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(1) More than twenty years ago, Lipatov [1] sug-
gested a method for calculating the high orders of the
perturbation theory according to which these are deter-
mined by the saddle-point configurations (instantons) of
the corresponding functional integrals. The method
proved to be applicable to a wide range of problems [2, 3],
but it was soon questioned in connection with the detec-
tion of factorially large contributions from the individ-
ual diagrams, renormalons [4]. In the opinion of ’t
Hooft [5], the latter are not contained in the instanton
contribution. Formally, the asymptotics of the perturba-
tion theory is determined by the singularity in the Borel
plane closest to the coordinate origin. Whereas the
presence of instanton singularities is beyond doubt, the
existence of renormalon singularities has never been
proven, which is recognized by the most active propo-
nents of this trend [6]: such singularities can be easily
obtained by the summation of individual sequences of
diagrams, but it cannot be made sure that they  are pre-
served when all diagrams are taken into account. Previ-
ously [7], we presented a proof for the absence of
renormalon singularities in the 

 

ϕ

 

4

 

 theory, which calls
into question the idea of renormalons as a whole; how-
ever, there is no analogous proofs for other field theo-
ries. The analysis performed below clarifies the situa-
tion with renormalon singularities in an arbitrary field
theory: in general, their presence or absence is deter-
mined by the analytic properties of the Gell-Mann–
Low function and some other functions.

The simplest class of renormalon diagrams arises in
quantum electrodynamics after distinguishing of an
internal photon line in an arbitrary diagram (Fig. 1a)
and   insertion of a chain of electron loops into it
(Fig. 1b). In the initial diagram, the integration

 

kk

 

–2

 

n

 

 over the range of large momenta (

 

n

 

 = 3, 4, …)

corresponded to the separated photon line with momen-
tum 

 

k

 

. When 

 

N 

 

electron loops are inserted into the pho-
ton line, the additional factor ln

 

N

 

(

 

k
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/

 

m
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) (

 

m

 

 is the elec-
tron mass) emerges in the integrand; the integration

d4∫

 

yields a quantity on the order of 

 

N

 

!. Arbitrary insertions
into the photon line lead to the substitution of the run-
ning coupling constant 

 

g

 

(

 

k

 

2

 

) for the interaction constant

 

g

 

0

 

 (Fig. 1c) and give rise to the integral 
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The summation of the chains of loops corresponds to
using the single-loop approximation 

 

β

 

(

 

g

 

) = 

 

β

 

2

 

g

 

2

 

 for the
Gell-Mann–Low function and yields the well-known
result
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, we obtain
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After the Borel summation, this yields renormalon sin-
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—The presence or absence of renormalon singularities in the Borel plane is shown to be determined
by the analytic properties of the Gell-Mann–Low function 

 

β
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) and some other functions. A constructive crite-
rion for the absence of singularities consists in the proper behavior of the 

 

β

 

 function and its Borel image at infin-
ity, 
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 1. This criterion is probably fulfilled for the 
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 theory, quantum electro-
dynamics, and quantum chromodynamics, but is violated in the 
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)-symmetric sigma model with 
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gularities at the points

 

1

 

 

(3)

in the Borel 

 

z

 

 plane.
The analysis performed below is based on the fact

that for a given 

 

β

 

 function, the summation of the entire
class of diagrams obtained by all the possible insertions
into the photon line presents no problem: it will suffice
to solve the Gell-Mann–Low equation

(4)

with the initial condition 

 

g

 

(

 

k

 

2

 

) = 

 

g

 

0

 

 at 

 

k

 

2

 

 = 

 

m

 

2

 

 and to
analyze the expansion in terms of 

 

g

 

0

 

 for an integral of
type (2). The more complex classes of renormalon dia-
grams can be studied by using the general equation of
a renormalization group in the Callan–Symanzik form.

(2) As an illustration, let us consider the model 

 

β

 

function

(5)

for which Eq. (4) can be easily solved:

(6)

where 

 

x

 

 = 

 

β

 

2

 

ln(

 

k

 

2

 

/

 

m

 

2). The right-hand side is regular at
g0 = 0 and can be expanded into a power series of g0.
The structure of this series is

(7)

where r(x) is the radius of convergence, and the coeffi-
cients AN depend on N as a power law. The radius of
convergence is determined by the distance to the singu-
larity closest to the coordinate origin. The singularities
gc in the right-hand side of Eq. (6) correspond to zeros
of the radicand and are defined by the equation

(8)

and its complex conjugate.    At large x,   the  minimum
(in the absolute value)   root  is   gc ≈ 1/x, and series (7)
takes the form

(9)

Substituting it into integral (2) yields singularities at
points (3) (at large N, the integral is determined by large
k that correspond to large x). Thus,  reasoning by Parisi [8]

1 Similar singularities with n = 0, –1, –2, … arise from the integra-
tion over the range of small momenta (infrared renormalons).
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that renormalon singularities can exist in internally
consistent theories is confirmed by this example.

(3) The overall picture is determined by the fate of
the Landau pole in the single-loop result (1). This pole
can remain on the real axis, shift into the complex
plane, or go to infinity. The right-hand side of Eq. (1) as
a function of g0 changes on the characteristic scale
(ln(k2/m2))–1; this property does not change when the
higher loops are taken into account, because result (1)
is always valid at small g0. If g(k2) as a function of g0
has singularities in a finite part of the complex plane,
then the characteristic scale of its change is naturally
determined by the distance to the closest singularity,
which thus proves to be of the order   (ln(k2/m2))–1,
generating a series of type (9) and renormalon singular-
ities. However, this is not always the case: for example,
the characteristic scale of the change for entire func-
tions is determined by other factors, and the above con-
clusion ceases to be valid.

The general solution of the Gell-Mann–Low equa-
tion is

(10)

where

Taking into account the behavior of the function F(g) at
small g, we can write

(11)

and, formally resolving (10) for g, obtain

(12)

If the function z = F(g) is regular at g0 and F'(g0) ≠ 0,
then the inverse function g = F–1(z) that is also regular
exists in some neighborhood of the point g0. Therefore,
the singularities of the function F–1(z) are zc = F(gc),
where all the possible gc are defined by the condition

(13)

The singularities in variable g0 in (12) are defined by
the equation

(14)

or

(15)

If zc is finite, then Eq. (15) at large x has a root g0 ≈ 1/x
in the range of small g0, where the right-hand side of
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Eq. (15) is insignificant in view of (11). Thus, there is a
singularity at 

 

g

 

c

 

 

 

≈

 

 1/

 

x

 

 that generates series (9) leading
to the renormalon singularities (3). If, alternatively, 

 

zc =
∞, then Eq. (14) has no solutions for g0 ~ 1/x, and an
expansion of type (9) is possible only with the coeffi-
cients AN that decrease faster than any exponential: the
renormalon contribution is definitely much smaller
than the instanton contribution, and no singularities
emerge in the Borel plane.  As  for  solutions
with g0 ~ 1 (which are possible due to the singularities
of the function f(g0)), they are unrelated to the renorma-
lon mechanism: their contribution is determined by a series

in which  is not accompanied by a factor of the type
(ln(k2/m2))N. To summarize, we have reached the fol-
lowing conclusion. Renormalon singularities take place
if there exists at least one point gc (including gc = ∞) for
which condition (13) is satisfied and zc = F(gc) < ∞; oth-
erwise, no renormalon singularities exist.   

It remains to reformulate the results in terms of the
β function itself. First, note that a regular root of the
form

does not lead to renormalons: in this case, the derivative
F'(gc) does not exist, but F(gc) = ∞; in particular, this is
true for the root at g = 0. A power-law behavior at infin-
ity, β(g) ∝  gα, generates renormalons only at α > 1
(which is identical to the existence condition for the Lan-
dau pole for a nonalternating function β(g)). All of the
other possibilities for the satisfaction of condition (13)
are related to the singularities of the function β(g) at
finite points gc: for renormalons to exist, these must be
strong enough for the function 1/β(g) to be integrable at
gc (e.g., β(g) ∝  (g – gc)γ with γ < 1). A sufficient condi-

g0
N

β g( ) g gc–( )n, n∼ 1 2 3 …, , ,=

tion for the absence of renormalons is the regularity of
the function β(g) at finite g and its power-law behavior,
β(g) ∝  gα with α ≤ 1, at infinity; in fact, weak singular-
ities of the type β(g) ∝  (g – gc)γ with γ > 1 are admissi-
ble at finite g.

(4) If all of the singularities in the Borel plane are
assumed to be of instanton or renormalon origin,2 then
a constructive criterion for the absence of renormalon
singularities can be formulated.

The perturbation series for the β function is factori-
ally divergent [1–3], and there is a cut in the comp-
lex g plane that emerges from  the  coordinate  origin
to infinity. Therefore,  g = 0  is  the  branching  point,
as is generally g = ∞. The function β(g) is represented
by the Borel integral

(16)

where B(z) is the Borel image of the function β(g). Let
us assume that it has a power-law behavior at infinity,
B(z) ∝  zα (then β(g) ∝  gα), and is regular for | | <
π/2 + δ, δ > 0 (Fig. 2a). Directing the contour of inte-

gration along the ray z = |z| , we can easily verify

that integral (17) converges for g = |z|  with |φ – φ0| <
π/2. Since the contour can turn through angles |φ0| <
π/2 + δ, the function β(g) is regular for | | < π + δ
(Fig. 2b), implying that there are no singularities at
finite points on the physical sheet of the Riemann sur-
face. In this case, the behavior of the β function at infin-
ity (β(g) ∝  gα with α ≤ 1) yields the condition for the
absence of renormalon singularities.

The derived criterion can be constructively used as
follows. Consider the ϕ4 theory or quantum electrody-
namics; in this case, there are instanton singularities on
the negative semiaxis and, possibly [5], renormalon
singularities on the positive semiaxis (Fig. 2c). Let us
assume that there are no renormalon singularities. In
this case, (i) the regularity condition for the function
β(g) at finite g (Figs. 2a and 2b) is satisfied; (ii) the
asymptotics of the expansion coefficients is determined
by the nearest instanton singularity and can be found by
Lipatov’s method; (iii) the Borel integral is well
defined,  and  the  perturbation  series  for  the
function β(g) admits an unambiguous summation,
which allows its behavior at infinity to be determined.
If the β function increases faster than gα with α > 1,
then the initial assumption is invalid, and the existence
of renormalon singularities has been proven by contra-

2 This assumption has not been rigorously proven, but nobody has
proposed a viable alternative to it. It can be justified by the fact
that all of the singularities in the Borel plane for finite-dimen-
sional integrals are related to the extrema of the action (in this
case, the reasoning of ’t Hooft in [5] is necessary and sufficient),
while the renormalon singularities are explicitly related  with
the limiting transition  to an infinite number of integrations.
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Fig. 2. It follows from the analyticity of the function B(z) at
| | < π/2 + δ (a) that β(g) is analytic at | | < π + δ
(b), i.e., on the entire physical sheet of the Riemann surface;
(c) the picture of singularities in the Borel plane for the ϕ4

theory and quantum electrodynamics suggested by ’t Hooft
(S0 is the minimum instanton action, β2 is the first vanishing
expansion coefficient of the β function).

zarg zarg
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diction. If, alternatively, β(g) ∝  gα with α < 1, then the
assumption about the absence of renormalon singulari-
ties is self-consistent.

The outlined program for the above theories was
carried out previously [9, 10] by interpolating Lipatov’s
asymptotics with known values of the first expansion
coefficients and yielded α = 0.96 ± 0.01 for the ϕ4 the-
ory [9] and α = 1.0 ± 0.1 for quantum electrodynamics
[10]. Thus (within the uncertainty of the results), the
self-consistent exclusion of renormalon singularities
proves to be possible. Moreover, a comparison with
existing analytic results  is  indicative of the exact
equality α = 1 in both cases [9, 10]. In any case, the β
functions  in  these  theories  are  nonalternating,3

and the condition for the absence of renormalon singu-
larities in them is identical to the condition for their
internal consistency.

For quantum chromodynamics, α = –12 ± 3 [11], and
the instanton singularities lie on the positive semiaxis.
The assumption about the absence of renormalon sin-
gularities is self-consistent for the sheet of the Riemann
surface obtained by the analytic continuation from neg-
ative g (the sign of the argument of B(z) changes as the 
sign of g changes, and the singularities pass to the negati-
ve semiaxis); this is enough to justify the procedure for
determining4 the index α used in [11]. The Borel inte-
gral at positive g must be properly interpreted to estab-
lish a connection with the physical sheet (its principal-
value interpretation is not always correct [12]).

The only field theory in which the existence of
renormalon singularities is deemed to have been firmly
established is the O(n)-symmetric sigma model in the
limit n  ∞ [6]. In this case, the single-loop β func-
tion is exact and β(g) ∝  g2 for g  ∞; consequently,
α = 2 and the self-consistent exclusion of renormalons
proves to be impossible. However, this theory is inter-
nally inconsistent in the four-dimensional case.

Curiously, according to the formulated criterion, the
truncation of the series for the β function at any finite
number of terms immediately creates renormalon sin-
gularities. This shows that the problem of renormalons
cannot be solved in terms of the loop expansion [13].

Note that the possibility of the existence of renorma-
lon singularities makes the functional integrals ill-
defined. The classical definition of the functional inte-
gral via the perturbation theory is defective, because the
expansion in terms of the coupling constant is diver-
gent: its constructive summation requires knowing the

3 For the ϕ4 theory, we have in mind the four-dimensional case, in
which the problem of renormalons is of current interest.

4 Note that the asymptotics β(g) ∝  gα does not guarantee a power-
law behavior of the Borel image, B(z) ∝  zα, in all directions in
the complex plane (e.g., B(z) = β2(1 – cosz) for the model β
function (5)). In this respect we should emphasize that the index α
in [9-11] was determined directly from the asymptotics of the Bo- 
rel image and the assumption about its power-law behavior was 
subjected to the special tests.

analytic properties in the Borel plane that are uncertain
until it is established whether the renormalon singular-
ities exist. One can also doubt that the definition of the
functional integral as a multidimensional integral on a
lattice is correct; the lattice theory can differ fundamen-
tally from the continuum theory, because the renorma-
lon contributions are determined by the range of arbi-
trarily large momenta. An impasse is reached: the solu-
tion of the problem of renormalons requires studying
the functional integrals, while the latter are ill-defined
because the problem of renormalons is unsolved. The
proposed scheme for the self-consistent exclusion of
renormalon singularities is probably the only possible
way out of the situation. In this case, the continuum the-
ory, by definition, is understood to be the limit of the
lattice theories.

(5) In general, a class of renormalon diagrams is de-
fined  by the condition that new vertices are inserted into
the same element (a line or a vertex) of  the  initial
skeleton diagram. This definition allows the existence
conditions for the main renormalon contribution to be
analyzed: if new vertices are inserted with an equal
probability into m different elements, then the corre-
sponding contribution is on the order of [(N/m)!]m ~
N!m–N and contains the redundant smallness m–N.5 For
electrodynamics, integral (2) considered above corre-
sponds to the summation of the class of diagrams
obtained by all the possible insertions into the same
photon line. A similar integral for the ϕ4 theory corre-
sponds to all the possible loop insertions to the same
4-vertex and  the domain of integration is considered, in  
which all momenta of the considered vertex are of the 
same order of magnitude.  In general,  the renormalon
integral is

(17)

where Γ(g0, k) is the vertex with M external lines from
which M' lines carry a large momentum   of  the  order 
k. The dependence on k is defined by the Callan–
Symanzik equation

(18)

where γ(g0) depends on M and M'. The general solution
of Eq. (18) is

(19)

where Φ(z) is an arbitrary function. If zc is a singularity
of the function Φ(z), then the singularities in variable g0

5 In fact, in this case, there are m independent integrations of
type (17) for each of which the condition for the absence of
renormalon contributions is identical to that established below.

d4kk 2n– Γ g0 k,( ),∫

∂
∂ k2ln
-------------– β g0( ) ∂

∂ g0ln
-------------- γ g0( )+ + Γ g0 k,( ) 0,=

Γ g0 k,( ) F1 g0( )Φ F g0( ) k2

m2
------ln+ 

  ,exp=

F1 g( ) g
γ g( )
β g( )
-----------,d∫–=



478

are defined by Eq. (14). The function Φ(z) can be
expressed in terms of R(g0) ≡ Γ(g0, m),

(20)

and the singularities of the function F–1(z) are those of
the function Φ(z). Therefore, the condition for the exist-
ence of renormalons found above is also sufficient in
the general case. Additional possibilities for their emer-
gence are associated with the singularities of the func-
tions F1(g) and R(g). If one of them is singular at gc ,
then zc = F(gc) is a singularity of the function Φ(z). The
functions F1(g) and R(g) are represented by Borel inte-
grals of type (16) and  have  g = 0 and  ∞ as the bran-
ching points. However, this does not lead to singulari-
ties of the function Φ(z) at finite points, because

At the same time, the singularities at finite g can be self-
consistently excluded for the functions F1(g) and R(g),
as it was done above for the β function. As a result,
the behavior of the function β(g) at infinity also deter-
mines the presence or absence of renormalons in the
general case.

(6) It is clear from the above discussion that using
information only from the renormalization group, we
can establish the necessary and sufficient conditions for
the existence of renormalons,  but cannot come to
any definite conclusions. Let us compare this with
Parisi’s renormalization-group analysis [8] that under-
lies all of the recent studies devoted to renormalons [6].
If, following [8], the momentum dependence of the
Borel images is assumed to differ from the single-loop
result only by a slowly changing factor, then this ansatz
formally satisfies the equations if we expand the slowly
changing function in terms of gradients and restrict the
analysis to the local approximation. However, to study
the stability of the solution, we should  continue
the   expansion  in  gradients  and  obtain  a diffusion-
type equation. The solution is stable if the correspond-
ing diffusion coefficient is positive, which, in general,
is not the case. The extent, to which Parisi’s solution
is destroyed, is determined by the rather subtle proper-
ties of the β function, which correlates with the above
assertions.

In conclusion, let us discuss the subtle point in the
proof for the ϕ4 theory that was inadequately covered
in [7]. Any quantity defined by the perturbation
series  is  a  function    of   the  bare   charge    gB and the
cutoff parameter Λ. Passing to the renormalized charge
g gives rise to the function F(g, Λ) that contains the
residual dependence on Λ, but has the  finite limit  in
view of the renormalizability:

(21)

Φ z( ) R F 1– z( )( ) F1 F 1– z( )( )–{ } ,exp=

F 0( ) ∞, F ∞( ) ∞ for α 1≤( ).= =

F g Λ,( )
Λ ∞→
lim F g( ).=

A similar property is expected for the corresponding
Borel images:

(22)

The analyticity of the function B(z, Λ) at finite Λ in the
complex z plane with a cut from the first instanton sin-
gularity to infinity was rigorously proven previously
[7]. The function B(z) is analytic in the same domain under
the condition of uniform convergence in (22) (the
Weierstrass theorem [14]); the latter takes place if the
function B(z, Λ) is bounded (the compactness principle
for regular functions [15]). Therefore, the finiteness of
the limit in (22) is enough to prove6 the regularity of the
function B(z).

Unfortunately, the finiteness of the limits in (21) and
(22) has been rigorously proven only in terms of the
perturbation theory, i.e., not for the functions F(g, Λ)
and B(z, Λ) themselves, but for the coefficients of their
expansion  in   g  and  z.  The  proof  in  [7]  suggests
that the limits are finite at the level of   functions,  and,
in this sense, it is incomplete. However, the finiteness of
the limits in (21) and (22) is required for the existence
of true renormalizability and should be considered  as a 
necessary physical condition for it. The latter is 
closely related to the necessity of redefining the functi-
onal integrals noted above.
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