
they are stable only near the top of large crystals where the
rough surface also has small curvature and thus can be
mixed with facets. For instance, the new ½10�12� facet,
which is of low order having the 4th largest interplanar
distance (step height) d, has relatively sharp edges and is
well visible in Fig. 1, while the new high order ½30�34� facet
is very close to the top of the crystal and has rather smooth
edges which makes it difficult to distinguish from the
rough surface with small curvature.
In order to avoid such ambiguity, we have developed a

novel, histogram technique to identify the flat surfaces on
the imaged crystals. In this method we find the direction of
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the normal to the surface at each point of the original
interferogram by fitting the phase distribution in the small
area around the chosen point with the quadratic form. Then
we plot a histogram of the orientations of the crystal
surface. In the histogram, a plane facet shows up as a
peak at the corresponding direction.

An example of such a histogram, made for the same
crystal shown in Fig. 1 but at a different time, is presented
in the inset in Fig. 2. The 2D histogram is rotated so that its
horizontal axis represents the angle between the surface
normal and the normal to the s facet in the plane formed by
the normals to the s and c facets. The width of the peak is
due to the points of the facet close to its edge, because the
fitted areas include there more points which do not belong
to the facet and have different orientations. To determine
the orientation of the facet more accurately, we have
selected the area which contributes to a certain peak and
fitted it separately with a linear form representing a plane
facet. In this way, we were able to reach the accuracy of
about 0.5� in determining the orientation of facets on the
crystal surface. A good illustration of the histogram
method is the facet ½10�13�, which can be easily seen on
the interferogram (Fig. 2) and which gives a significant
peak in the histogram (the inset in Fig. 2). Two other peaks
on the histogram correspond to two high order facets:
½20�23� (10.6� to the s facet) and ½30�34� (7.3� to the s facet).

Note that one and the same facet can be quite large or too
small to be seen on the same crystal at different moments
during growth of the crystal; for example, the ½10�12� facet
is large in Fig. 1 but is not seen at all in Fig. 2, where the
½10�13� facet is present instead. The reason is that the

faceted crystal is far from equilibrium even during very
slow growth. Growing facets quickly decrease in size,
while the size of slowly growing or immobile facets in-
creases. When fast facets become small in size, the slow
facets start growing if we continue pressurizing, and in this
way different facets appear, disappear, and reappear during
growth.
In order to observe very high order facets of type

½10�1N�, we have created a crystal with an almost horizon-
tal ½0001� c facet and grew it very slowly. An example of
an original interferogram and the corresponding histogram
are shown in Fig. 3. The 2D histogram is rotated so that the
horizontal axis on the histogram shows the angle between
the surface normal and the normal to the c facet in the
plane formed by the normals to the c facet and the lower,
½10�10� a facet. The peaks correspond to very high order
facets laying at angles as small as 11.7�, 7.0�, and 4.7�
with respect to the c facet. These facets have normals lying
on the plane of the ½0001� c facet and the lower, ½10�10�
a-facet normals, and they can be identified as ½10�19�,
½10�115�, and ½10�123�.
Moreover, the angle as small as 3.5� was obtained for a

large facet lying between c and the right, ½01�10� a facet,
and the facet has thus been identified as ½01�1ð32� 1Þ�.
This facet produces the largest peak in the histogram, but
the corresponding area has been excluded from the histo-
gram shown in the inset in Fig. 3, because this peak is not
in plane with other peaks. To our knowledge, facets with
such a high Miller index have never been observed before.
Facets with Miller indices up to N ¼ 10 have been seen in
liquid crystals [4] and up to N ¼ 5 in bcc 3He crystals [5].

FIG. 2. Original interferogram with marked areas correspond-
ing to the ½10�11� (s) facet and to the newly discovered ½10�13�,
½20�23�, and ½30�34� facets. Inset: Histogram of the directions of
normals to the crystal surface; � is the angle to the s-facet normal
in the plane of s- and c-facet normals.

FIG. 1. Interference pattern of a slowly growing 4He crystal at
0.2 K. Marked areas correspond to the known [0001] (c) and
½10�11� (s) facets and to the newly discovered ½10�12� and ½30�34�
facets.
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The observation of such a multitude of facets means that
the step energy of facets decreases rather slowly with the
decrease of the step height d (increase of Miller indices). A
simple estimate of the step energy can be done by measur-
ing the growth threshold:

�pth ¼ 2��L=ð��SLd�lÞ;

where �l is the average distance between dislocations. The
overpressure �pth can be found by measuring the hydro-
static pressure difference and the Laplace pressure differ-
ence with respect to the rough surface which can be
thought to be in equilibrium because of high mobility.
Our results are presented in Fig. 4. Indeed, one can see
that the data fall onto very slow, nearly linear dependence
� / d, with the exception of the two basic c and a facets
(�a � �c are not shown on the graph).

The observed weak scaling is unexpected and has not
been observed before. A first prediction for the step ener-
gies of high order facets has been made by Landau, who
has shown that the primary steps repel due to the
van der Waals interaction, Us�s / 1=x3, which leads to
the 5th power dependence of the secondary step energy
on its height d [1]. Later, Marchenko and Parshin have
shown that primary steps induce the field of elastic defor-
mations in the lattice, and this leads to even stronger
repulsion: Us�s / 1=x2 [6]. Tsepelin et al. have shown
that the 1=x2 interaction between primary steps results in
the 4th power dependence of the secondary step energies,
and they have indeed observed such scaling in their experi-

ments with bcc 3He crystals [3,7]. Our data suggest a much
weaker dependence.
The observed scaling can be attributed to the anisotropy

of an elementary step on vicinal facets. Indeed, the concept
of secondary steps discussed above assumes that they are
straight, while during spiral growth they are necessarily
bent. Let us consider a vicinal facet ½10�1N� with a pair of
screw dislocations of opposite signs which produce a pri-
mary step (Frank-Read source). This additional primary
step generates N secondary steps which are pinned to the
dislocations (see Fig. 5).

FIG. 4. The measured dependence of the step free energy � on
the interplanar distance d for the new facets and for the s facet
(two rightmost points).

FIG. 5. The high order facet ½10�1N� with N ¼ 3, normal view.
In the top left part is shown a screw dislocation and an additional
primary step generated by this dislocation. This step is termi-
nated on the dislocation with opposite sign (not shown) forming
a Frank-Read source. The Frank-Read source generates N sec-
ondary steps (marked by gray lines) which are pinned to the
dislocations until the growth threshold is exceeded. Note the
anisotropy of the secondary steps.

FIG. 3. Original interferogram with marked areas correspond-
ing to the ½0001� c facet, ½10�10� a facet, and ½01�10� a facet and
to the newly discovered very high order facets (see text).
Inset: Histogram of the directions of normals of the crystal
surface; � is the angle to the c-facet normal in the plane of the
½0001� c facet and lower ½10�10� a-facet normals.
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As one can see, these secondary steps are highly aniso-
tropic: while the energy of the step oriented parallel to the
primary steps �jj is due to the interaction between them,

the energy of the perpendicular secondary step is due to
kinks on the primary steps �? ¼ "=ðNdcÞ (" is the free
energy of a kink). If �? � �jj, the condition for detaching
of the secondary step from the dislocations is
d�pthð��SL=�LÞ�l � 2�?, similar to the threshold condi-
tion for usual spiral growth. In this case, the measured step
energies shown in Fig. 4 are actually the energies of the
perpendicular steps �?, which indeed vary linearly with
the step height d: �? ¼ "d=d2c. From our data we estimate
the free energy of the kink: " � 0:2�cdc ¼ 0:2� 4:2�
10�10 erg=cm� 3� 10�8 cm � 20 mK. Note that, be-
cause of much weaker scaling, �? / d will always domi-
nate �jj / d4 at high enough Miller index N. Let us note

here that Landau [1] and Tsepelin et al. [3,7] have consid-
ered only the energy of the parallel secondary steps �jj,
which scales much faster with the step height d.

With the increase of temperature, thermal fluctuations
suppress the step free energy and set it to zero at a certain
roughening transition temperature—the facet disappears.
The most developed theory of roughening is the
renormalization-group (RG) approach by Nozières and
Gallet [8] in which the periodical pinning potential induced
by the crystal lattice is renormalized by the surface fluctu-
ations. The RG approach predicts the universal relation
between the step height and the roughening temperature

Tr ¼ ð2=�Þd2 ffiffiffiffiffiffiffiffiffiffiffiffi

	�	�
p

; (1)

where 	� ¼ �þ �00
�� and 	� ¼ �þ �00

�� are the principal

components of the surface stiffness tensor. In our experi-
ments with hcp 4He crystals, we have observed 14 different
types of facets in the temperature range of 0.13–0.2 K,
while according to Eq. (1) and the measured values of the
surface stiffness [9], only 6 types of facets should be
present. Thus the current theory fails to explain our
findings.

However, according to Fisher and Weeks [10], Tr de-
fined by Eq. (1) is only the lower limit of the roughening
temperature, and some other effect could stabilize a facet at
higher temperature. Note in this connection that Nozières
and Gallet have taken into account only the modulation of
the pinning potential in the direction perpendicular to the
surface, while in the case of vicinal surfaces there is also a

strong modulation of the potential along the surface. The
concept of secondary steps, in turn, takes somehow into
account longitudinal modulation but neglects the surface
fluctuations. Thus our findings call for a new theory of
roughening which would be able to describe the vicinal
surfaces.
In summary, we have observed 11 new types of facets on

the surface of hcp 4He crystals, in addition to only three
types of facets observed earlier. We have also estimated the
step energies of all observed facets, while only the step
energy of the basal [0001] c facet was known before. In
contrast to theoretical expectations, the dependence of the
step energy on the interplanar distance is rather slow,
which we explain by the strong anisotropy of the step
energy of vicinal facets.
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Jochemsen, A.Ya. Parshin, and G. Tvalashvili, Phys.
Rev. Lett. 86, 1042 (2001).

[6] V. I. Marchenko and A.Ya. Parshin, Sov. Phys. JETP 52,
129 (1980).

[7] V. Tsepelin, H. Alles, A. Babkin, R. Jochemsen, A. Ya.
Parshin, and I. A. Todoshchenko, Phys. Rev. Lett. 88,
045302 (2002).

[8] P. Nozières and F. Gallet, J. Phys. (Paris) 48, 353 (1987).
[9] O. A. Andreeva and K.O. Keshishev, Phys. Scr. T39, 352

(1991).
[10] D. S. Fisher and J. D. Weeks, Phys. Rev. Lett. 50, 1077

(1983).

PRL 101, 255302 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

19 DECEMBER 2008

255302-4


