
which we argue to have been observed in the composite-
fermion system near half-filling.
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Density of states near the Anderson
transition in the (4ÿ E)-dimensional space

I M Suslov

Abstract. The calculation of the density of states for the

SchroÈ dinger equation with a Gaussian random potential is

equivalent to the problem of a second-order transition with a

`wrong' sign of the coefficient of the quartic term in the

Ginzburg ± Landau Hamiltonian. The special role of the

dimension d = 4 for such Hamiltonian can be seen from

different viewpoints but fundamentally is determined by the

renormalizability of the theory. Construction of E-expansion in

direct analogy with the phase transitions theory gives rise to a

problem of a `spurious' pole. To solve this problem, the proper

treatment of the factorial divergency of the perturbation series

is necessary. In (4ÿ E)-dimensional theory, the terms of the

leading order in 1=E should be retained for N � 1 (N is an order

of the perturbation theory) while all degrees of 1=E are essential
for large N in view of the fast growth of their coefficients. The

latter are calculated in the leading order inN from the Callan ±

Symanzik equation with results of Lipatov method using as

boundary conditions. The qualitative effect consists in shifting

of the phase transition point to the complex plane. This results

in elimination of the `spurious' pole and in regularity of the

density of states for all energies.

1. Introduction

Let us consider a usual ShroÈ dinger equation with random
potential V(x):

p̂2

2m
+ V(x)

� �
C(x) = EC(x) : (1)

Qualitative features of the equation are well known. In the
absence of disorder the density of states n(E) has a power-law
behavior at E > 0 and is identically zero at E < 0. When a
random potential is included, the van Hove singularity is
smeared out and the density of states becomes finite formally
for all values of the energy, i.e., the fluctuation tail arises.
Near the bare edge of the band there exists a special energy Ec

(mobility edge), separating the regions of localized and
extended states. If the Fermi level EF crosses Ec when
parameters of the system vary, then the metal ± insulator
transition referred to as the Anderson transition occurs. It is
characterized by the singular behavior of conductivity s and
localization radius x of the wave functions, which are
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conventionally described by power dependences:

s � jEF ÿ Ecj
s ; x � jEc ÿ EFj

ÿn ; (2)

with the critical exponents s and n introduced in the manner
similar to the theory of phase transitions.

As for the density of states n(E), it generally believed to
have a smooth behavior at the mobility edge, i.e., Ec is the
singular point for one category of quantities but a regular
point for another. Formally, it is a consequence of the fact
that the density n(E) is determined by the average Green's
function hG(x; x0)i, while kinetic properties are specified by
correlator hGR(x1; x2)G

A(x3; x4)i.
Therefore, there is no problem of the critical behaviour of

the density of states, it is trivial. Nevertheless, there is a
problem of the quantitative description of its behaviour in the
critical region. All conventional methods are not applicable
there and the calculation of the density of states run into
fundamental problems similar to those for kinetic properties.

2. Relationship with the theory of phase
transitions

Let us specify the model and consider the Gaussian random
potential with zero average and the point-like correlator:

hV(x)i = 0 ; hV(x)V(x0)i = W2d(xÿ x0) : (3)

For such a model, there exists the exact formal equivalence of
the problem of Anderson transition and the fluctuational
theory of phase transitions [1, 2]. The average Green's
function of a disordered system is determined by the same
functional integral as in the phase transitions theory:

hG(x; x0)i �

�
Djj(x)j(x0) exp [ÿHfjg] : (4)

Hamiltonian Hfjg has the usual Ginzburg ±Landau form

Hfjg =

�
ddx cjHHuj2 + k2juj2 + g0juj

4
� �

; (5)

c =
1

2m
; k2 = ÿE ; g0 = ÿ

W2

2
; (6)

but the coefficient g0 of the quartic termhas `wrong' sign.Here
u is the n-component vector (j1;j2; . . . ;jn), where n tends to
zero at the end of calculations. The functional integrals with
g0 < 0 imply analytical continuation from the positive g0
through the upper (lower) semiplane, which results in retar-
ded (advanced) Green's function of the disordered system.

Similarly, the correlator hGRGAi is determined by the
functional integral

hGR(x1; x2)G
A(x3; x4)i �

�
Dj

�

�
Dc j(x1)j(x2)c(x3)c(x4) exp [ÿHfj;cg] (6)

with more complicated Hamiltonian

Hfj;cg =

�
ddx

h
cjHHuj2 + cjHHw j2 + k21juj

2 + k22jw j
2

+ g0 juj2 + jw j2
� �2i

; (7)

k21 = ÿEÿ id ; k22 = ÿE+ id ;

depending on the two zero-component fields j and c. In the
phase transitions theory suchHamiltonian corresponds to the
existence of two phase transitions of different nature with
close critical points.

3. Problem of the `spurious' pole

This brings up the question: Is it posible to develop the
(4ÿ E)-dimensional theory for such Hamiltonians in ana-
logy with Wilson's E-expansion for phase transitions? For a
long time it was thought to be impossible, and the problem is
related to the Landau pole.

In quantum electrodynamics there is a relation which
links the observed charge e that enters into the Coulomb law
with the `bare' charge e0 in the initial Lagrangian:

e2 =
e20

1+ const e20 ln(L=m)
; (8)

where m is the electron mass, L is the cutoff parameter which
should tend to infinity. A similar formula, but with the
opposite sign in denominator, takes place in quantum
chromodynamics.

In the four-dimensional theory of phase transitions there
is a similar relation between the renormalized charge g

describing the long-range interaction and the bare value g0:

g =
g0

1+ const g0 ln (L=k)
: (9)

At g0 > 0 the effective interaction tends to zero as k! 0,
upon approaching the transition point. We have a `zero-
charge' situation in a literal sense, since the bare charge g0 and
the cutoff parameterL correspond to the atomic scale and are
observable quantities. In 4 ÿ E dimensions, the charge g tends
to a finite value of order E in the limit k! 0. Therefore, it may
be said that the success of the Wilson E-expansion is due to
weak interaction in the (4ÿ E) dimensions.

In the theory of disordered systems, the relation (9) is valid
with g0 < 0 and the situation appears asymptotically free; in
approaching the mobility edge, the effective interaction does
not decrease but rises due to existence of the 'spurious' pole in
the expression (9). The problem of strong coupling arises,
which, as is thought [3], cannot be solved. Below we will
obtain a complete solution of this problem for the density of
states.

4. Special role of dimension d = 4

The first question, which arises here is whether the dimension
d = 4 is special for the Anderson transition. The answer is
positive, although most of researchers hold a different
viewpoint. Special role of dimension d = 4 can be revealed
in different ways, but fundamentally it is related to the
renormalizability of the theory. As usually, the renormaliz-
ability can be investigated by counting up the power of
momentum p in diagrams. The N-order diagram for the self-
energy S(p; k) includesN integrations over the d-dimensional
momentum and (2Nÿ 1) Green's functions, each of dimen-
sion 1=p2. As a result, the dimensionality with respect to
momentum is pr, where r = 2+ (dÿ 4)N. At d > 4 the power
of divergence at large momenta increases as the order of
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diagram enhances, hence, the theory cannot be renormalized,
and the cutoff parameter L of order of inverse atomic scale
should be explicitly introduced. At d < 4 we have r < 2 for all
N and the theory is renormalizable by one subtraction: if we
subtract from each diagram its value at p = k = 0, the
exponent r is reduced by 2, and the difference
S(p; k)ÿ S(0; 0) does not contain divergencies, which are
absorbed by the quantity S(0; 0) that only shifts the origin of
the energy. At d = 4 the logarithmic situation takes place: the
difference S(p; k)ÿ S(0; 0) containes logarithmic divergen-
cies, which can be eliminated by renormalization of the charge
and the Green's function.

5. Simplification of the theory for d > 4

The next question which arises is why the theory is simplified
at d > 4? From diagrammatic analysis we can conclude that
the increase in the order of diagram by unity give rise to an
extra factor ofW2 and two additional G functions. In rough
estimates, the latter can be taken in the simplest functional
form

G(p;E) = Eÿ
p2

2m
+ ig

� �ÿ1

; (10)

with the damping g. For d < 4 the divergences at high
momenta are eliminated due to renormalization, and integra-
tions are determined by small values of p; therefore the
Green's function should be considered as a quantity � 1=g
in the region of low energies E. In the case of weak disorder,
the damping g is small, being determined by parameter W,
and, occuring in the denominator, may compensate the
smallness of W 2 . Detailed estimates show that it is indeed
the case near the mobility edge, so the expansion parameter is
of the order of unity at jEj � g.

With d > 4, the situation is changed. Since the theory is
nonrenormalizable, the integrals are determined by large
momenta � L, and the Green's function (10) is of the order
of 1=J, where J is the width of the band. Therefore, the
expansion parameter is small at weak disorder,

W2

J2
5 1 : (11)

The existence of the small parameter does not immediately
simplify the problem, since the attempt to use finite number of
terms in the perturbation expansion for S;

S(p; k) = A1g0 + A2 g
2
0 + A3 g

3
0 + . . . ; (12)

results in the loss of the fluctuational tail. The reason is that
the series is divergent and an essential contribution caused by
high-order terms is ignored in this case. To obtain an asymp-
totically exact result for small disorder, we should approx-
imate the perturbation series for S by the first term and by the
sum of high-order terms, from some large N0 to infinity:

S(p; k) = A1g0 +
X1
N=N0

AN g
N
0 : (13)

The asymptotic behaviour of the high-order expansion
coefficients has a the functional form (see below)

AN = cG(N+ b)aN (14)

and the sum in Eqn (13) can easily be calculated by
representing the gamma-function as a definitive integral and
finding the sum of the resulting geometric progression. The
real part of the sum is small with respect to the first term in
Eqn (13), while the imaginary part gives the substantial
contribution

Im
X1
N=N0

cG(N+ b)aN(g0 + i 0)N

=
pc

(ajg0j)
b
exp ÿ

1

ajg0j

� �
; (15)

which does not depend onN0. This contribution results in the
exponentially small fluctuational tail.

6. The Lipatov method

High-order terms of perturbation series can be calculated by
the Lipatov method [4], which is based on the following
simple idea. The expansion coefficients of the function F(g),

F(g) =
X1
N=0

FN g
N ; (16)

are calculated using the relation

FN =

�
C

dg

2pi

F(g)

gN+1
; (17)

where the contour C encloses the point g = 0 in the complex
plane. Rewriting the denominator as exp ÿ(N+ 1) ln g[ ], we
obtain an exponential with a large exponent at large N,
allowing us to use the saddle point method. Let us apply
Eqn (17) to the functional integral

F(g) =

�
Dj exp ÿH0fjg ÿ gHintfjg( ) : (18)

Then we obtain

FN =

�
C

dg

2pi

�
Dj

� exp ÿH0fjg ÿ gHintfjg ÿ (N+ 1) ln g[ ] : (19)

The idea of the Lipatov method is that the saddle point of
Eqn (19) is sought with respect to g and j, simultaneously. It
exists for all the interesting cases and is realized on a certain
space-localized functionsj(x) (referred to as instantons). The
conditions of applicability of the saddle-point method are
fulfilled at large N, no matter how it is applied to the initial
integral (18).

7. The four-dimensional case

We gave the scheme of the calculation for high dimensions.
For d = 4, the difference S(p; k)ÿ S(0; 0) diverges logarith-
mically. Arranging the contributions of the diagrams in the
powers of the logarithms, for p = 0 we get

S(0; k) = S(0; 0) + k2
X1
N=1

gN0

XN
K=0

AK
N ln

L

k

� �K

: (20)

The N-th order contribution involves all powers of the
logarithms from zero to N. For exact solution of the
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problem we need all coefficients AK
N; our aim, however, will

be to obtain only asymptotically exact results for weak
disorder, that is for small g0. Such results are obtained in
the phase transitions theory (g0 > 0) in the so-called main
logarithmic approximation, by retaining in Eqn (20) only
coefficients AN

N, correspondinding to `parquet' diagrams. For
the disordered systems (g0 < 0), the `parquet' approximation
is completely unsatisfactory, giving expressions with `spur-
ious' pole [3].

To obtain an adequate approximation for this case, the
behavior of coefficients AK

N should be carefully investigated.
First of all, we know the parquet coefficients which are well
studied and take on the functional form:

AN
N = const aNNb : (21)

In principle, it is possible to construct the second, third etc.
logarithmic approximations by including the coefficients
ANÿ1
N ; ANÿ2

N ; . . . in Eqn (20). For finiteK andN!1we have

ANÿK
N = const aNNb(N lnN)K : (22)

Information concerning the fastest-growing coefficients can
be obtained by the Lipatov method. The total N-th order
contribution to S(0; k) has the form

const gN0 G(N+ b)aN(lnN)ÿg exp
s lnL

k

� �
; (23)

Comparing this with expansion (20) we get

AK
N = const

sK

K!
G(N+ b)aN(lnN)ÿg : (24)

The Lipatov method reproduces coefficients AK
N well only for

small K: they are decreasing rapidly for large K, and the
accuracy of the method becomes insufficient.

From these estimates we see that the terms with low
powers of logarithms increase rapidly with N: the less a
power of the logarithm, the greater a rate of growth. Parquet
coefficients are never dominant in high orders, and that is why
the parquet approximation fails in the theory of disordered
systems.

To obtain asymptotically exact results we should use the
following approximation. For low-order terms we can keep in
Eqn (20) only the parquet coefficients AN

N that are distin-
guished by largest powers of logarithms. But for N exceeding
certain N04 1, all the coefficients AK

N should be taken into
account, since we cannot say beforehand, what range of N
and K gives the dominant contribution. The parquet coeffi-
cients are well known and therefore only AK

N with large N
should be found. As indicated above, it cannot be done
straightforwardly by the Lipatov method, since this method
gives good results only for small K.

The calculation of AK
N with K � N is based on the

renormalizability of the theory. Let us explain the basic
idea. Let F be an observable quantity. When we calculate it
formally in the perturbation theory, it is a function of the
bare charge g0 and the cutoff parameter L that has to be
introduced for eliminating the divergences. The renormaliz-
ability of the theory means that the renormalized charge g
can be defined in such a way that the variable F as a
function of g does not diverge, and at L!1 tends to a
finite limit,

F(g0;L) = FR(g) : (25)

The quantities that are not directly observable (like the
Green's functions) may renormalize in a more complicated
fashion; as a matter of fact, for all technical purposes we may
confine ourselves to the category of quantities that are
renormalizable in the multiplicative way,

F(g0;L; pi; . . .) = Z(g0;L)FR(g; pi; . . .) ; (26)

In other words, from the quantity F (which depends on the
momenta pi and other variables) we separate out the
diverging Z factor. Since FR does not depend on L, we have

dFR
d lnL

= 0 : (27)

Substituting here FR from Eqn (26) and expressing the total
derivative in terms of partial derivatives, we get the Callan ±
Symanzik equation

q

q lnL
+W(g0)

q

qg0
+ V(g0)

� �
F(g0;L; pi; . . .) = 0 : (28)

Defined formally, the functions W and V depend on L. The
actual absence of such a dependence may be proved taking
advantage of the fact that the Z factors for different F are not
independent, and can be expressed one via another. Equa-
tion (28) is a mathematical expression of the existence of an
exact renormalization group in the phase transitions theory.

In the case under consideration, multiplicative renorma-
lizability is exhibited by the quantity

Y = k2 + S(0; k)ÿ S(0; 0) ; (29)

that differs from the series in Eqn (20) only by a trivial term.
Its substitution into (28) yields a set of equations for
coefficients AK

N:

ÿKAK
N =

XNÿK+1

M=1

WM+1(NÿM) + VM[ ]AKÿ1
NÿM ; (30)

whereWM and VM are expansion coefficients for W(g0) and
V(g0) over g0. This set of equations has a form of a recurrent
relation determining AK

N from given AKÿ1
Kÿ1; A

Kÿ1
K ; . . . ; AKÿ1

N .
All the coefficients AK

N can be calculated when A0
N are known.

But the latter coefficients are well reproduced by the Lipatov
method and can be used as a boundary condition for set (30).
Thus, all the required coefficients and the sum of the
perturbation series can be found.

8. Transition to the (4ÿ E)-dimensional theory

For d = 4ÿ E, the perturbation expansion for the self-energy
has a following structure

S(0; k)ÿ S(0; 0) = k2
X1
N=1

(g0L
ÿE)N

�
XN
K=0

AK
N(E)

(L=k)E ÿ 1

E

� �K
; (31)

where the coefficients AK
N(E) are finite at E! 0 and have the

regular expansions in E:
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AK
N(E) =

X1
L=0

A
K;L
N EL : (32)

After the limiting transition L!1, the expansion (32)
becomes analogous to Eqn (20) with replacement of the
large logarithms by the powers of 1=E.

In the standard procedure of E-expansion [1] only a few
largest powers of 1=E are retained in each order of perturba-
tion theory. The first order of E±expansion is obtained by
retaining only coefficients A

N;0
N , that concide with the

coefficients of main logarithms in Eqn (20). Analogously to
the case of d = 4, such approximation is insufficient at g0 < 0
due to the large rate of growth inN of the coefficients at small
powers of 1=E.

In fact, the coefficients AK
N(E) are calculated directly

without preliminary expansion over E. This calculation is
entirely similar to the four-dimensional case, i.e., it is based on
the Callan ± Symanzik equation with the results of the
Lipatov method used as a boundary condition. Thus, the
transition to the (4ÿ E)-dimensional theory does not require
essentially new ideas.

As a result, we have obtained explicit expressions for the
density of states of a disordered system in the whole range of
energies including the vicinity of the mobility edge. They are
rather cumbersome and we do not present them here [5]. We
restrict ourselves to only qualitative discussion. As is known
from the phase transitions theory, there is a fluctuational shift
of the critical point: the correct value of the critical
temperature Tc differs from that calculated by the Landau
theory. A similar shift occurs also in the theory of disordered
systems, but now it is complex and its imaginary part arises
due to instability of the corresponding field theory. If we
could penetrate to the complex plane of the energy (according
to Eqns (5), (6), the energy plays a role of temperature) and
approach the critical point, we would observe the usual
critical exponents of the phase transitions theory. However,
we can deal only with the real values of the energy, so the
critical point is avoided and the density of states has no
singularity.

The main difficulties of the theory are related with
calculation of the imaginary part of the fluctuational shift,
which is exponentially small with respect to g0 and has
nonperturbative nature. This is the reason, why here we
restrict ourselves by consideration of the quantity S(0; k),
which determines the transition point. The rest of the
calculations are the same as in the phase transitions theory;
therefore the average Green's function of the disordered
system is, roughly speaking, described by `parquet' formulas
with the complex Tc. The critical point is shifted in different
directions of the complex plane for the retarded and advanced
Green's functions. We may think that in the case of the
correlator hGRGAi, the critical point remains on the real axis,
since it does not `know' the direction of the shift.

Details of the calculations are described in Ref. [6] and
systematized in review [5].
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