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Using spatially inhomogeneoudi&shberg equations in the local-interaction limit, an exact
solution of the problem of the superconducting transition temperature in a Ginzburg saridwich
superconducting film coated with a dielectric layer containing Bose-type excitations, i.e.,
excitong in the first order ina/L (wherea is the interatomic distance ardis the film thicknesp
has been obtained. The result has been found to be independent of the exciton frequency.
The excitonic mechanism appears only in second ordex/insince both components of the
Cooper pair should enter a layer of thicknesa in order to interact through the exchange

of excitons. Numerical estimates indicate that manifestations of the excitonic mechanism are
practically undetectable in systems witk>a. Calculations for the model with a narrow-

gap and a wide-gap dielectric have been performed and compared to experimental dag97 ©
American Institute of Physic§S1063-776(97)02402-5

1. INTRODUCTION All the existing theoriesare based on the assumption that, in
o . the formal limitwg,— o, the factorC should diverge, and its

In 1964 in his famous papérGinzburg set forth a new large value should compensate for the smallness of the ratio
method for creating high-temperature superconductors. If 8, o 4t least, make the exciton-mediated interaction domi-
thin metal film is coated with a layer of a dielectfi€ig. 1) nant over all other effects, which yield~ 1. In this paper,
containing high-frequency boson excitations, i.e., eXCitO”Showever, we demonstrate that
whose frequencw,, is considerably higher than the phonon
frequency wyy, in the metal, the combination of the finite Cwey) =const for we= wpp. 2

electron density of states on the interface and the high eXCLf'his result, however strange it may seem at first sight, is

tation frequency should lead, according to the BCS formula . .
d y g hatural. In order to interact through the exchange of excitons,

to a high local value of the superconducting transition tem—both components of a Cooner pair must reach a laver with
peratureT.. The theory of Ginzburg sandwiches has been P Per p Y

developed by many authofsee Ch. 8 in Ref. 2 and refer- }g'ik(n;is)f f :]2?]::1(;;cg;(gtnodnit:?nzr:hb;nt?!g g;;:'lz ?:g?[n; i
ences therein but the available estimates @f are unsatis- ' P

factory because all these theories ignore the problems relat%g s;ig;rgrdﬁa?trgretrhlemgi;eIr:stigtneletirsr?ntcl:urggtriitéccgﬁ/ L ll'l'St
to the spatial inhomogeneity of sandwiches. All of them ' g

were based on the use of the BCS or MacMillan-type formu-the bulk metal is factored out, we have

las and rough estimates of their parameters. Below we shall 5T, A a B(wgy)
demonstrate that such an approach leads to qualitatively er- +—= I E+ N
cO 0 0

roneous results.

Following the terminology of Ref. 2, we define sand- and the coefficients in this formula can be estimatéd as
wiches as structures manufactured using the appropriate

. . . . w

t_echnology, such thgt their mgtal_ film thl)ckndsss essen- B(we) =Bo+Bi)g In == A, By, Bi~1, (4)
tially larger than the interatomic distanae" Structures with Wph
L~a should be treated as quasi-two-dimensional, and thl%e” the coefficient of 4/L)? in fact diverges agsq, .

topic is beyond the scope of this paper. Besides, we assumg, . factorskgl arise in Eq.(3) because the variation of the
that the superconductivity in the film is three-dimensionaIBCS formulaT.~w exp(—1/\) with respect tow and A
C

since g,the predicted surface sgpercon_duct_ivity of Tan_mllields 6T/ T, proportional todwlw and SA/\3, respec-
stated® has not been detected with certainty in any mate”altively, i.e., the relative change iis multiplied by the factor

It f’_ c!ear frorrljgc_anheraldrzrln_clplﬁs tbheltr(the dlffelrer;ci be')\al, as compared to the relative changewin According to
?/Iveenh N Ilcrj] g sandwict anl CO/I'_r_] the bulk material of the Egs.(3) and(4), the ratio of the contribution of the excitonic
llm should be proportional ta/L: mechanism to the total changeTq is

a 2

L

- ()

oT a 0]
(OTcdex 2 No In —. (5

6T, T.—Tgo
- - == @ (6T L Wph

T_cO TcO
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FIG. 1. A Ginzburg sandwich is a thin superconducting film S with a de-
posited dielectric layer D with high-frequency bosons excitations, WhoseWhere U

exchange should increa3g considerably.

The limitations due to the Tolmachev logarithiead to the
inequality  wey/ wpr= 10?, and for typical values
Ao=0.2—-0.9 we havex, IN(wex/ wpp) ~1, hence the exci-
tonic contribution is always small &t>a. This means that

any attempts to detect the excitonic effects in the “small
correction regime” are doomed to failure: when a metal film

.
aT 0T H

is coated with a dielectric, the change Tq may be con-

trolled by all effects, except the exchange of excitons. Thi
is, apparently, the main reason why this effect has not bee

detected in experiments.
A formula for T, naturally, cannot be derived for an

arbitrary spatially inhomogeneous system, but this is pos-
sible for the case of a local spatial inhomogeneity, when its

dimensiond is smaller than the coherence lengthor the
total system dimensioh (if L=<¢,). These formulas were
derived earli€t” and used to study the localization of the
order parameter localization, quantum oscillation3 of the
contribution of an interface between two material§toas a
function of material parameters, & All these studies used
the Gor'kov equatiort?**which does not allow for the spa-
tial dependence of the cut-off frequenay. In the weak-
coupling regime, this dependence expressedfry) usually

leads only to small corrections determined by the parameter

®max

®min

)\0 In <1.

(6)

In the case of a large disparity in the frequencies,

®mas omin, the condition (6) may be violated even for
No<%1, and this is the case in a Ginzburg sandwich.
In the present study, formulas far, similar to those in

Refs. 6 and 7 are derived from the spatially inhomogeneou

Eliashberg equation®. Since Ginzburg’s concept does not

2. SPATIALLY INHOMOGENEOUS ELIASHBERG
EQUATIONS

Consider the Hamiltonian of electron—phonon interac-
tion in the form

Hint:_f dr i (1) UnGnl(1) (1), (7)
wheref/;j and (A//(, are electron operatorsg,, is the displace-
ment vector of thenth ion, andg,(r) is the deformation
potential which in the rigid-ion approximation takes the
form*2

gn(r)=VU,(r—Ry), (8

n(r) is the potential of thenth ion andR,, is its
equilibrium position. Following the standard procedtfteye
obtain the spatially inhomogeneoudidshberg equations

[x=(r,7)]

(—(%—I:hﬁ,u G(x,x’)=5(x—x’)—f dx;G(X,Xy)

XD(X,X1)G(x,x") + f dxq

X F(X,%1)D(X,x1)F " (x1,X"),

F(x,x’)=—j dX;G(X,X1)D(X,Xq)

XF(xq,x")— f dx{F(x,Xq)

XD(X,X1)G(X',X1), (9)

whereG andF are the normal and anomalous Green’s func-
tion and u is the chemical potential. Unlike E¢35.2 in
Ref. 10, all the functions in Eq9) depend on the two coor-
dinates, not just on their difference, the operghdérem is
replaced by a one-particle Hamiltoni&h, of general form,
and the coupling constargt is included in the definition of
the phonon Green’s function:

D(x,x')= >, > gXng% (r')D (r—7), (10

a,a’ nn’
whereDﬁr‘]‘,’ is the Green'’s function in the site representation,
which can be expressed in terms of eigenvecBﬁj%(n) and
eigenvalue&;i of the dynamic operator matrix:

'Q s BY(mBL)(n")

Do (Q)=— —, 11
nn ( ) \/m S QZ+0)§ ( )
M, is the mass of thenth ion, and() is the Matsubara
frequency.

In order to determind., we must linearize Eq(9) in

depend on the nature of the high-frequency bosons, we ha\f_e_ If we rewrite these equations in the symbolic form

used the Hashberg equations for the case of electron—
phonon interaction. Their structure is, in fact, identical for
any bosons with frequencies small in comparison to the
Fermi energyer . This statement especially applies to the

limit of local interaction(Sec. 3, in which no specific infor-
mation about phonons is essential.
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we note thatG is the Green’s function for the operator in

parentheses and can rewrite the second equatigh2nas Dw(r,r’)m5(r—r’)f dr'D,(r,r'), (18
F=—-GFDG. In the explicit form, after transformation to
the Matsubara representation and complex conjugation,
have

wibe integral on the right-hand side is zero because the inte-
gral of g,(r) vanishes since the deformation potential is gen-
erated by redistribution of charges and can be described as a
+ N superposition of fields generated by dipoles. In the rigid-ion

Fo(rr)= T% fdrlf dr2G-o(rs.n approximation it follows directly from Eq(8). The local

approximation is resonable from the physical viewpoint be-

+ !
XDa(r1,r2)F,—a(ri,r2)Gu(ra.r'). (13 cause the expression far, is, in effect, determined by the
Let us introduce the order parameter integral in Eq.(18) over the regior{r'|<kz", wherekg is
the Fermi momentum. This can be proved by taking the re-
A (r,r')= —TE F o(rr)Dg(r.r"), (14) sult for the spatially homogeneou; case in.Ref. 2, Ch. 4.
Q If we assume the approximation described by Edp),

we haveA (r,r')=A_(r)é(r—r"), and Eq.(15) takes the

and rewrite Eq(13) in the form
form

Aurr)=-T2 fd“drzD“’*w’“'r') AN=TS vmwr)fdr'Kwr(r,r'mwf(r'), (19

XG—w’(rllr)Gw’(rZ1r,)Aw’(rllr2)' (15)

where
In Egs.(13)—(15) Q is the boson frequency, and and o’ L , ,
are fermion frequencies. Note that E@.5) contains only Ko(r,r) =G o(r',nG,(r'n. (20
renormalized Green’s functions. If the system is invariant under time reversal, the kernel
K,(r,r") is symmetric with respect to the exchange @ind
r' and is positive. If forG,(r,r’) one-particle Green’s func-

3. THE LOCAL-INTERACTION LIMIT tions are used, the following sum rule applies to the kethel:

Equation(15) has a form similar to that of the Gor’kov f dr'K,(r,r')= T N(r), (21)
equatiort®!! and reduces to the latter if two approximations o]
typical of the BCS theory are used: whereN(r) is the local density of states at the Fermi level,
Dy_o(r,r')==V, _(r)d(r—=r"), (16)
o . N(H)=2 [ihn(1)]?8(ep— en), (22
Vw,w/(r)—>V(r)0(w—|w|)0(w—|w'|) (17) n

[as a resultA (r,r')—A(r) 8(r — ') 8(@=|w|)]. Equation determined by the one-particle eigenfunctiongr) and ei-
(17) means that the spatial dependence of the cut-off fregenvaluese, . Wl'Fh due account_ o_f. interaction effects, _Eq.
quency is ignored, and it will not be used further. This doed21) can be conS|dered.as a definition of the local QenS|ty of
not cause any complications because all the relevant equtatesN(r). In the spatially homogeneous case this param-
tions can be solved by removing the logarithmic singularity€ter (independent of ) enters in the BCS formula.
(Ref. 2, p. 90.

The approximation expressed by E#6) corresponds to
the physically transparent local-interaction limit and has sev4- THE EXPRESSION FOR T. IN THE CASE OF LOCAL
eral advantagesa) it yields simple and easily understand- SPATIAL INHOMOGENEITY
able results;(b) it does .not demand a specificat_ion Qf the Suppose that the system varies as a functiom, cdnd
Fermi surface shapéc) it does not demand detailed infor- the inhomogeneity is localized in the regidrj=<d. Since

mation about the electron—phonon interaction since, in fact, (r) is independent of the longitudinal coordinate Eq.
an interaction constant (r) which is an arbitrary function (1‘6) takes the form

of the frequency and coordinates is introduced into (#6),

and so the generalization to other types of interaction is pos- _ f A , )

sible; (d) the structure of the expression fog is identical to A@Z) dZ'Q(z.2)A(Z"), 23
that derived from the Gor’kov gquatlon, and earlier reSofts whereA=(A, ,A
can be automatically generalized to the case of the cut-off
frequency depending on coordinates. The absence of the ef
fect of the excitonic mechanism to lowest orderaifl. can A(Z2)= ¢+ Ay(2), (24

also be proved with due account of the nonlocality, but th%here the functiony is independent of andAq(z) is local-

expressions in this case would be too lengthy. . . : _ o :
We should stress that the local interaction limit is alozt()at(;ilr? the regiorjz|=d. Substituting Eq(24) into (23), we

physical approximation and cannot be introduced by a math-
ematically rigorous procedure. In fact, if the function
D,(r,r') is assumed to be short-range and expressed as

oy .). If thesystem transverse dimension
atisfiesL < ¢, the solution can be sought in the fdtin

!/Ff dZ'Q(OOJ’)!Hf dz'Q(,2')Ao(2"), (29
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Ao<z>=f dz'[é(zz')—é(oo,z')]wf dz[Q(z.2)

—Q(%,2')]A(2)). (26)

In deriving these equations we have taken into account that

for |z|=d the kernelQ(z,z’) is independent of and equals
Q(e,z"). The sum rule(21) implies the estimat&®~ 1/L,
and the second terms on the right-hand side of E2f$.and
(26) are small ~d/L. In order to calculateT, with to

~d/L inclusive, we can omit the second term on the right-

hand side of Eq(26) and substitute the resultit,(z) into
Eqg. (25). Given thatK («,z')~L " 1fdzK,(z,z'), we ob-
tain with due account of Eq21) an equation for in the
explicit form

L(w,w")

ww:ﬂ-Tz W o' (27)

’
w

L(wvw,)szfw’(oo)N(oo)
1 1
+Efd27rT§ o'l Vo (©)N(2)

X[V (ZIN(2) =V yr— o (2)N(0)]. (28)

Equation (27) can be solved by removing the logarithmic
singularity? By taking advantage of the fact that the sum-

mation over Fermi frequencies yields

- 1 | 1.140 29
_— n —’
™ ol T
we transform Eq(27) to
Ao
lﬂw=L(w,wo)¢wo In T +f(w), (30
wherewo= 7T, and the function
L(w,0") i,
flw)==T 2 %
lo'|>o o]
L(w:w/)lﬂw'_l—(w'wo)%
+aT >, . ¢ @31
lo'|<o |’

is introduced. After settingg= wg andL (wg,wq)~L(0,0) in
Eq. (30), we have the expression far:

T.=1.14pe MO0 (32)

wherew is defined by the conditiof(wg) = 0. After replac-
ing summation by integration in Eq31) and substituting
¥, in the lowest-order approximatidm.e., neglectingf ()
in Eq. (30)], we obtain forw

no=——— fx In o[L(00)L(0,0],dw. (33

L(0,07 Jo
Substitution of Eq(28) into (32) and(33) and expansion in
terms ofd/L yield the variation inT, relative toTq in the
spatially homogeneous system

oT
oo [ dnmn@IwENG Wl (3
c0 0
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FIG. 2. Typical behavior of the parametéf,(z) as a functions ofv deep
inside the metal film £=«) and on the metal—dielectric interface=0).

here A g=Vy(°)N(®), Wy=W(x)=Vy(), and the func-
tion

W2)=Vo(2)~2N(=) [ “do In [V, 20V, (2],
35

is introduced, wherev is calculated in the zeroth approxi-
mation,

l o
— 1 )
In w= Vo()? fo do In 0[V,(*)7],, (36)
corresponding to a spatially homogeneous sysfemthat
Teo=1.14w exp(~1/\g)]. If V,(2) is a step function of the
frequency,

V(2)=V(2) 0(o(2)— o), (37)
it follows from Eq. (36) that w = w(«), and Eq.(35) yields

min{a(=), a(2)}
o))

For w(z)=const we haveW(z)=V(z), and Eq.(34) be-
comes identical to the result obtained in Ref. 7. It becomes
clear that the spatial dependence of the cut-off frequency
does not change the structure of E84), but only replaces
V(z) with a more complicated functiow(z).

For a Ginzburg sandwich, the main contribution to the
integral in Eq.(34) comes from the regiohz|<a near the
interface, and the relative variation ®f, is ~a/L. It is es-
sential that the functio¥,(z), which contains information
about the exciton frequenay,, at |z|<a (Fig. 2), is multi-
plied in Eq. (35 by the functionV (=), which decreases
fast at| | = wpn. As a resultwe is not included in Eqs(34)
and (35), which determineT.. In the approximation de-
scribed by Eq(37), this directly follows from Eq(38). This
approximate result holds for all orders kg [Egs.(34) and
(35 were derived via iterations in this paraméteBpecifi-
cally, consider the eigenvalue equation

W(z)=V(z)|1+Ag In (39

Vw_w,(OO)N(OO)
Vlﬂw: WTE T W' (39)
Yu. A. Krotov and I. M. Suslov 398



which is identical to Eq(27) for a spatially homogeneous a

system atv=1. If »(T) is the maximal eigenvalue of Eq. ST
(39), T¢o is determined by the condition(T¢o) = 1. Let i, 7:; ]
and ¢, be the solution to Eq39) and its adjoint solution at
v=1. Then the perturbation calculation in the parameter
~ d/L in Eq.(28) yields
0Te=————— | dzZWyN(2)[W(Z)N(2)—W, k! AN d
c V(Tco)KLI WoN(Z)[W(Z)N(z) —W;Ng] 0 2
(40)
with the functionW(z) defined by the equation 3
Ao
W(z)= —— 7T
7T 0] TN (Y,)? b
or,
w " T
xz |'/’ 7 TE ’/I vw,,_w (2), (42) @i ,
. -
using_tzw=|w| *z/xm. It follows from the analysis of Eq39) 5 !
that ¢, decreases rapidly as a function ef beyond wy,, - ? P e—
therefore the summation over the frequency in Bt is ~k /K \\_//—__d
limited to the region|w’|S wpy, |0"|<wp, and the fre-
guency we, in the functionV,»_,.(z) does not affect the 3
final result.
5. ESTIMATE OF THE GINZBURG EFFECT
By iterating Egs.(25) and (26) up to second order in o, ¢
d/L, 0.14 i
Pb--Si
l,[lzf dz’Q(oc,z’)z/th dz’f dz’'Q(,z")[Q(Z',Z") 0 . . _
10 20 30 d. A
_Q(oo,zr/)]w_i_f dz/f dznf dZ’”é(OO,Z,) -0.11
X[Q(Z",2") = Q(,2")][Q(Z",2") — Q(>,Z") ] ¢, -0.21 Pb—C
(42) \\O\u-__a
we obtain Eq.(27) with a functionL(w,w") differing from 03 Pb-Ge
that defined by Eq(28) by an additional term~(d/L)?,
which leads to a second-order correctiontia FIG. 3. (a) CalculatedT,, in a metal—dielectric sandwich as a function of the
dielectric thickness for a narrow-gap dielectrid  er<eg); curvesl, 2,
oTc 1 1 , and 3 correspond toW; /Wo>7/2, 312<W, /W,<7/2, andW, /W,<3/2;
Teo). Mo Vo(=) L dz'dZ'N(z')@T (b) similar curves for a wide-gap dielectrit)& e¢) in the casegcurve 1)
¢ W IWo>3kikZ, (20 3k3KkE>W, /Wo>3k3/k2, and (3
Vv, Wy /W< kS/Zk,zz ; (c) experimental curves of . as a function of the dielec-
X D | Tz [V, (2K (22" tric thicknessd in Pb—Si, Pb—Ge, and Pb—C sandwickes.
V ()
~Var—ur()K yr(2,2)] TE T T
X 20 V(2K (Z',2)V,(Z"). (44)
X[V o or(ZYN(Z") =V o yn(2)N()]. (43 lol>w

The summation ovew’' and »" is limited to the region If the local density of statebl(z) in the sandwich(Fig. 1)
|o'|,|]0"|<w~wy,. By performing the summation with varies near the interface faster the(z), then, using the
logarithmic accuracy and separating the contribution of thesum rule, we can assume that

high-frequency region, we obtain the chang& jdue to the
exciton-mediated interaction:

g

7Ny
Ko(2.2)=r—C 6(2)6(2'), N(2)=No(2); (45
T_o):fgt

lw|L
Vo(oc)f dzZ’dZ’'N(z" )N(z2")T
hence
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5T, 1 N3 (L L V,(2)V,(Z") In this caseqy=~Kkp, and the limits of integration in Eq.
T, TN2 fo dz fo dZ"7TT‘ T ol (50) are close. By assuminge=k, and expanding in terms of
€O/ ex 0

|l g Kelko, we obtain forW, /Wy~ k2/k2
Since the integrand is a logarithmic function of the cut-off f W K2
frequency, Eq(46) is valid in a fairly large region. In the (Wl— z—koz) ked, kod<< kelkg,
simplest case, when 0 F
V00(w h—|w ) Z>a 2m k'2: 1
_ p ’ ' -5 3
Vw(z)‘[vlewex—wn, 2<a, “n 3 K5 (kod)?
oT 1 16kpwW, 1
we have _c:_“__g_l_g, kel/ko <kod<1,
2 \2 Teo  Nokel 9 kg Wo (kod)
e} _(a)" Vi In 2ex (48) 3 2
Teo L V_zo ‘Uph. E E % 2_kF —
ex 3 2
. o . . 3 ko \ Wo 3kp
Since it is unlikely that the coupling constant for 2
high-frgquency excitation; is !arger than for' Iovy-frequency _ 8_77 k_; e 2od kod>1.
excitations {,), the contribution of the excitonic mecha- \ 3 kg
nism given by Eq(48) is always smaller than the main con- (52)

tribution ~a/\ oL determined by Eq(34).
Similarly to the previous case, depending on the ratio
W, /W, the functionT.(d) has one of three typical shapes
shown in Fig. 3b. It is remarkable that all three types of
curves were recorded by Orl@t al'*in Pb—Si, Pb—Ge, and
Pb—C sandwiched=ig. 39. Since the experiments obviously
Let us perform calculations with E¢34) using the sim-  satisfyU~ g, the experimental curves present an interme-
plest model: the functiohV(z) is piecewise continuous and diate case between the curves of Figs. 3a and 3b.

6. MODEL CALCULATIONS TO FIRST ORDER IN a/L AND
COMPARISON WITH EXPERIMENTAL DATA

takes the value®Vy andW; in the metal and dielectric, re- Note that forw(z) = const, whenN(z) =V(z), holds the
spectively, and the electronic spectra of these materials a@ndition V>V, which is intuitively obvious, is insuffi-
determined by the equations cient for increasingl’. . A stronger condition is necessary:
k2 k2
em(K) om’ ep(k) om U, (49 £> oo 3/2, U-—ec<ep, 53
VO U/ZEF y U > EF y

whereU> e andeg is the Fermi energy in the metal. For a
thin layer of dielectric with thicknesd inside a metal plate

with thicknessL, the expression foN(z) has the form which is very limiting in the case of a wide-gap dielectric.

The point is that fol (z) = const a spread of the step in the
m ko q ) function N(z) defined by Eq(45) has a negative effect pro-
N(z)= 2m)? fq dq k H(kv'q'z)|k:\/k§—q2’ (50) portional to § [see Eq.(34)]. It can be compensated for by
° the positive effect- 6(V1—V,)/V, due to the increase in the
where constantV in the dielectric, and in this case conditi¢s3)

Qo= /—k(z)—k,zz, k0=\/m, with C>1 holds.

and the functiorH (k,iq,z) is defined by Eq(22) in Ref. 9.
Consider two limiting cases corresponding to a narrow-gap, .\~ UsioNs
semiconductor and a wide-gap dielectric. '

(@ 0<U~—ep<U. The issue of the efficiency of the exciton-mediated pair-
The result forU—er and qo—0 coincides with the jng in layered structures has many aspects, most of which
qr—0 limit in Eq. (24) of Ref. 9: have not been discussed in the paper, namely, whether there
5T, 1 W, are appropriate excitons in the dielectric, whether they pen-
= —= P;(kod) + Py(kod) |, (51) etrate into the metal film to a sufficient depth, whether the

Teo  Nokel [Wo excitonic exchange leads to attraction between two electrons,
where the functiond?,(x) and P,(x) are those plotted in how strong this attraction sufficiently is, etc. The main con-
Fig. 2 of Ref. 9. This result for finite but smatdj, differs  clusion of our study is that, even under the most favorable
from Eq. (51) only in that ford=q, !>k, ! the algebraic conditions, when the answers to all the above questions are
approach to a constant value ds-~ described byP,(x) positive(as a result of whichT . should be high &t ~a), the
and P,(x) is replaced by an exponential behavior. Depend-effect of exciton-mediated pairing would not be detectable at
ing on the ratioW, /W,, curves of one of the three types L>a. Therefore the failure of all the attempts to detect it in
shown in Fig. 3a are realized. sandwiches does not mean that its search in quasi-two-

(b) Us>er. dimensional systems should be abandoned.
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