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Asymptotically accurate results are obtained for the average Green function and density of states
of a disordered system for a renormalizable class of mo@slopposed to the lattice
modelsexamined previouslyl. M. Suslov, Zh. Kksp. Teor. Fiz106, 560(1994)]. ForN~1

(whereN is the order of perturbation thegryonly the parquet terms corresponding to the highest
powers of large logarithms are taken into account. For I&géhis approximation is

inadequate because of the higher rate of increase Witifi the coefficients for the

lower powers of the logarithms. The latter coefficients are determined from the
renormalization condition for the theory in the form of a Callan—Symanzik equation,

using the Lipatov asymptotiass boundary condition. For calculating the self-energy at

finite momentum, a modification of the parquet approximation is used that allows the calculations
to be done in an arbitrary finite logarithmic approximation, but taking into account only main
asymptotican N of the expansion coefficients. It is shown that the phase transition point shiftsinto
the complex plane, thereby ensuring regularity of the density of states for all energies and
avoiding the “false” pole in such a way that the effective interaction remains logarithmically
weak. [S1063-7761(97)01401-7]

1. INTRODUCTION whereS(E,R)~W 2>1. The total probabilityP(E) of the

resulting levelE, which determines the density of states

The proplem of calculgting the average Gregn functionV(E), is obtained by integrating Eq3) with respect toR,
that determines the density of states for the Sdimger \yhich in the approximation of the saddle-point method re-
equation with a gaussian random potential is mathematically,ces to replacingR by R,, the minimum point for
equivalent to the problem of a second-order phase transitiog(E R). For d<4 and d>4 'we have Ry~ |E|~ Y2 and

with ann-component order parameter=(¢1,¢2, - .- .#n) R ~a,, respectively® For d=4 (Fig. 1), the function
in the limit n—0;%? the coefficients in the Ginzburg—Landau S(E,R) = const=S,, and the situation is close to degeneracy:
Hamiltonian for largeR the degeneracy is removed owing to the finiteness

1 1 1 qf E and S(E,R) — Sy~ E2RY, while for sm_aI!R the Qevia—
H{(p}:j ddx{ > c|Vo|2+ > K(2)|(P|2+ 7 Jol | (1) tion of the spectrume(k) from quadrat'lms eaaentlaJ.. If
e(K)=k?+ Bk*, then for B>0 the functionS(E,R) lies
above Sy, ensuring the appearance of a minimum at
o~|E|~ ¥4 while for <0 it lies below and the minimum
is attained atRy~a,;° thus, models with3>0 and <0
yield a different asymptoticsor the fluctuation tail as
E— —o. For small negativeE the boundary between the

whered is the dimensionality of the space is the particle  tWo types of models shifts and is no longer sharp, so that
mass,E is the energy relative to the lower boundary of the integrating Eq(3) with respect taR results in a competition
bare spectrumW is the amplitude of the random potential, Petween the contributions from the minimu8) and the
and a, is the lattice constant(in the following c=1 and  higher lying plateauS(E,R)=S,, whose width increases
a,=1.) The “wrong” sign on the coefficient ofe|* leads to  Without bound agE| is reduced:
the “false” pole probleni and for a long time it was doubted
that ane-expansion could be constructed near a spatial di-
mensionality ofd=4.4 Encouraging results in this area have ~ P(E)~v(E)~e i+
been obtained recently by the autfiér.

It has been showithat there are two fundamentally dif-
ferent classes of models which show up in estimates basathereJ~1/ma~1. AsS, is increased the second tefthe
on the optimal fluctuation methd® The probability —contribution of the plateauecomes dominant befof ap-
P(E,R) of the appearance of an energy leet 0 owing to ~ ProachesS,. Direct integration of Eq(3) with respect toR
a fluctuation in a potential with characteristic sRehas the ~ Yields an exponenty=1/2.° which cannot be taken seri-

are related to the parameters of a disordered system by t
equations

c=1/2m, «3=—E, go=-—W?a}2, 2

a

e, (4

form ously, since the accuracy of the method does not allow for an
estimate of the coefficient of the second exponential. The
P(E,R)~exp —S(E,R)}, 3 exact value ofx is 1/3 (see below.
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In the domain of applicability of the optimal fluctuation of « and g alone upon transforming to the renormalized
method, the dampinf, defined by the imaginary part of the quantities. From dimensional consideratiofis= x?f(g),
self-energy2 (p, «) for p=0 (« is the renormalized value of where the functiorf(g) is determined mainly by the expo-
Ko), is proportional to the density of state¢E) and, when nential exp(—1/ag) owing to the need to agree with the re-
the dimensionality is taken into account, can be estimated asult from the optimal fluctuation method d&&— — <,

PR when g~g,. Given the relationship between the renormal-
E) eSo]_ (5) ized and bare charges,

F~J(e51+

_ Jo
9% 14 W,g, IN(A/x)

The energy always enters in the combinatiofi iT", and in W,=K,(n+8) (6)
the neighborhood of an Anderson transitid can be re-
placed byl". It is easily verified that the first term in brackets (K,=(87#%)"! is the area of a unit sphere in four-
is dominant wher; <3Sy/4, and the second when the in- dimensional space, divided by £3%), we have

equality is reversed. Sinc8(E,R)~W~2,% in the limit of

weak disorder a sharp bounda®y= 3S,/4 appears between [~ 2 exp[ _ L_ W, In /l]

the two types of models: fo8, <S; the optimum fluctuation

agy a «k
is determined by the atomic scale length and the discreteness

- . ) A2\ ~Wal2a-1 1
of the lattice is of fundamental importance, by analogy with ~ A2( — exp( - —, (7)
the casal>4. ForS;> S, fluctuations with a large radius are K ado
important and the analysis can be carried out in a continuum i given that~ A2, x2=|E|,Y anda= —3/8x2, repro-

model with a quadratic spectrum; the situation is analogoug§,ces the second term of E@). This value ofa is obtained

to that for the lowest dimensionalities. by a method'?>*2employing the standard instanton solution
The above classification of models is directly related tor), j— 414

the renormalizability of the theory. Théth-order graph for
the self-energy® has momentum dimensionalikf, where
r=2+(d—4)N. Ford>4 the degree of divergence at high
momenta increases with the graph order, and the theory |§ens in the expansion ig, are determined by saddle-point
unrenormalizablé;a cutoff parameteA must be introduced configurations, i.e. instantons, of the corresponding func-
explicitly as an i_ndication of the _significance of the structure;jgg) integralshas been clarified previoushf An instanton
of the Hamiltonian on an atomic scale. F4 we have i | inatov method satisfies the same equation as a typical
r<2 atallN: vyhen |ts.value is deducted from each_graph forwave function in the field of an optimal fluctuatiofsee
p=«=0 the indexr is reduced by 2 and the difference cpanter v of Ref. 8 Inthis way, the classification of mo-
2(p,x)~%(0,0) contains no divergences, which are ab-jeqgiven abovesmanifested in yet another fundamental
sqrped byZ(0,0), and_leads only to a shift in the energy aspect -- the divergence of the perturbation series. Unlike the
origin. For d=4 the differenceZ(p,«)—~(0,0) contains |attice models ford=4° the continuum models fod< 4,15
logarithmic divergences which are removed by renormalizy 4 the renormalizable massless theod€,applying the
ing the charge and Green functi8r? however, it is neces- Lipatov method to studies of four-dimensional modéls
sary to keep in mind that in the starltiard proofs of renormaligi, 0 requires that certain difficulties associated with
zability only distances greater than = are consideredtis o absence of “true” instantoriSec. 7)be overcome.
assumed that scale lengths shorter than ™" do not male In order to obtain asymptotically exact resultéin the li-
the 5-function contributions that are important fot—. it of weak disorderjn four-dimensional lattice modefsin
The above estimate shows that this is not always so: thge expansion
renormalizable contribution from large distancése contri- " .
bution of the plateauis dominant only forS,>S;; other- ”
wise, it is small compared to the unrenormalizable contribu- 2(0,6)—2(0,0=«? Nzl gg KZO Aﬁ( In ;) 8)
tion from small distances.
Therefore, there are four fundamentally different typesit is necessary to retain: (a) the parquet coefficientA,{,“
of theory: (1) an unrenormalizable theory fat>4; (b) un-  corresponding to the principal logarithmic approximation,
renormalizable theories under logarithmic conditidds=4,  and (b) for N=Ny>1, the coefficientsAﬂ and AL, which
S,<S,); (c) renormalizable theories under logarithmic con- have the maximum growth rate with respectNaand domi-
ditions (d=4, S;>S,); and (d) theories that are renormaliz- nateinthe large orders of perturbation theory. They yield a
able with a single subtractiorisuperrenormalizablefor  nonperturbative contribution, which is related to the diver-
d<4. Casega)and(b) have been examined in Refs. 5 and 6,gence of the series and does not depend on the choice of
respectively. In this paper we examine cdsg the zeroth Ng. The qualitative result consists of a shift in the transition
approximation for the 4 ¢ theory, which belongs to type point from the real axis into the complex plane, which leads
(d). to regularity of »(E) in the neighborhood of an Anderson
The exponent in Eqg. (4) can be determined from the transition and elimination of the false pole. This approxima-
renormalization condition for the plateau contribution. Thetion “deteriorates” asS; approachess, :° (a) the equation
contribution of the latter to the dampidg, which depends for I'(E) has physically meaningless solutions when
on A and the bare values fary andgy, becomes a function S;>S.; (b) the contribution arising from sub-leading

The need to correctly account for the factorial diver-
gence ofthe perturbation series, which can be established by
Lipatov's methodt* @according to which subsequent coeffi-
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FIG. 1. The dependence &E,R) on R for E=const wherd=4.

FIG. 2. The vertex"“N) with N free ends and. closed two-line loops
studied in the renormalization theory of Ref. 10.
logarithmic  terms, which are
determined by coefficienta ~ with K~1, increases rap-
idly as S;—S;; and,(c) the plateauFig. 1) makes a contri- 2. SYSTEM OF EQUATIONS FOR THE COEFFICIENTS AK
bution whose strong energy dependence indicates a growing
role for the coefficienté\\ with K # 0 (in the lattice models
the weak dependence 8f on E makes the zero-logarithmic
contribution predominaje that becomes important for

In the following we shall only be interested in logarith-
mic divergences, assuming the quadratic to be eliminated by
the renormalizationc. The Callan—Symanzik equations can
be derived in the usual wdy,but we need them in a some-

S;~S;. Thus, if the “highest” and “lowest”-order loga- - . . . . .
rithms are dominant in the lattice models, then, in general Owhat nontraditional form. Dimensional considerations imply
’ ’ ' O%hat a vertex (N with N free ends and. two-line loops

going to the rgnormalingle models the contributions from(Fig_ 2 can be written in the ford
all K become important in the su(®).

In the latter case we arrive at the following statement of ~ T'“N(p;;x,go,A) = x4~ N@-2/272L
the problem: let us choose an intedeég that is large com- ~
pared to 1, but small compared to the large parameters of the XN (py /K;g(:A/K)' ©)
theory. ForN<N, we retain only the parquet coefficients which allows us to proceed to examinidy'N (we omit the
AN which are distinguished by large logarithms, in E8). tilde in the following. Assuming that the bare charggis a
For N=Ng, in general, all the terms are important in the function of A and introducing the renormalized chargg
sum overK, but the conditiorN>1 allows us to calculate applicable to a scale.>«, in view of the multiplicative
the coefficientsAf, using the leading approximation renormalizability ofN,1° we have
in N. The latter problem is solved in the following way: the 0, 7
renormalizability of the theory, expressed in the form of the F<RL'N>(—';gM, ﬁ) =Z’\‘/2(—2
Callan—Symanzik equatiofSec. 2, leads to a system of K K z
equations for theA that determines the coefficients with whereZ andZ, are functions ofj, andA/u. Sincel' &V is
K # 0 in terms of specified\y, On the other hand, the Lipa- independent of\, we have
tov method reproduces the coefficienq with small K dr&N/g in A=0
well, so that they can be used as boundary conditions for this R '
system of equations. In this way it is possible to determinevhich after substitution of Eq(10) gives the Callan—
all A with N>1 (Sec. 3, which for smallg, enables us to Symanzik equation:
find the sum in Eq(8) and determine the energy dependence
of the dampindl” (Sec. 4.

For calculating the density of statéSec. 6 it is neces-
sary to find the self-energ® (p,x) for finite momenta,
which requires solving of the parquet equations in the prin- —L72(90)
cipal logarithmic approximatiof. In the present theory
3(p, ) is the sum of a nonperturbative contribution, mainly
determined by the Lipatov asymptotics, and a quasi-paqu

L
Pi A
(LN 2L _
F (K1901 K)l (10)

0 N
TN A +WI(go) @JF(L—E) 7(do)

pi A
F<LYN>(;';go, ;) =0. (11)

The Gell-Mann-Low functionW(g,) and the scaling
unctions® 7(go) and 7,(go) are defined by the equations

contribution corresponding to a logarithmic approximation dgo dinz

of arbitrary finite order, but to the leading approximation in W(go)= dn A’ 7(Go) =~ dn A’

large parameter N. The calculation of the latter contribution

can be carried out with the aid of a curious modification of ()= — dinZ, 12
the parquet approximatiofSec. 5. 772 9o din A
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and depena priori on A/u; however, by writing the three
Egs.(11) for differentL andN, expressingV, 7, andz, in

Information on the coefficientéy with N>1 can be
obtained by the Lipatov method. According to Sec. 7, the

terms of'(“N) and noting that the latter functions are inde- Nth order contribution t& (0,«) has the form

pendent of the arbitrary parametgr, it is easy to confirm
that the first of them are independent /®of ..

In order to find the renormalization law for the self-
energy we use the Ward identity for the Green function

G(p,«):
dG~1(0, d
—&(2—K) (?—Kz re2(x), 13
Ko

which, when integrated, yields

Ko~ Ke= K’ Y(go, ) J de’[TH2(0]78 (14

where T12(k)=T®I(p;=0, gy, Alk) and k2=3(0,0).
The functionY satisfies the equation

o 2

(19

1%
+W(go) - o ——+V(go) |Y

Jgln A

with V(go)= 72(gp), Which is easily confirmed by applying

the operator in square brackets to Ef4) and using Eq.
(12). Given thatK§:K2+2(0,K), Eq. (14) can be rewritten
in the form

k%>+3(x,0)—3(0,0= k%Y (go,A/ k) (16)

and a comparison with E@8) yields the following logarith-
mic expansion forY:

o -2t

with A8=1. Expanding the functiong/ andV in the series

17

W(go):Nz2 WnGS V(go)zNzl VgD s

(18)
whose firstcoefficient$® are?
W,=K4(n+8), Wy=—K3(9n+42),
Vi=—K4(n+2), V,=3K3(n+2), (19

substituting Eqs(17) and (18) into Eq. (15), and collecting
terms with the same powers gf, and the logarithms, we
obtain a system of equations for the coefficieAf,s:

N—-K+1
—KA= MZ [Wh1(N—=M)+Vy]AS Y,
K=1,2,...N. (20)

3. A STUDY OF THE COEFFICIENTS A

2~N N - A

k“ggCI'(N+Db)a™(In N)™7 exp o In? , (21
where
b_n+8 _ a3k _n+2 _n+8 27
_Ti a=— 4, 7_T! O-_T- ( )
Comparing this with the expansidf), we obtain
a" 0 0 N —y

AN KT — AN, Ay=CI'(N+b)a™(In N)™7. (23

Whereas in the lattice modélshe Lipatov asymptoticenly
reproduces the zero-logarithmic and first-logarithmic contri-
butions, here it yields some “extra” logarithms. Formally, in
Eq.(23) K=0,1,. .. 0, while in Eq.(8) K<N. The reason
for this is the rapid drop imﬁ with increasingK and the
limited accuracy {-1/N) of the leading asymptote. The re-
sult(23) can be believed only for smaifl, but this is enough
to use it as a boundary condition for the system of E26).

Writing out Eq.(20) for smallK,

—1. Ah:

[Wao(N—1)+V;]AR 3 +[W3(N-2)

FVL]AY L+ [ Wy 14 V-1 1A+ VL A),

—2-AZ=[W,(N—1)+V,]AL_;+[W5(N-2)

FVo AL o+ H[Wh-1+Vy_1]AT (29

and assuming that Eq23) is valid for A, it is easy to
confirm the factorial growth imN for all A with K~ 1. Re-
taining only the first terms in leading order N on the
right-hand sides of Eq$24), we obtain

K N! K AO KeN 1
AN:m(_WZ) AN-k — KT
W\ K
><(—?2 A (25)

which, given thato=—W,/a (see Eqs(19) and (22)), re-
produces the resul3) for K # 0 and establishes its domain
of applicability, K<N. Retaining only the first terms on the
right of Egs.(24) is justified whenW andV, increase more
slowly thanA0 ¥ which may regarded as a consequence of
the validity of Eq.(23) for K=0, 1, 2.

For K close to N and assuming that(NzAH and
yn=AN"1, ..., weobtain a system of difference equations
from Eq. (20),

Equation(20) is a recurrence relation that determines the

AY in terms of specifiedd_], AKZ3, ..., Af_1 and can

be used to express all tmeﬁ in terms of a single sequence
Aﬁ . The coefficient® andVy can be determined from Eq.

(20) if we specify two sequencesy, and A2 in addition to

Aﬁ. Thus, the renormalizability of the theory strongly re-

duces the arbitrariness in the choice of coefficients in(Bq.
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—NXy=[Wo(N—1)+V]XN_1,
—(N=Dyn=[Wo(N-1)+V;]yn_1+[W3(N—2)
+Vo]XN-2, (26)
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which can be solved by the method of variation of constantsvhere the coefficientBﬁ are given by the sum of th@ﬁ

and used to successively determikig, AN ', ... . For the
parguet coefficients we have
I'(N-p) V; n+2
AN=(—WN e s, B= =
F(N+D)I'(=p) W, n+8
(27)

in agreement with Ginzbutg (see Ref. & For AN~ with
K~1 it is easy to identify the leading asymptotics N and
prove the following result by induction:
1 w K
N-k_ — [_ "3 N

Ay =K ( W%Nln N) Ay (29

In order to study theAﬁ with arbitrary K we use the
estimateAl_;/AK=<1/N, which is valid for Egs.(23) and
(28) and is confirmed by the result for #l. Retaining the
two leading terms irN on the right of Eq(20), we have

—KAR=[W,(N=1)+V,]AR "1 wNAK—L

K=1,2,...N. (29)

The principal term irN is not sufficient, since the calculation

of arbitrary Aﬁ from known A% requires ~N iterations,

which for an accuracy~1/N in each iteration leads to a

buildup of errors. The last terms in ER4), which contain
Wy and Vy, generally give corrections-1/N, but are
present only in the equations wikh=1, 2 and do not lead to

an accumulation of errors. We assume by definition that
AN"1=0, which accounts for the absence of the latter term

in the equation wittK =N. Making the substitution

I'(N-p)

K_/_ K 0
AN ( WZ) F(K+1)F(N_K_B) AN—K)<N,N—K
(30)
and noting tha¥Xy. ;m-Xnym~1/N, we arrive at the equa-
tion
f(M)
Xnm=Xn—1m+ N XN—1M-1 (3D
with the boundary conditions
Xun=1, Xno=1, (32
where the functiorf (M) is defined by
Wy A1
f(M)=—— (M—1-
(M)= g ( B)pu (33)

Equation(31) is convenient for studying a problem with ini-

tial conditions

Xom=¢m, where ¢py=0 for M=—-1,—-2,...

'(34)

terms,

1
K_
BN_{% (1+p)(1+py)...(1+pk)’

while p1,p,, . .. Pk is a selection without repetiticiom
the sequence 0,1.., N—1. ForK<N, sampling with and
without repetitionare essentially equivalent, and we ob-
tain

(36)

In N)K
ﬁ~% K<N. (37)

In fact, for largeN, the sum in(35) is always dominated by
K<N, and noting thatp,,=0 for M <0, we obtain

M K
(In' N)

XNm= E Tl
K=0 Kl

Xf(M)F(M=1)..f(M—K+1)¢y_x. (398
For the product in(38) we have
fIM)F(M—1)...f(M—K+1)
_(%)KA&K I'(M-p)

W, A T(M—K-p)

MK
— (f)", (39

where

5 _W; _3n+14
fm—hjllﬂ']mf(M)— a_V\lz_ W
For M =0 the boundary conditiofB2) gives ¢o=1 and for
M=N>1 the sum in Eq.38) is replaced by an integral
which is calculated by the saddle-point method and, on com-
parison with the boundary condition82), determinesgy,

for M>1:

(40)

[ 1, M=0
=M, M1

Substituting Eg.(41) in Eq. (38) leads to the results
(Mg=f_ InN)
(In NOM [w\M
NMT VT Wz

(41)

I'(M-pB)

—— 5 for M<In N,
I'(—B)AY

(42

XNM:(I—nb'\f%e—Mofwdx exr{——(M_MO_X)Z)
M J27Mg Jo 2My

X(In x)~ 7P A=

for Mg—M<M,

or M>M, (43

for Mg—M <My or M>My. (In the first case the sum in

where ¢y, can be chosen so as to satisfy the boundary conEd- (38) is determined by the term witK =M and in the

ditions (32). Iteration of Eq.(31) yields
Xnum=bm+Bf(M) -1+ BIF(M)F(M—1) by »
+. ABNF(M)F(M=1)...F(M=N+1)y_n.,
(35
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second, it is replaced by an integyeubstituting Eq(42) in
Eq. (30) reproduces the resu28) and establishes its domain
of applicability, K<InN. In the region M~ (My—M),
which is not described by Eq&2) and(43), the magnitude
of Xy v is determined by the values g, for M~ 1, which,
in turn, are determined by the coefficieA§ with N~1.
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FIG. 3. Regions in the (N,K) plane that are of importance in studying the
sum (8): (1) the nonuniversality region in which information of the coeffi-
cients A% with N~ 1 is important; the universal asymptotes (42) and (43)
are valid above and below this region; (2) the saddle-point values of X for
N=const; for small N the parquet coefficients lying on the principal diag-
onal are dominant; (3) the region which makes a quasiparquet contribution
to the sum (8); and (4) the region which makes a nonperturbative contribu-
tion to the sum (8) (N, may be chosen arbitrarily large).

The latter can be determined to within a few percent by
matching the first orders of perturbation theory with the
Lipatov asymptote (see the examples in Refs. 14 and 15).

4. SUMMING THE SERIES FOR = (0,«)

The above information on the coefficients AY can be
used to identify the regions in the (¥,K) plane which make
significant contributions to the sum (8). Region 7 of Fig. 3 is
a nonuniversality region in which the behavior of the Ag
depends substantially on the specific values of A?\, with
N~1. Above and below region 1, the universal asymptotes
(42) and (43), determined by the trivial coefficient A8=1
and the Lipatov asymptote for A%, respectively, are valid.
The dashed line 2 denotes the saddle-point values of K for
N=const assuming |go|<<1 and g, In(A/x)~1. When N is
reduced, the saddle point vanishes and the parquet coeffi-
cients A% on the principal diagonal become dominant. An
important contribution to the sum (8) comes from regions 3
and 4 which are adjacent to the dotted saddle-point line.

Region 3 gives a quasiparquet contribution, determined
by coefficients AY ¥ with K~ 1, for which Eq. (28) is valid:

o)

A
A:1+W2g0 ln';. (44)

S PWLE lAﬁ
- +W2g0n s

quasiparq

To within logarithmic accuracy the quantity A in the loga-
rithm can be replaced by its minimum value A~|g|In|g)
(see below), since for A3 A the logarithmic term is unimpor-
tant and Eq. (44) can be rewritten in the form

o) ﬂ

, (45)
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1+W 1 A
~ 281 nK

quasiparq

W,
g1=8o 1+VgolnA
W,
~g 1+W;go In|gol |,

which differs from the parquet form® only in replacing g, by
81-

Region 4 makes a nonperturbative contribution that has
been discussed in detail in Refs. 5 and 6. It is obtained by
substituting Egs. (30) and (43) in Eq. (8), summing over K
by the saddle-point method, and summing over N with the
aid of the formula

el

N — N =_.__7T
ImNg,VO [(N+b)a"(go—i0)VA(N) PG
1 1
Xexp ‘rgo)f(zga)’ (46

ag0>0, N0>1,

which is valid for slowly varying functions f(N). It is ob-
tained by expanding f(N) in a Fourier integral, using Eq.
(90) of Ref. 6, and including only the long wavelength Fou-
rier components. The arbitrariness in determining f(N) for
N<N, makes it possible to satisfy the condition of slow
variation for any function f(N) which does not vary more

rapidly than in power-like manner. The unusual phenomenon a: associated

with the divergence of the series is that the sum in Eq. (46) is
determined by arbitrarily large N (so the result is indepen-
dent of Ny), but the value of f(N) for a finite N=1l/ag,
appears in the result. Thus, the correction factor which dis-
tinguishes the exact AX from the Lipatov asymptote (23), is
determined by Egs. (30) and (43), and is negligible for
N—oo, will lead to a substantial difference between the com-
plete nonperturbative contribution and that calculated from
the Lipatov asymptote (see Eq. (133) of Sec. 7.7 for M =1
below):

[E(O’K)]nonpenziro( K2) = [E((),K)]L’Patov

1 Y
nonpert \/— (ln |'g_0|)

y abgoxg b+B"f°°I 1+W,g, In(A/k)
2 abg1x0/2

1 )“7
Igol

1 A
——|xtexpi o In—]|,
ago K

1
[2(0,6) Jhibrot=imrc, W (

Xexp

12

H

(8f°°1 1
?— nago

% b -y
I(y)= fo dz(ln —;9 z) 2B e exp{~(y—2)?},
(47)

where ¢,~3.44-107% for n=0. The condition M>M, in
Eq. (43) corresponds to positive values of the argument
I(y), which happens in this range of parameters.
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Approximating the series (17) by the sum of the contri-
butions (45) and (47) and substituting in Eq. (14), we have

A 1/4

2 =
1+W,g; In ~

Ki— Kk =x2 +ily(x?),

k*=—E—il, (48)

which is solved similarly to Eq. (93) of Ref. 6 and deter-
mines the relationship between the damping I' and the renor-
malized energy E with bare energy Ep= —Kg in the para-

metric form:
I'=I'.e* sin p, E=-T " cos ¢,

— Egt+E,=T (4K |g,)x) "*{cos( o+ o/dx)

—tan(@/3)sin{ @ + @/4x)}, (49)
where E, is given by Eq. (108) of Ref. 6,
— A2 !
r.=A exp{ - m], (50)

and x(¢) is a unique function in the interval 0<@<= analo-
gous to that shown in Fig. 2 of Ref. 6 and giver by (cf. Eq.
(100) of Ref. 6)

—4x/3
. ¢ Pl e X
s1n(<p+ E)=B COS(?{) —;W-I(;(;),

in which the constant B is equal to

3 1/4 Z 4 4 7/6 1 3
w=rel ] sz (3] ()
(52)

The minimum values of A and x are attained simultaneously
and, to logarithmic accuracy, are

A Kzlkl I1 ! 711 : (53)
n=A~ — Ny, Xpp~-Inlnr—.
Smin 4 4180 lgol min~ 7 lgol

The minimum distance to the false pole® is of order
|golIn In(1/]go|) and the “‘effective interaction’’ turns out to
be logarithmically weak for small «.

&

5. THE QUASIPARQUET APPROXIMATION

Calculating the density of states requires knowledge of
the self energy 3(p,«) for finite momenta.® As when
p =0, this quantity consists of nonperturbative and quasipar-
quet contributions. The nonperturbative contribution will be
important only at large negative E, where it is determined
directly by the Lipatov asymptote and is given by Eq. (132)
of Sec. 7.7 with M=1,n=0, and p, = —p,=p. For p below
some pg, [2(p,K)]onpers is independent of p, while for
p=p, it falls off rapidly with increasing p. Given the loga-
rithmic accuracy of the subsequent calculations (Sec. 8, Ref.
6), the following result is adequate:

[2(177K)]nonpen%[E(O’K)]llolxpen®(p0_p)v
SOy P
Po “(|go| " go|)
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(54)

Major difficulties arise in calculating the quasiparquet
contribution to 3(p,«), which corresponds to a logarithmic
approximation of arbitrary finite order-, butto _ the principal
asymptote in N of the expansion coefficients. The principal
logarithmic approximation for calculating 3(p,«) requires
knowledge of the four-tail vertex I'®?(p,k,q), which de-
pends on three substantially different momenta,
p>k>g> k.® The method used above allows us to find the
quasiparquet contribution to ['®¥ for p~k~¢> k. Writing
an expansion of the type (8),

® N—-1 A K
rO9%p.p.p)= >, g > A'ﬁ(ln “) (55)
N=1 K=0 P

(with different coefficients A%) and noting that I'(** satisfies
an equation like (15) with V(gq)=—2%(gy), in place of Eq.
{20) we obtain

N—-K
—KAj= ME_I [Was (N—M)+Vy,1AKZL

K=1,..,N—1, (56)

which, given that V,=0,!" gives the following instead of
Egs. (27) and (28):

1
AN K= —2(-wy)" &=

—Wa)k!
e (VW)

X(TW‘Z‘)‘Z—KT K~1.

(57)

The quasiparquet contribution to the sum (55), which is de-
termined by the coefficients (57), has the form

[F(OA)(I) P 9p)]quasiparq

W
:“Zgo A+—V—V—2g0 In A

- —2g,
1+W,g, In(A/p)’

A=1+W,g, In(A/p)

(58)

In the principal logarithmic approximation, calculating
'®Yp . k,q) requires summation of the parquet graphs (Fig.
4a) obtained by successive splitting of simple vertices into
two parts joined by two lines. When the order of the graph is
increased by unity, the smallness ~g, associated with the
additional vertex is compensated by the large logarithm as-
sociated with the additional pair of lines.'® It is possible to
approach the parquet approximation from the standpoint of a
general structural analysis of the graphs:'®!® the complete
vertex %% is represented in the form of three *‘bricks’’
F;; 1 and an irreducible four-tail vertex R® (Fig. 4b). Each
brick is the sum of the graphs introduced along the pair of
lines in the corresponding channel and obtained by repeating
a ““crossed out”’ vertex R (Fig. 4c), which in turn is the sum
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2 FIG. 4. (a) A parquet sequence of graphs fBf®* (ob-
//7////////% . N tained by successive splitting of simple vertices into two
1234 | = 222 ] parts joined by a pair of linas(b—d) the system of equa-

tions for the complete verteR(®9, three “bricks” Fj; 4,

b three “crossed out” vertice®;; ,, , and an irreducible ver-

tex R°. The approximatioR?= — 2g, corresponds to sum-

ming the sequence of diagraras

[ i

]+

N

R12, 34
z 3 3 2 4 2 ////
1 4 4 1 3 1 4
d
of two bricks and an irreducible four-tailed vertéig. 49). larger logarithm and shows up only as a quantityQdfl).

Setting up the equations of tymeandd for the two other At first glance, this method of calculation is justified only in
bricks, we obtain a system of 7 equations for 8 variables. the principal logarithmic approximation; in fact, the substi-
All the variables are uniquely determined by specifying thetution k—c« in the leadinglogarithms(8) yields

vertexR?, so that

r9(p,k,a)=F{R(p,k,a)}, (59) A“(m é)“ﬂ Am(m A C)N, 62
whereF{ ...} is a functional. The parquet approximation K K
corresponds to replacing the irreducible four-tail vertex with
a simple vertexR%(p,k,q) = —2d,, so that the systerh-d ~ Which leads to a change in the coefficients for the sub-
then corresponds to the sum of the graphs leading logarithms,
In Appendix 2 it is shown that the verteR? depends
only on the maximum momentum and E®9) takes the

form AmeeAme-i-

r'%(p,k,q)=F{R%p,p,p)}. (50

Taking k=g=p and reverting Eq(60), we can obtain an R HOWEVEL,/ I '

approximation forR? that corresponds to the res¢ig), af- th(nT principal asympt_oucan is 'f|nsenS|t|v_e"to the §ubs_t|-

ter which Eq.(60) solves the problem in principle. tution k—c«. Thus, in the principal order iN, logarithmic
The functionF{ ...} is determined by the system of calcula_tlons. are pe_rm|SS|bIe in-an arbnrary finite logarithmic

equationsb-d (Fig. 4), which is very complicated and has approximation. This makes.lt possible fully to employ the

never been solved. Usually the approximation technique oparq(lé%t scheme for calculating the quasiparquet contribution

Sudako?® as refined by PolyakdV is used. This method 17"

does not assume any specific approximationR8r but is

based on logarithmic calculations of the type

—In ¢)X
%NKAN, K~1. (63)

According to Eq.(28), however, AN ¥~AN(N In N)¥ and

Substituting Eq58) in the parquet equati Loan

1
A kdk A kdk A I®9(x,x,x)=R%x,x,x) + = K4(n+8)
= = J— 1Ny 1\ 4
JO (k2+K2)2 J;K k4 In K +O(1) (61) 2
The lower limit in the second integral is determined only to % fxdt[f‘(o"‘)(t t,0)]2 (64)
order of magnitude, but this uncertainty does not affect the 0 A
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we obtain Ro(x,x,x)=—2g1 and
6,11

where x=In(A/p),
[3(p, &) ]quasiparq 15 determined by the parquet formulas
with g, replaced by g,. The final result for 3(p,«) has the
form

tx) |~
2 [t(xx)
t(x)

-3/4
H(X) ]

_iFO(K2)®(P“Po)
(cf. Eq. (116) of Ref. 6), where

S(p,k)—2(0,x) = k* [ - =

(65)

t(x)=1+8K,g,x, x=In(A/p), x,=In(A/x). (66)

6. THE DENSITY OF STATES

Calculations analogous to Sec. 8 of Ref. 6 yield the re-
sult

v(E)=

Lee” 4K ! + i 1
7T| |( 4|gllx) Sm ¢ E [

+4K4lgl|x—4K4l81|1n|81H

2¢ } ©7)

e

_ ”
(4K4lg|) " sin| @+ 2~

which, together with Eqgs. (49) and (51), determine v(E) in
parametric form. For |E|>T" we have the asymptote

1 2\ —1/4
V(E)=§K4E(1—4K4|g1|ln-f—) , E>T,

2

2 1 A
[ - K4Ig1|nif

(E)
Lo T 2Kalg,Infg)|

v(E )—4I

2\ 112
where T'4(E)=T (] x|%). For large positive E the function
v(E) becomes the density of state of an ideal lattice, and for
large negative £ we have the result

W(E)= =2 Po(E)In
Igol

K4 ( 1 )8/3(1 1 )2/3
= Cl =TT n—v
2 2 3K4l80| |80}

1 A2 /3
s
3K4|8o| |E|

which corresponds to the asymptotic behavior of a fluctua-
tion tail obtained in the traditional forms of the instanton
method.>!2!% It can be obtained by summing large-order
terms of the series for G(p,«x) (see Eq. (113)). For a qua-
dratic spectrum, Eq. (69) is only valid in the region
|E|=< AZ. In fact, deviations from a quadratic spectrum show
up mlGICh earlier and lead to an exponential decrease in
v(E).

X exp (69)

100 AFTRP R4 (1Y lanniary 1007

7. CALCULATING THE LIPATOV ASYMPTOTICS

The plateau contribution (Sec. 1) plays a fundamental
role in the renormalizable models and an analysis can be
carried out in the continuum limit, assuming the spectrum
e(k) to be quadratic. On the whole, the calculations follow
the scheme described in Ref. 6, with e:(k)—>k2 and
3. .—fd*x. The differences are connected with the higher
symmetry of the four-dimensional continuum model, which
makes it possible to reduce the calculations *‘to a number’”’
but lead to a number of technical difficulties along the way.

_71. Specific features of four-dimensional continuum model

* The standard procedure6 reduces to the following condi-
tions on the saddle point in the functional integral:

1
Ng.'=~ n f d*xp (x)*, (70)

=A@ (x)+8.0x)’+ kP (x)=0. (71)

In the ““massless’” theory («=0) the solution of Eq. (71), an
instanton, has the form

2\2R

2 +R?’ (72)

P(0)=(—8)""¢(x), P(x)=
where the parameter R, the radius of the instanton, is arbi-
trary, consistent with the presence of a plateau in the optimal
fluctuation method (Sec. 1). The deviations from the saddle
point are expanded in terms of the eigenfunctions esT and

el', which obey the equations

A:ILef(x)=Afef(x), MTeZ(x)=AZeZ(x) (73)
for the operators
MLz_A+3gc(Pz(x)’ MT:_A*'gc(PE(X), (74)

which, as usual, have zero modes:® the operator M, the

translation modes

3NV 9 (x)
L_ Ly 4 ¢ ¢
A,=0, e (x) fd x( ax#) ax,
w=1,2,3,4, (75)
and the operator M r the rotational mode
-1
M=o, | [ o2 a0 09

The arbitrariness of the parameter R in Eq. (72) leads to the
existence of yet another zero mode for M, , the dilatation

mode!*16
J d4x _a_iﬁ_c 21-122 0¢C(X)
dR R

Its existence makes Eq. (71) insoluble for finite « (a rigorous
proof is given elsewhere??). Taking «? into account through
perturbation theory leads to the equation
M L 0¢=—K*¢ (x), whose right-hand side is nonorthogonal
to eé (x). The significance of this insolubility is made clearer
by the optimal fluctuation method (Sec. 1): for E<0, d=4,
and e(k)=k? the function S(E,R) increases monotonically

Ai=0, eb(x)= an
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with increasing R, so that the derivative of S(E,R) with
respect to R __isnot to equil to zero; thus, in the instanton
method the variation of the Hamiltonian (1) with respect to
¢, which leads to Eq. (71), does not vanish.

This difficulty can be overcome by minimizing H{¢} for
a fixed instanton radius R followed by an essentially non-
Gaussian integration with respect to R.

7.2. Expansion near an “incorrect’ instanton

For the (N-1)th coefficient of the expansion of the
M -point Green function (see Eqs. (29) and (58) of Ref. 6) we
have

(EFYCTIN- TP JYIN: 7)) |

d
20 | % [ Dowu (). by )

X exp{—H{,g,¢}—N In g}, (79)
where the Hamiltonian H{«,g,¢} is given by Eq. (1) and
2ar n/2
ZO(K)= f D(p exp[—H{K,0,<p}]=(1:[ W

79

(the \? are the eigenvalues of the operator p2). Let us intro-
duce three expansions of unity under the integral of Eq. {78),

1=(Jd4X|<P(x)|4)4J d*xg

4
X/El 5(“fd4x|¢(xn4(x"xo)u),
1=f d4x|¢(x)l4fowd In R?
_.\2
——f d*xle(x)|* ln(x Rxo) ) (80)

1= [ dustu=vie,

where the unit vector v is fixed by the condition

X6

V{‘P}“f d*xle(0)|'e(x), I1>1. (81)
Making the change of variables
PalxoTRE) =R g (%) (82)

and changing the order of integration, we have, on dropping
the tildes,

Xx—xo=RXx,

[GM]N~l=f dln RZZO(KR)_IJ d4X0f dnuR_M“Al
0
4
dg 4 4
XJ ﬁfan}—:[l 5( jdx[cp(x)l x#)

N —J d*x]o(x)|* In xz) S(u—v)
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X

3 X|1—X
fd“xlsv(x)'l“) qval( — 0)---%M

Xpm— %o
X(

)exp{—H{KR .8-¢}—N1ng}, (83)

where
KRE kR. (84) .

The substitution (82) was made as in Eq. (79) and cancels
the factor arising from the transformation D ¢. The transfor-
mations (80)—(83) introduce integrations with respect to ar-
bitrary parameters of the instanton: the location x, of its
center, its ‘‘orientation’’ u, and radius r. In the integral of
Eq. (83) the choice of these parameters is already fixed by
the J-functions: the center is at the point x=0, the orienta-
tion is along the vector u, and the radius is determined by the
condition

f d*x (x)* In x2=0, (85)

or R=1 in the function (72).

Let us make the expansion in Eq. (83) near g, deter-
mined by Eq. (70) and an arbitrary spherically symmetric
function ¢.(x) which falls off at infinity, assuming that

8=8.4+ 08, @ (x)=[@(x)+ 8¢, (x)]u,+ SpL(x),
S¢Tlu (86)

and limiting ourselves to second order terms in the incre-
ments. Introducing the coefficients CX and CT** of the ex-
pansions in terms of the eigenfunctions of the operators (74),

Spr(x)=2, Chel(x), Sel(x)=2 Cl%l(x), (87)

we obtain

(Gulyv-1=

5 re
Jd4x(pc(x)4) f din RZZO(KR)“‘J d*x
0

XJ d"ud(ju}— 1)ua1...uaMR_4_M

n—1

X Qe

R

f d4x(pc(x)l+l

xl_xo)

Xy Xo
...@C( R )exp{—NlngC
dg
—H{xR,gc,cpc}}f ﬁfDCLjDCT

<1 oS 2|1 o[ S e

s a=0

1 [8\* &
Xexp{-Q—N( g) ——gz Cﬁ‘wx—z Cf(f_\.
s A

8¢ 8e
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1 1 Eq. (71) means that the coefficientg cannot be taken equal

-5 > (AL+kB)(Ch)2- > > > (AN kB (Cl?, to zero. For a correct transition froth  E¢83) to Eq. (91)
s s« they must be sufficiently small that the shifts in the variables
where Cg during diagonalization of the quadratic form do not take

the expansion88) beyond its limits of applicability. The

4 3 L guestion arises as to how to choagg so as to ensure the
Ws= gcf d"™xez(x)es(X), required smallness af,. When the instanton is chosen in
accordance with Section 7.3, the smmsc; turns out to be
proportional to the surESygcé, whose magnitude is fixed
at zero owing to the presence in E§8) of an appropriate
o-function. In that way, terms linear in the deviations are
y2:4f d*x@3(x)e5(x)In X2, eliminated exactly from the exponent of E&8).

o= f d*xe5(X)[ — A ge(X) + kgee(X) + geee(X)°],

y§:4J' d4X<pg(X)eé(X)XM, u=1,2, 3,4, 7.3. Choice of instanton
We choose the functiong.(x) by minimizing

H{xgr,0.,¢} with the additional condition85) fixing the
_ | T
Bs_f d*xee(X)eg(x). 89 instanton radius. This yields
2 3 3 _
Transforming thes-functions in the exponent using the for-  —A@c(X)+ kr@c(X) +Gc@c(X) + we(x) In x*=0
mula (94)
L ¢ (u is a Lagrange multipliéf) with which it is easy to show
8= 5 f dre'™ (90  that

__F 0 P oLy 2
and reducing the expression in the exponent to a sum of Ts FIREE 205 4 7s (s xR)

squares, for the integral with respectgpC", andCT in Eq.
(88) we obtain the result Xf d*xge(x)e5(x), H{kgr,gc,¢cJ=N, (95

on |12 o | (D2
[l +——

Jc 1—[ from which we have
e e A R Y

<02>=(%) (7). (To)y=="T (o),
X ((B?)y) (0P

4 —-1/2

IL <7“7">) [N(Y%7%) +(w?)
m= M M
(0Y)==7 (¥, (0*)==2N+Z(wy’),
X<7070>_<w70>2]_1/2 exp{ =N In gc_H{KR-ngDc}

y73
(wy))=3 (), (96)
1, , 1 (ow)?
+ > (o%)— 2 N+{(w?) with which Eq.(92) is greatly simplified and Eq88) takes
the form

L o/ (N+{02)~ (cw) (@) . .
‘E<N+<w2>>[<y°y°><N+<w2>>—<wy°>2]]’ . [GM]N1=( | d4x<pc<x>4) [ atx[ amre

where the following notation has been introduced:

fSS fSS
<fg>=23 2 <fg>T=§S‘, 2 (92

7\|S‘+K§' )\l-f—Ké'

X f d"us(|ul = 1)ug ... uq R™M

1o ix,—x
J d4X<P|c+1(X)) ‘Pc( - O)
The averaggfg) is expressed in terms of the Green function R
of the operatoM, + «Z, which, given the obvious symme- Xy —Xo| [ Do\ ("2
try, can be used to prove théds already used in E¢91)) c( R )(D_>
the following quantities vanish: T

X

D 1/2
( _ _0) gc(27r)_(”+5)/2N_1/2

(oy"y=(wy")=0, w#0; (y*y*)=0, u#pu', Do
(93 4
For a “true’ instanton that satisfie€q. (71) with X 1_:[0 (yHy)y " VA(B%)p) (D2
k— kg, the coefficientsrs=0 and the exponent of E¢88) .
contains no terms linear in the deviations. The insolubility of Xexp(—N—NIn g,), (97)
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where the following notation for the determinants has been
introduced:

D.=I1 \t+2), Dr=]1 \T+43),
5 s

D=1 (\°+«2). (98)

7.4. Explicit form of the instanton

The substitution uw=(—g.)uo and the transition to the
function ¢.(x) in accordance with the first of Egs. (72)
eliminates g, from Eq. (94). For small «;, when
o~ K5 In Ky (see below), Eq. (94) shares two scale lengths:
a length |x|~1 which determines the localization radius of
the instanton ‘‘core’’ and a length |x|~K,;l to which the
instanton “‘tail’’ extends. This makes it possible to carry out
the analysis in two overlapping regions, ' and
|x|>1, and match the solutions.

The region |x|<xy"'. For kg=0 and u=0, Eq. (94) has
the exact solution (92) in which the solution (85) fixes the
choice R=1. Treating the terms containing K,Ze and p as a
perturbation, we have

3 2v2 -z
¢c(x)—z+—1 TZU(Z) i
Ky [z (1+2)* z+27°
v(z)=—-J dz =% — 1n(1+z)—i~——————(1_!_z)2
z Z
+,u,oz_—l —an“‘6‘+‘i . (99)

Calculating the asymptote v(z) for z>1 and including only
the terms that increase with z, for the region l<|x|<<f<,§1
we have

2

2
6Iu’O_ZKRx

2v2 1, ) i
d)c(x):—}T 1+§ Kpx® Injx|+| =

+3 5 In?|x|+

1, 1
2//,0-3—- Kp ]n|xl——;2- .

(100)

The region |x|> 1. When the terms that are nonlinear in
¢(x) are neglected, Eq. (94) has the solution
B|x| ™ 'K (xgl|x|), where K (x) is the modified Bessel func-
tion of the second kind. Treating the neglected terms as a
perturbation, we have

¢C(X):le[_lK1(KR|x|)

_p2 wd_y
X{l g L,yK TP
(101)

which for the appropriate choice of B leads to the following
result in the region |x|<xj':

77K (KRZ)dZ]
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(L
be(X)=— 1+-2—KRx In|x|

2C—1+2In(kg/2)
+ 4

k2x2+3 k% In?|x]|

1 1
+xp| 6C+ = +6ln(2))ln|x| o }, (102)

where C is Euler’s constant. Equations (100) and (102) co-
incide when
wo=3k:(In kg+C+1=1n2). (103)

Using Eq. (99) for calculating the integral in Eq. (70), which
is determined by the region |x|< 1, we have

1y
Ning, =N ln( - m) +Nf(«xg),

1
f(x)z3x2(1n 2-C-5=In x), (104)
Here we have introduced the notation
I =J d*x P (x) (105)

for the integrals in the massless theory (i.e., for ¢ (x) of the
form (72) with R=1).

7.5. Transformation of the coefficient of the exponential Eq.
(97)

Substituting Eq. (104) in Eq. (97) shows that the
exponential _ function restricts integration over R to the region
Kﬁ In k<N~ and thereby allows us to calculate the coeffi-
cient of the exponential in the limit xkz— 0. Then the solution
of Eq. (94) transforms into the instanton of the massless
theory (72) with R=1. Because the operators M . and M r
have the zero modes (75)—(77), the averages in Eq. (97)
contain the divergences

H“y2
(Lyﬂ) i
)\'u-'- Kz

2
Bo
)\g+Ki’

(yry")~ (B~ (106)
which cancel the corresponding factors in the determinants
D, and Dy. According to Brezin and Parisi'® (see details in

Ref. 6), it is convenient to express the latter in terms of the

function
3z¢2(x) z
D(z)=det[1— =11 {1 =], (107)
+ Ky s s
where the u, are the eigenvalues of the problem
[57+ kp— 3, 92(x)]¢5(x)=0. (108)
Constructing a perturbation theory near z=1 and z=1/3, it
is easy to show that
4 ap N\
___[__: 4 - 4 C
D, [ Jd xgb (x)eo (x) {16 jd x(ﬁxﬂ) D(1)
! Dy I
[T (\L+id), === ( (AN+x2),  (109)
£=0 Dy 14
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where the bar denotes elimination of the zero cofactors from
the product (107) for z=1 and z=1/3.

The product (107) contains divergences determined by
the divergence of the sums Es,u,s_l and 2 p 2. The first is
eliminated by renormalizing «,'> while the second satisfies
> 1 fAR d*k

s /1452 B (27‘-)4
JwR a* CARCHE
o (2m* (K+kp)[(k+q)*+xz]’

<f>qEJ' d*xf(x)e'?, (110)
which is obtained by calculating 1n D(z) order z? using per-
turbation theory. For kz=0 we have

1
In AR~ln2+C+ =

3| (111)

> L2 =9K4l4
s My

The divergence for A—o in Eq. (111) can be eliminated by
renormalizing the charge;‘” however, we are interested in an
expansion like (8) which contains a bare charge g, and ex-
plicit logarithmic divergences. Introducing the renormalized
function

Dg(z)= H ( = /—’«—) CXp

s

Z2

Z
—t5—

, (112)
s 2pg

substituting Egs. (106), (109), and (111) in Eq. (97), and
using the relationships among the integrals obtained by dif-
ferentiating with respect to the parameters and integrating by
parts, we obtain

[Gulxy.ap,...xy,ay)ly
4 \N+MI2+502 M+n+4
—c(—l)” ''N+ —
14 2

uan d In R?
0

_4 X7 Xp Xy~ Xo
e )

+8
3 ]n(AR)—Nf(KR)},

X J' d"ud(lul = Dugy,

Xexp[ z (113)

where

_2nhl ij _3(nt4) n+8
c= (2,”.)3"’"/2 4 exp 4 3

1 —-1/2
( —Dg(1)D}” l(3)) ,

(114)

X[~1n2+C+1/3]

2
J= f d4x¢f(x)( o"q;‘}ix)) (115)

The values of the integrals which we require are

R=1
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16 64
13:4\/254, 14=“"S4, 16:"" S4,
3 5
16
J= 15 S5 S,=27?. (116)

7.6. Calculating the determinants

An expression for the d-dimensional Laplace operator in
spherical coordinates (r,@;, ...,p,_,) is obtained through
the standard procedure (Section 3 of Vladimirov®*) by induc-
tion with respect to the number of dimensions:

. ? d-19 I

At a )
where 72 is a differential operator acting on the angular vari-
ables. The spherical function Y, of /th order is a homoge-
neous harmonic polynomial u;(x) of degree / on the unit
sphere |x|=1.** Substituting u,(x)=r'Y ,(s) and s=x/|x| in
the Laplace equation, we obtain an eigenvalue problem

Y (s)=1(1+d—2)Y (s), (118)

which is soluble only for integral /, since the Laplace equa-
tion has no solutions that are not polynomials.>* A homoge-
neous polynomial of degree I/ in d variables has Cf+ P
coefficients (the number of combinations of d different ob-
jects chosen [ at a time with repetitions allowed®). Acted on
by the Laplace operator, it is transformed into a homoge-
neous polynomial of degree (I—2), which, when set equal to
zero, yields Cf;f, 5 conditions. Thus, the degree of degen-
eracy N, of the I-th eigenvalue is determined by the differ-

ence Cla 1 Cil:j 5 b L€,
RGO 119
M=y ¢ ) (119)
Separation of variables in Eq. (108) for xkz=0 leads to
9 +3 d N 2440 1(1+2) 0 120
ot rar (r*+1)? Y(r)= (120)

for the radial equation #(r). Setting p=s(s+ 1)/6 and mak-
ing the substitutions ¢y=y cosh™* ¢ and r=1In r, we obtain

F{y}=cosh t y,,+[2 cosh t—2s sinh 7]y,

+{[s2=1(I1+2)]cosh t—2s sinh t}y=0. (121)

The functional F{y} acting on the exponential e* yields a
linear combination of e** D" and %1, It is easy to see
that the nontrivial solution of Eq. (121) is a superposition of
n exponentials with exponents that differ by 2¢ and coeffi-
cients chosen so as to satisfy Eq. (121). For the eigenvalues
and eigenfunctions of Eq. (120) we obtain

n+l
l/’nl(r): r2+1 [All‘""+A2r'"+2+...+A,,r""2],
= (ntD(n+1+1)6, n=123,.. [=0,12,..,
(122)

where n is the radial and [ the orbital quantum number.
There is an obvious accidental degeneracy like that seen in
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the hydrogen atom. The substantially different cover the n+8
. (0,2M) -
range of valuess(s+1)/6 with a degree of degeneracy  [I""™"(Pi=0.k)]n=Com(In N) 7T’} N+ ——
s(s+1)(2s+1)/6 (s=1,2,...). For thedeterminants in
Eq. (114 we obtain 4)’“ oM n+8I A)
X|——] k" Mexp——In—]|,
5o(1)-2 15+§ s(s+1)(2s+1) L 3 K
R( 2 &5 6 4\M+SRI2\ Y - 2a" T (y)
6 Com=Cl 7, 3) &7 v nm)
x| nf 1= sst1)) " s(s+ 1) n—4
y=M+——. (128
18
+ s2(s+1)2 ]%578’ For k=0 andp;=p, and noting that
—(1 = s(s+1)(2s+1 2 3, =8v2m2pKy(p), 129
DR(§)=exp[2 szt ln(l_ss+1) (#2)p=8v272DK, (P) (129
=2 ( we have
2
+ + ~0.872. 123 n+2M+4
s(s+1) SZ(S+1)2] (123 [T ()] =ComD N+T)
7.7. Vertex part and nonperturbative contribution 4\N i n+8 | A
For the integral oved"u in Eq. (113 we havé® 171, P RT3 Ng)
/2
f d"us(|ul = 1u,,...u S A— 4"2(87?)2M (4| M*S2
@ Taam 2MP(M+n/2) Torvem 752M=C—(—)
(124) '(M+n/2) \l,

where | represents the sum of the terms o
a M—5+(n+8)/3 2M
e Aoy obtained by all possible pairings the fol- X fo dy y* Ka(y)™. (130

lowing we excludd , «... from the definition ofG,y). ] ) o
ing the alaeb fl fact 2M | serfeis i to show that We define the nonperturbative contribution to the vertex
Using the algebra of factorial serfei$ is easy to show thai FO2M) g

the transition to the vertex part 6¥°™) proceeds according
to the formula

.....

[TOM(py,....om) IN=[Gm(P1,---Pw) I (D02 Jponper= 2 (102 ]x(go=i10)",  No>1.
— N0
X (p3+Kk?)...(p&+«?). (125 (13D
Taking the Fourier transform of E§113 and using the re- The imaginary addition t@, originates in the need for ana-
lation lytic continuation from positiveg, to negative? which for

Im k?<0 extends through the lower half plane. We obtain the
nonperturbative contribution for the Lipatov asymptotics by
substituting Eq(127) in Eq. (131, eliminating the imaginary

) ) . part of k from the sum oveN by making the substitution
for the Fourier components, which follows from the instan-,_, pd¢ ang summing in accordance with EQO) of Ref.

_<¢g>p_ﬂo<¢§ In X2>p~ <¢g>p
{be)p= p2+ K2R p2+ Ké

(126

ton equation(94), we have 6:
roem, ...,
e Z:,ZM)]N T [TOB0(p, ... pyyy) EBY
:Cm G (_H) B 2 72 4\M+S2[ |, \MH(n+a)2
“ITC M (M +ni2) T, 4gq|

2M+n+4

XT'| N+ >

focd In RZR*4+2M
0

xexp(—ﬁ)rd In RPR™*"2M(gd)p ...
X<¢§>Rpl---<¢2>Rp2M Qol/ Jo X

n+8 |
n+8 {3 - 4 )
Xexpl’ T In(AR)_ Nf(KR)] . (127) <¢C>Rp2M eXF{ 3 In(AR) 4|go| f(KR)]
. . N (132
Calculating the integral to logarithmic accuracy, for=0
we obtain For p;=0 this yields
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/(1 k|
K +k 2 P FIG. 5. Examples of skeletof@,b) and nonskeletoiic)
174, 1th kl+k2 k;"”‘g diagrams for a verteR?. The arrangement of the inter-
ky %;/A = nal momenta in grapha and c corresponds to zero
%///é /// internal momentum.
ky+ky +y k+k+k
a b c

L |, (8 ficients By are defined by Eq130 with p=u andM=2,
[T (p;=0,k)Indrper= '7TC2M<4|g |) since by definition—2g, =T {*(u) =224 (u) (the co-
| 1 0_7 efficient — 2 is introduced because of the conditiBp=1)
Xexr{ __4)( n _) A 2M and aZ factor does not have to be included for larlje
4|go| |90l because of the slower rise in its coefficients. Reversion of the
n+8 A factorial seriegA2) yields
Xex T In ?) (133) —
~ (NBy)™ B>

The vertexI'(®? coincides with the self energy and Eqgs. BNm_M=O§;2._ Bn-m —yr =~ " Bn ex;{ - E)’

(128 and (133 imply Egs. (21) and (47). Equation(130) - (Ad)

with M =2 can be used to recover the results of Refs. 14 and

16 for the expansion coefficients for the Gell-Mann—Low for largeN and this makes it possible to determine we.
function (see Appendix L Given thatA}= —K,(n+8), from Eq.(55) we have

The author thanks the participants in seminars at the In-
stitute of Physical Problems and at the Physics Institute of
n+8 A
c,U| N+ ——]aN ex -2 (AB)

the Academy of Sciences for their interest in this work. n+8
This work has been supported financially by the Interna- 6 2
tional Science Foundatioi@Grants MOH 000 and MOH 300 o0
. . and the substitutiorA;=—(n+8)K4(1—In(4/3))/2 re-
and the Russian Fund for Fundamental Resegnaject No. produces the results of Ref. 14 and 16, where the definitions

Wi~ — AL —WPINA

96-02-19527. of g, andg, differ by a factor of 3!
APPENDIX 1
Interrelation of the different renormalizations APPENDIX 2

The definitions of the Gell-Mann—Low functions for the properties of the irreducible vertex — R°

A- and u-renormalizations aré . .
Let us introduce the three-momentum notation

Ay v 990 R%(p,k,q) for the irreducible vertexR°(p;,p»,P3,P4) With
W (90)_3 n A , k=0, where
g, -u=const
29, 2p=ps—P3, 2k=p;—Pz, Gq=Pp1+pP2=—P3—Pas,
We(g,) =5 , (A1) (A6)
Hlgg.a=const and the numbers of the ends are chosen so that
and the relation between the renormalized and bare charg®sk=0a=0. In general, Whefl%> k>q the following loga-
is determined by Ioganthmlc expansmns lik), rithmic expansion is valid foR",
of o AVE 0 S comf A
E Bngo = 2 9 2 Al (2) Rpka=2 g 2 AN
K+L+M<N-1
- - i K L M
9o= E Bng)= E g Z Aﬁ(ln K) : (A3) x| In %) (m é) (A7)
N= N= K=0 q

where B;=B,=1. The functiong,,(go,A/u) satisfies an  and in order to prove that the vert& depends on only the
equation like(15) with V(go)=0, and the coefficientd{ in  maximum momentum, it is sufficient to establish its finite-
Eq (A2) Sat|sfy Eqs (55) with WM W(A) and VM 0. ness fork= q= 0 andp # 0. Then P4s=PpP, P3=—P, and
W(") and AK are related in the same way. By finding the Pl—Pz—O and it can be said that the momentum
relationship be'[weemxK and Af for smallN, it is easy to  “passes” from vertex 4 to vertex 3.

confirm that the coeff|C|entsN(A) and W(") coincide for The proof is based on the fact that it is necessary to
N=2,3 but differ in the higher orders. For largkthe coef-  distinguish skeleton graphs of tymeandb (Fig. 5 from
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nonskeleton graphs obtained from the skeleton graphs by

diagram, breakingg; lines. Obviously,l;=2N;—E;/2 and

replacing the simple vertices by four-tail blocks. For the casd.;=N;—E;/2;, so that

of the contribution of grapla,

R (pi=0)~g8 | at, [ a [ ak;

X Gy, Gy, Gk, Gk, +k, Bk, +k; Gk +ky kg (A8)

it is easy to see that the skeleton graphs for the zero external

momenta contain only singly logarithmic divergences origi-
nating from the region of integration where all the intern
momenta are of the same order of magnitude and are sm

The absence of other divergence is related to the impossibil-

ity of finding a single momenturk; that determines the ar-
guments of the tw@-functions, two momentg; andk; that
determine the arguments of the fa@rfunctions, etc. When

momentump passes through any pair of vertices, the singly

logarithmic divergences are cut off at momentpmsince it
enters the argument of at least oBefunction. In this way,
the graph is finite fok=q=0. The divergences of nonskel-

eton graphs are cut off just as are the divergences of the

skeleton graphs from which they are obtained.

We proceed to formalize the remarks. A graph with
external lines in theNth order of perturbation theory has
| =2N=E/2 internal lines and.=N—-E/2+1 independent
integrations(loops, and diverges fod=4— at large momenta
ask* E.1%|n the following we are concerned with four-tail
graphs E=4) with L loops, 4 internal lines, and_+1
vertices, which are logarithmically divergent.

Definition. A graph is a skeleton graph if it is impossible
to choosel’ independent integrations in it such tHat<<L
and the integration momenig ,k,, ... k. fully determine
the arguments of thelZ or more Green functions.

Lemma 1.A skeleton graph contains only singly loga-

rithmic divergences, which are removed when the momens-

tum p passes through any pair of vertices.

The proof is evident from the definition and explanations

given after Eq(A8).

Lemma 2In a skeleton graph it is impossible to isolate a
subdiagram with the form of a four-tail block.

Assume, on the contrary, that this is possible. In th
isolated block there will bévl <L independent integrations
with respect to the momentg ,k,, . .. ky which will enter
only in the 2V Green functions corresponding to the internal
lines of the block. The remaining’ =L — M integration mo-
menta will fully determine the arguments of the
2L—-2M=2L" Green functions, which contradicts the defi-
nition of a skeleton diagram.

Lemma 3lIn a graph which is not a skeleton diagram it

is always possible to isolate a subgraph in the form of aRO

four-tail block.

In a nonskeleton graph there dréintegration momenta
which completely determine the arguments of the Zreen
functions. The remainind =L—L' integration momenta
enter only in 2 —2L"=2M Green functions. The corre-
sponding M internal lines will, in general, lie in separate
clusters. Let us isolate one such cludtie i-th) containing
N; vertices,L; loops, andl; lines and remove it from the
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l,—2L;=E;/2—2. (A9)

Obviously, all theE; are even. The casds=0 andE;=2
correspond to disconnected diagrams and self-energy inserts
and are assumed to be excluded. TEgr 4 and, in view of
Eqg. (A9), we have

l,—2L;=0. (A10)

%umming over alli and noting that2;l;=2M and

3,L,=M, we see that the equality holds in E&410), so that

iled. Since at least one cluster exists, the assertion is
roven.

Lemma 4.A nonskeleton graph can be obtained from
some skeleton graph by replacing all or part of the simple
vertices with four-tail blocks.

By successively isolating the four-tail blocks in a non-
skeleton graph and replacing them with simple vertices, we
ultimately arrive at a skeleton graph. Following this proce-
dure in opposite order, we obtain a proof of the assertion.
Lemma 5A nonskeleton graph of ordét obtained from
a skeleton graph of ordevl contains a logarithmic diver-
gence of order no greater thdh— M + 1, which is cut off by
passage of momentui through any pair of vertices.

Let us write down as an example the contribution of the
graphc (Fig. 5 obtained from grapla:

a;t;ee Eq.(A9)) E;=4 and all the removed clusters are four-

R (pi=0)~ | 'k, [ d'k; [ 46,6, G G, v,
X Gy, 1k, Bk, +kyt kgl 1(0,—Ka, =Ko kg +K3)
XT(0ky, k3, —ky—Kg)['3(0ky+ks, ko, —ky =k

—Ka)T4(0,—ky— Ky, — Kz, Ky + Ko+ Ks).

he divergence originates from the regikn-k, for which
arguments of all the vertices arek:

0 dk
R(B)(pi:0)~f 3 I1(K)T2(K) T 3(K) T 4(k).

The blockT"; containingN; simple vertices has a maximum
divergence~ (In A/KN~1if it is included in the parquet se-
quence of Fig. 4a. SincE;N;=N, a graph withM blocks
diverges no more rapidly than (lWk)N"M*1 so the diver-
gence is eliminated when momentympasses through any
pair of vertices. There are no other divergences. If not all the
momenta are small~k), then a graph converges algebrai-
cally ask— 0 and suppresses the logarithmic divergences of
the blocks.

Thus, all the graphs are finite flar=q=0 andp # 0, and
(p,k,q) depends only on the maximum momentpm

YThe renormalized enerdy enters into expressions of the ty(®.*3

IThe functionsW and 7, are calculated in Ref. 10 fqu-renormalization
and differ from theA -renormalization used here, but have the same two
first coefficients(see Appendix } the definitions of charge and the Gell-
Mann-Low function differ in Ref. 10 by a factor ofk, .

9In Refs. 14 and 16 the coefficientd/y have been calculated in a
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p-renormalization, for which this assumption is not corresete Appendix
1).
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