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Using spatially inhomogeneous E´ liashberg equations in the local-interaction limit, an exact
solution of the problem of the superconducting transition temperature in a Ginzburg sandwich~a
superconducting film coated with a dielectric layer containing Bose-type excitations, i.e.,
excitons! in the first order ina/L ~wherea is the interatomic distance andL is the film thickness!
has been obtained. The result has been found to be independent of the exciton frequency.
The excitonic mechanism appears only in second order ina/L since both components of the
Cooper pair should enter a layer of thickness;a in order to interact through the exchange
of excitons. Numerical estimates indicate that manifestations of the excitonic mechanism are
practically undetectable in systems withL@a. Calculations for the model with a narrow-
gap and a wide-gap dielectric have been performed and compared to experimental data. ©1997
American Institute of Physics.@S1063-7761~97!02402-5#

1. INTRODUCTION All the existing theories2 are based on the assumption that,
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In 1964 in his famous paper,1 Ginzburg set forth a new
method for creating high-temperature superconductors.
thin metal film is coated with a layer of a dielectric~Fig. 1!
containing high-frequency boson excitations, i.e., excito
whose frequencyvex is considerably higher than the phono
frequencyvph in the metal, the combination of the finit
electron density of states on the interface and the high e
tation frequency should lead, according to the BCS formu
to a high local value of the superconducting transition te
peratureTc . The theory of Ginzburg sandwiches has be
developed by many authors~see Ch. 8 in Ref. 2 and refer
ences therein!, but the available estimates ofTc are unsatis-
factory because all these theories ignore the problems re
to the spatial inhomogeneity of sandwiches. All of the
were based on the use of the BCS or MacMillan-type form
las and rough estimates of their parameters. Below we s
demonstrate that such an approach leads to qualitatively
roneous results.

Following the terminology of Ref. 2, we define san
wiches as structures manufactured using the approp
technology, such that their metal film thicknessL is essen-
tially larger than the interatomic distancea.1! Structures with
L;a should be treated as quasi-two-dimensional, and
topic is beyond the scope of this paper. Besides, we ass
that the superconductivity in the film is three-dimension
since the predicted surface superconductivity of Tam
states1,5 has not been detected with certainty in any mater

It is clear from general principles that the difference b
tweenTc in a sandwich andTc0 in the bulk material of the
film should be proportional toa/L:

dTc
Tc0

[
Tc2Tc0
Tc0

5C
a

L
. ~1!

395 JETP 84 (2), February 1997 1063-7761/97/0203
a

s,

i-
,
-
n

ed

-
all
er-

te

is
e
l

l.
-

the formal limitvex→`, the factorC should diverge, and its
large value should compensate for the smallness of the r
a/L or, at least, make the exciton-mediated interaction do
nant over all other effects, which yieldC;1. In this paper,
however, we demonstrate that

C~vex!5const for vex*vph. ~2!

This result, however strange it may seem at first sight
natural. In order to interact through the exchange of excito
both components of a Cooper pair must reach a layer w
thickness of the order ofa, and the probability of this even
is ;(a/L)2, hence the excitonic mechanism should not a
pear to first order ina/L. If the term quadratic ina/L is
considered, after the dimensionless interaction constantl0 in
the bulk metal is factored out, we have

dTc
Tc0

5
A

l0

a

L
1
B~vex!

l0
S aL D 21 . . . , ~3!

and the coefficients in this formula can be estimated as2!

B~vex!5B01B1l0 ln
vex

vph
, A, B0 , B1;1, ~4!

i.e., the coefficient of (a/L)2 in fact diverges asvex→`.
The factorsl0

21 arise in Eq.~3! because the variation of th
BCS formulaTc;v̄ exp(21/l) with respect tov̄ and l
yields dTc /Tc0 proportional todv̄/v̄ and dl/l0

2, respec-
tively, i.e., the relative change inl is multiplied by the factor
l0

21, as compared to the relative change inv̄. According to
Eqs.~3! and~4!, the ratio of the contribution of the excitoni
mechanism to the total change inTc is

~dTc!ex
~dTc! tot

;
a

L
l0 ln

vex

vph
. ~5!
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2. SPATIALLY INHOMOGENEOUS ELIASHBERG
EQUATIONS
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The limitations due to the Tolmachev logarithm2 lead to the
inequality vex/vph&102, and for typical values
l050.2–0.33! we havel0 ln(vex/vph);1, hence the exci-
tonic contribution is always small atL@a. This means that
any attempts to detect the excitonic effects in the ‘‘sm
correction regime’’ are doomed to failure: when a metal fi
is coated with a dielectric, the change inTc may be con-
trolled by all effects, except the exchange of excitons. T
is, apparently, the main reason why this effect has not b
detected in experiments.

A formula for Tc , naturally, cannot be derived for a
arbitrary spatially inhomogeneous system, but this is p
sible for the case of a local spatial inhomogeneity, when
dimensiond is smaller than the coherence lengthj0 or the
total system dimensionL ~if L&j0!. These formulas were
derived earlier6,7 and used to study the localization of th
order parameter localization, quantum oscillations ofTc , the
contribution of an interface between two materials toTc as a
function of material parameters, etc.6–9All these studies used
the Gor’kov equation,10,11which does not allow for the spa
tial dependence of the cut-off frequencyv̄. In the weak-
coupling regime, this dependence expressed byv̄(r ) usually
leads only to small corrections determined by the param

l0 ln
v̄max

v̄min
!1. ~6!

In the case of a large disparity in the frequenci
v̄max@v̄min , the condition ~6! may be violated even fo
l0!1, and this is the case in a Ginzburg sandwich.

In the present study, formulas forTc similar to those in
Refs. 6 and 7 are derived from the spatially inhomogene
Éliashberg equations.10 Since Ginzburg’s concept does n
depend on the nature of the high-frequency bosons, we h
used the E´ liashberg equations for the case of electro
phonon interaction. Their structure is, in fact, identical f
any bosons with frequencies small in comparison to
Fermi energyeF . This statement especially applies to t
limit of local interaction~Sec. 3!, in which no specific infor-
mation about phonons is essential.

FIG. 1. A Ginzburg sandwich is a thin superconducting film S with a
posited dielectric layer D with high-frequency bosons excitations, wh
exchange should increaseTc considerably.
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Consider the Hamiltonian of electron–phonon intera
tion in the form

H int52E dr ĉs
1~r !ungn~r !ĉs~r !, ~7!

whereĉs
1 and ĉs are electron operators,un is the displace-

ment vector of thenth ion, andgn(r ) is the deformation
potential which in the rigid-ion approximation takes th
form12

gn~r !5¹Un~r2Rn!, ~8!

whereUn(r ) is the potential of thenth ion andRn is its
equilibrium position. Following the standard procedure,10 we
obtain the spatially inhomogeneous E´ liashberg equations
@x5(r ,t)#

S 2
]

]t
2Ĥ01m DG~x,x8!5d~x2x8!2E dx1G~x,x1!

3D~x,x1!G~x,x8!1E dx1

3F~x,x1!D~x,x1!F
1~x1 ,x8!,

S 2
]

]t
2Ĥ01m DF~x,x8!52E dx1G~x,x1!D~x,x1!

3F~x1 ,x8!2E dx1F~x,x1!

3D~x,x1!G~x8,x1!, ~9!

whereG andF are the normal and anomalous Green’s fun
tion andm is the chemical potential. Unlike Eq.~35.2! in
Ref. 10, all the functions in Eq.~9! depend on the two coor
dinates, not just on their difference, the operatorp̂2/2m is
replaced by a one-particle HamiltonianĤ0 of general form,
and the coupling constantg is included in the definition of
the phonon Green’s function:

D~x,x8!5 (
a,a8

(
n,n8

gn
a~r !gn8

a8~r 8!Dnn8
aa8~t2t8!, ~10!

whereDnn8
aa8 is the Green’s function in the site representatio

which can be expressed in terms of eigenvectorsBa
(s)(n) and

eigenvaluesvs
2 of the dynamic operator matrix:13

Dnn8
aa8~V!52

\

AMnMn8
(
s

Ba
~s!~n!Ba8

~s!
~n8!

V21vs
2 , ~11!

Mn is the mass of thenth ion, andV is the Matsubara
frequency.

In order to determineTc , we must linearize Eq.~9! in
F. If we rewrite these equations in the symbolic form

S 2
]

]t
2Ĥ01m1GDDG51,

S 2
]

]t
2Ĥ01m1GDDF52FDG, ~12!

-
e
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we note thatG is the Green’s function for the operator in
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D ~r ,r 8!'d~r2r 8!E dr 8D ~r ,r 8!, ~18!
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parentheses and can rewrite the second equation in~12! as
F52GFDG. In the explicit form, after transformation t
the Matsubara representation and complex conjugation,
have

Fv
1~r ,r 8!52T(

V
E dr1E dr2G2v~r1 ,r !

3DV~r1 ,r2!Fv2V
1 ~r1 ,r2!Gv~r2 ,r 8!. ~13!

Let us introduce the order parameter

Dv~r ,r 8!52T(
V

Fv2V
1 ~r ,r 8!DV~r ,r 8!, ~14!

and rewrite Eq.~13! in the form

Dv~r ,r 8!52T(
v8

E dr1dr2Dv2v8~r ,r 8!

3G2v8~r1 ,r !Gv8~r2 ,r 8!Dv8~r1 ,r2!. ~15!

In Eqs. ~13!–~15! V is the boson frequency, andv andv8
are fermion frequencies. Note that Eq.~15! contains only
renormalized Green’s functions.

3. THE LOCAL-INTERACTION LIMIT

Equation~15! has a form similar to that of the Gor’ko
equation10,11 and reduces to the latter if two approximatio
typical of the BCS theory are used:

Dv2v8~r ,r 8!→2Vv2v8~r !d~r2r 8!, ~16!

Vv2v8~r !→V~r !u~v̄2uvu!u~v̄2uv8u! ~17!

@as a result,Dv(r ,r 8)→D(r )d(r2r 8)u(v̄2uvu)#. Equation
~17! means that the spatial dependence of the cut-off
quency is ignored, and it will not be used further. This do
not cause any complications because all the relevant e
tions can be solved by removing the logarithmic singular
~Ref. 2, p. 90!.

The approximation expressed by Eq.~16! corresponds to
the physically transparent local-interaction limit and has s
eral advantages:~a! it yields simple and easily understan
able results;~b! it does not demand a specification of th
Fermi surface shape;~c! it does not demand detailed info
mation about the electron–phonon interaction since, in f
an interaction constantVv(r ) which is an arbitrary function
of the frequency and coordinates is introduced into Eq.~16!,
and so the generalization to other types of interaction is p
sible; ~d! the structure of the expression forTc is identical to
that derived from the Gor’kov equation, and earlier results6–9

can be automatically generalized to the case of the cut
frequency depending on coordinates. The absence of th
fect of the excitonic mechanism to lowest order ina/L can
also be proved with due account of the nonlocality, but
expressions in this case would be too lengthy.

We should stress that the local interaction limit is
physical approximation and cannot be introduced by a m
ematically rigorous procedure. In fact, if the functio
Dv(r ,r 8) is assumed to be short-range and expressed a
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the integral on the right-hand side is zero because the i
gral ofgn(r ) vanishes since the deformation potential is ge
erated by redistribution of charges and can be described
superposition of fields generated by dipoles. In the rigid-
approximation it follows directly from Eq.~8!. The local
approximation is resonable from the physical viewpoint b
cause the expression forTc is, in effect, determined by the
integral in Eq.~18! over the regionur 8u&kF

21 , wherekF is
the Fermi momentum. This can be proved by taking the
sult for the spatially homogeneous case in Ref. 2, Ch. 4.

If we assume the approximation described by Eq.~16!,
we haveDv(r ,r 8)5Dv(r )d(r2r 8), and Eq.~15! takes the
form

Dv~r !5T(
v8

Vv2v8~r !E dr 8Kv8~r ,r 8!Dv8~r 8!, ~19!

where

Kv~r ,r 8!5G2v~r 8,r !Gv~r 8,r !. ~20!

If the system is invariant under time reversal, the ker
Kv(r ,r 8) is symmetric with respect to the exchange ofr and
r 8 and is positive. If forGv(r ,r 8) one-particle Green’s func
tions are used, the following sum rule applies to the kerne11

E dr 8Kv~r ,r 8!5
p

uvu
N~r !, ~21!

whereN(r ) is the local density of states at the Fermi leve

N~r !5(
n

ucn~r !u2d~eF2en!, ~22!

determined by the one-particle eigenfunctionscn(r ) and ei-
genvaluesen . With due account of interaction effects, E
~21! can be considered as a definition of the local density
statesN(r ). In the spatially homogeneous case this para
eter ~independent ofr ! enters in the BCS formula.

4. THE EXPRESSION FOR Tc IN THE CASE OF LOCAL
SPATIAL INHOMOGENEITY

Suppose that the system varies as a function ofz, and
the inhomogeneity is localized in the regionuzu&d. Since
Dv(r ) is independent of the longitudinal coordinater i , Eq.
~19! takes the form

D~z!5E dz8Q̂~z,z8!D~z8!, ~23!

whereD5(Dv1
,Dv2

,...). If thesystem transverse dimensio
satisfiesL!j0 , the solution can be sought in the form6,7

D~z!5c1D0~z!, ~24!

where the functionc is independent ofz andD0(z) is local-
ized in the regionuzu&d. Substituting Eq.~24! into ~23!, we
obtain

c5E dz8Q̂~`,z8!c1E dz8Q̂~`,z8!D0~z8!, ~25!
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D ~z!5E dz8@Q̂~z,z8!2Q̂~`,z8!#c1E dz8@Q̂~z,z8!
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0

2Q̂~`,z8!#D0~z8!. ~26!

In deriving these equations we have taken into account
for uzu*d the kernelQ̂(z,z8) is independent ofz and equals
Q̂(`,z8). The sum rule~21! implies the estimateQ̂;1/L,
and the second terms on the right-hand side of Eqs.~25! and
~26! are small;d/L. In order to calculateTc with to
;d/L inclusive, we can omit the second term on the rig
hand side of Eq.~26! and substitute the resultingD0(z) into
Eq. ~25!. Given thatKv(`,z8)'L21*dzKv(z,z8), we ob-
tain with due account of Eq.~21! an equation forc in the
explicit form

cv5pT(
v8

L~v,v8!

uv8u
cv8 , ~27!

L~v,v8!5Vv2v8~`!N~`!

1
1

L E dzpT(
v9

1

uv9u
Vv2v8~`!N~z!

3@Vv92v8~z!N~z!2Vv92v8~`!N~`!#. ~28!

Equation ~27! can be solved by removing the logarithm
singularity.4! By taking advantage of the fact that the sum
mation over Fermi frequencies yields

pT (
uvu,v̄

1

uvu
5 ln

1.14v̄

T
, ~29!

we transform Eq.~27! to

cv5L~v,v0!cv0
ln
1.14v̄

T
1 f ~v!, ~30!

wherev05pT, and the function

f ~v!5pT (
uv8u.v̄

L~v,v8!cv8
uv8u

1pT (
uv8u,v̄

L~v,v8!cv82L~v,v0!cv0

uv8u
~31!

is introduced. After settingv5v0 andL(v0 ,v0)'L(0,0) in
Eq. ~30!, we have the expression forTc :

Tc51.14v̄e21/L~0,0!, ~32!

wherev̄ is defined by the conditionf (v0)50. After replac-
ing summation by integration in Eq.~31! and substituting
cv in the lowest-order approximation@i.e., neglectingf (v)
in Eq. ~30!#, we obtain forv̄

ln v̄52
1

L~0,0!2 E0
`

ln v@L~0,v!L~v,0!#v8dv. ~33!

Substitution of Eq.~28! into ~32! and ~33! and expansion in
terms ofd/L yield the variation inTc relative toTc0 in the
spatially homogeneous system

dTc
Tc0

5
1

l0
3L

E dzW0N~z!@W~z!N~z!2W0N0#; ~34!
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at

-

herel05V0(`)N(`), W05W(`)5V0(`), and the func-
tion

W~z!5V0~z!22N~`!E
0

`

dv ln
v

v̄
@Vv~`!Vv~z!#v8 ,

~35!

is introduced, wherev̄ is calculated in the zeroth approx
mation,

ln v̄52
1

V0~`!2
E
0

`

dv ln v@Vv~`!2#v8 , ~36!

corresponding to a spatially homogeneous system@so that
Tc051.14v̄ exp(21/l0)#. If Vv(z) is a step function of the
frequency,

Vv~z!5V~z!u~v̄~z!2uvu!, ~37!

it follows from Eq. ~36! that v̄5v̄(`), and Eq.~35! yields

W~z!5V~z!F11l0 ln
min$v̄~`!,v̄~z!%

v̄~`! G . ~38!

For v̄(z)5const we haveW(z)5V(z), and Eq.~34! be-
comes identical to the result obtained in Ref. 7. It becom
clear that the spatial dependence of the cut-off freque
does not change the structure of Eq.~34!, but only replaces
V(z) with a more complicated functionW(z).

For a Ginzburg sandwich, the main contribution to t
integral in Eq.~34! comes from the regionuzu&a near the
interface, and the relative variation ofTc is ;a/L. It is es-
sential that the functionVv(z), which contains information
about the exciton frequencyvex at uzu&a ~Fig. 2!, is multi-
plied in Eq. ~35! by the functionVv(`), which decreases
fast atuvu*vph. As a result,vex is not included in Eqs.~34!
and ~35!, which determineTc . In the approximation de-
scribed by Eq.~37!, this directly follows from Eq.~38!. This
approximate result holds for all orders inl0 @Eqs. ~34! and
~35! were derived via iterations in this parameter#. Specifi-
cally, consider the eigenvalue equation

ncv5pT(
v8

Vv2v8~`!N~`!

uv8u
cv8 , ~39!

FIG. 2. Typical behavior of the parameterVv(z) as a functions ofv deep
inside the metal film (z5`) and on the metal–dielectric interface (z50).
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which is identical to Eq.~27! for a spatially homogeneous
.

t
te

th

e

system atn51. If n(T) is the maximal eigenvalue of Eq
~39!, Tc0 is determined by the conditionn(Tc0)51. Let c̄v

andc% v be the solution to Eq.~39! and its adjoint solution a
n51. Then the perturbation calculation in the parame
; d/L in Eq. ~28! yields

dTc52
1

n8~Tc0!l0
2L

E dzW0N~z!@W~z!N~z!2W0N0#

~40!

with the functionW(z) defined by the equation

W~z!5
l0

pT(vuvu21~ c̄v!2
pT

3(
v8

c̄v8

uv8u
pT(

v9

c̄v9

uv9u
Vv92v8~z!, ~41!

usingc% v5uvu21c̄v . It follows from the analysis of Eq.~39!
that c̄v decreases rapidly as a function ofv beyondvph,
therefore the summation over the frequency in Eq.~41! is
limited to the regionuv8u&vph, uv9u&vph, and the fre-
quencyvex in the functionVv92v8(z) does not affect the
final result.

5. ESTIMATE OF THE GINZBURG EFFECT

By iterating Eqs.~25! and ~26! up to second order in
d/L,

c 5E dz8Q̂~`,z8!c1E dz8E dz9Q̂~`,z8!@Q̂~z8,z9!

2Q̂~`,z9!#c1E dz8E dz9E dz-Q̂~`,z8!

3@Q̂~z8,z9!2Q̂~`,z9!#@Q̂~z9,z-!2Q̂~`,z-!#c,

~42!

we obtain Eq.~27! with a functionL(v,v8) differing from
that defined by Eq.~28! by an additional term;(d/L)2,
which leads to a second-order correction toTc :

S dTc
Tc0

D
2

5
1

l0

1

V0~`!

1

L E dz8dz9N~z8!pT

3(
v8

Vv8~`!

uv8u
T(

v9
@Vv82v9~z8!Kv9~z8,z9!

2Vv82v9~`!Kv9~`,z9!#pT(
v-

Vv-~`!

uv-u

3@Vv92v-~z9!N~z9!2Vv92v-~`!N~`!#. ~43!

The summation overv8 and v- is limited to the region
uv8u,uv-u&v̄;vph. By performing the summation with
logarithmic accuracy and separating the contribution of
high-frequency region, we obtain the change inTc due to the
exciton-mediated interaction:

S dTc
Tc0

D
ex

5
1

l0
3L

V0~`!E dz8dz9N~z8!N~z9!T

399 JETP 84 (2), February 1997
r

e

3 (
uvu.v̄

Vv~z8!Kv~z8,z9!Vv~z9!. ~44!

If the local density of statesN(z) in the sandwich~Fig. 1!
varies near the interface faster thanVv(z), then, using the
sum rule, we can assume that

Kv~z,z8!.
pN0

uvuL
u~z!u~z8!, N~z!5N0u~z!; ~45!

hence

FIG. 3. ~a! CalculatedTc in a metal–dielectric sandwich as a function of th
dielectric thickness for a narrow-gap dielectric (U2eF!eF); curves1, 2,
and 3 correspond toW1 /W0.7/2, 3/2,W1 /W0,7/2, andW1 /W0,3/2;
~b! similar curves for a wide-gap dielectric (U@eF) in the cases~curve1!
W1 /W0.3k0

2/kF
2 , ~2! 3k0

2/kF
2.W1 /W0.3k0

2/kF
2 , and ~3!

W1 /W0,k0
2/2kF

2 ; ~c! experimental curves ofTc as a function of the dielec-
tric thicknessd in Pb–Si, Pb–Ge, and Pb–C sandwiches.14
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dTc .
1 N0

2 L

dz8
L

dz9pT
Vv~z8!Vv~z9!

.

of

cy
-
-

d
-
a

a

a

d
s

In this caseq0'k0 , and the limits of integration in Eq.
f

tio
s
of

y
e-

c.

-
y
e

ir-
ich
here
en-
he
ons,
n-
ble
are

at
in
wo-
S Tc0 D ex l0
2 L2 E0 E

0
(

uvu.v̄ uvu
~46!

Since the integrand is a logarithmic function of the cut-
frequency, Eq.~46! is valid in a fairly large region. In the
simplest case, when

Vv~z!5 HV0u~vph2uvu!, z.a,
V1u~vex2uvu!, z,a, ~47!

we have

S dTc
Tc0

D
ex

.S aL D 2 V1
2

V0
2 ln

vex

vph
. ~48!

Since it is unlikely that the coupling constantV1 for
high-frequency excitations is larger than for low-frequen
excitations (V0), the contribution of the excitonic mecha
nism given by Eq.~48! is always smaller than the main con
tribution ;a/l0L determined by Eq.~34!.

6. MODEL CALCULATIONS TO FIRST ORDER IN a/L AND
COMPARISON WITH EXPERIMENTAL DATA

Let us perform calculations with Eq.~34! using the sim-
plest model: the functionW(z) is piecewise continuous an
takes the valuesW0 andW1 in the metal and dielectric, re
spectively, and the electronic spectra of these materials
determined by the equations

eM~k!5
k2

2m
, eD~k!5

k2

2m
1U, ~49!

whereU.eF andeF is the Fermi energy in the metal. For
thin layer of dielectric with thicknessd inside a metal plate
with thicknessL, the expression forN(z) has the form

N~z!5
m

~2p!2
E
q0

k0
dq

q

k
H~k,iq,z!uk5Ak

0
22q2 , ~50!

where

q05Ak022kF
2, k05A2mU,

and the functionH(k,iq,z) is defined by Eq.~22! in Ref. 9.
Consider two limiting cases corresponding to a narrow-g
semiconductor and a wide-gap dielectric.

~a! 0,U2eF!U.
The result forU→eF and q0→0 coincides with the

qF→0 limit in Eq. ~24! of Ref. 9:

dTc
Tc0

5
1

l0kFL
FW1

W0
P1~k0d!1P2~k0d!G , ~51!

where the functionsP1(x) and P2(x) are those plotted in
Fig. 2 of Ref. 9. This result for finite but smallq0 differs
from Eq. ~51! only in that for d*q0

21@k0
21 the algebraic

approach to a constant value asd→` described byP1(x)
andP2(x) is replaced by an exponential behavior. Depen
ing on the ratioW1 /W0 , curves of one of the three type
shown in Fig. 3a are realized.

~b! U@eF .
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re

p

-

~50! are close. By assumingq.k0 and expanding in terms o
kF /k0 , we obtain forW1 /W0;k0

2/kF
2

dTc
Tc0

5
1

l0kFL

{SW1

W0
2

k0
2

2kF
2 D kFd, k0d! kF/k0 ,

2
2p

3

kF
2

k0
2

1

~k0d!2

1
16

9

kF
5

k0
5

W1

W0

1

~k0d!3
, kF/k0 !k0d!1,

1

3

kF
3

k0
3 SW1

W0

2kF
2

3k0
2 21D

2
8p

3

kF
2

k0
2 e22k0d, k0d@1.

~52!

Similarly to the previous case, depending on the ra
W1 /W0 , the functionTc(d) has one of three typical shape
shown in Fig. 3b. It is remarkable that all three types
curves were recorded by Orlovet al.14 in Pb–Si, Pb–Ge, and
Pb–C sandwiches~Fig. 3c!. Since the experiments obviousl
satisfyU;eF , the experimental curves present an interm
diate case between the curves of Figs. 3a and 3b.

Note that forv̄(z)5const, whenW(z)5V(z), holds the
condition V1.V0 , which is intuitively obvious, is insuffi-
cient for increasingTc . A stronger condition is necessary:

V1

V0
.C, C5H 3/2, U2eF!eF ,

U/2eF , U@eF ,
~53!

which is very limiting in the case of a wide-gap dielectri
The point is that forV(z)5const a spreadd of the step in the
functionN(z) defined by Eq.~45! has a negative effect pro
portional tod @see Eq.~34!#. It can be compensated for b
the positive effect;d(V12V0)/V0 due to the increase in th
constantV in the dielectric, and in this case condition~53!
with C.1 holds.

7. CONCLUSIONS

The issue of the efficiency of the exciton-mediated pa
ing in layered structures has many aspects, most of wh
have not been discussed in the paper, namely, whether t
are appropriate excitons in the dielectric, whether they p
etrate into the metal film to a sufficient depth, whether t
excitonic exchange leads to attraction between two electr
how strong this attraction sufficiently is, etc. The main co
clusion of our study is that, even under the most favora
conditions, when the answers to all the above questions
positive~as a result of which,Tc should be high atL;a!, the
effect of exciton-mediated pairing would not be detectable
L@a. Therefore the failure of all the attempts to detect it
sandwiches does not mean that its search in quasi-t
dimensional systems should be abandoned.
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1!Modern technologies can produce fairly uniform films with a thickness of
several angstroms,3 but superconductivity in them is suppressed owing to
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their highly disordered structure that leads to localization effects.4
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