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Abstract—According to recent results, the Gell-Mann—Low function B(g) of four-dimensional ¢* theory is
nonalternating and has a linear asymptotics at infinity. According to the Bogoliubov and Shirkov classifica-
tion, it means the possibility of constructing a continuous theory with finite interaction at large distances.
This conclusion is in visible contradiction to the lattice results indicating triviality of (1)4 theory. This contra-
diction is resolved by a special character of renormalizability in ¢4 theory: to obtain the continuous renormal-
ized theory, there is no need to eliminate a lattice from the bare theory. In fact, such kind of renormalizability
is not accidental and can be understood in the framework of Wilson’s many-parameter renormalization
group. Application of these ideas to QCD shows that Wilson’s theory of confinement is not purely illustrative,
but has a direct relation to a real situation. As a result, the problem of analytical proof of confinement and a
mass gap can be considered solved, at least on the physical level of rigor.
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1. INTRODUCTION

Recent investigations of the strong coupling regime
in ¢* theory revealed an unexpected feature in its
renormalizability: the continual limit in the renormal-
ized theory does not require the continual limit in the
bare theory. We show below that such a kind of renor-
malizability has a general character and can be under-
stood in the framework of Wilson’s many-parameter
renormalization group. These results make it possible
to give a final solution to the problem of triviality or
nontriviality of ¢* theory. Application of these ideas to
Wilson’s theory of confinement shows that this theory
is not purely illustrative, but has a direct relation to real
QCD. As a result, the problem of analytical proof of
confinement and a mass gap can be considered solved,
at least on the physical level of rigor.

2. CHARACTER OF RENORMALIZABILITY
IN ¢* THEORY

According to recent results [1—4] (see also [5, 6]),
the Gell-Mann—Low function (g) in four-dimen-
sional ¢* theory is nonalternating and has an asymp-
totic behavior B(g) = 4g at g — . According to the
Bogoliubov and Shirkov classification [7] (see discus-
sion in [3]), it means the possibility of constructing a
continuous theory with finite interaction at large dis-
tances. This conclusion is in visible contradiction to

! The article was translated by the author.

the lattice results indicating triviality of ¢* theory (see
[8—12] and numerous references in [13]).

In fact, we should differentiate two definitions of
triviality. According to Wilson [8], triviality means that
integration of the Gell-Mann—Low equation

g _
Tl B(g) (1)
in the direction of large distances L gives an effective
charge g tending to zero (Fig. la); this definition
implies massless theory, since in the opposite case the
distance scale is saturated by the inverse mass. The
definition of true triviality is different (Fig. 1b). In this
case we consider the massive theory and suggest the
finite interaction g,, for L = m™'; a theory is trivial if
integration of the Gell-Mann—Low equation in the
direction of small L gives a divergency at finite L, (the
so-called Landau pole) and does not allow the L — 0
limit to be reached. Such a situation is internally
inconsistent [7] and signifies incorrectness of the ini-
tial suggestion on finite interaction at large distances;
in fact, L, — 0 if g, — 0. Wilson triviality means
that the B-function is nonnegative and has a zero only
for g = 0. True triviality needs in addition its suffi-
ciently quick growth at infinity, B(g) o« g* with a0 > 1.
According to [1—6], ¢* theory and QED are trivial in
the Wilson sense, but do not possess true triviality.

Two definitions of triviality were hopelessly mixed
in literature [13]. The reasons for it are as follows:

(a) Bogoliubov and Shirkov’s work is poorly known
to the Western community.

619



620

(@)

8o

SUSLOV

g

(b)

Fig. 1. Wilson triviality (a) in comparison to true triviality (b).

(b) It is rather difficult to test true triviality in the

lattice approach.

(¢) There exist arguments that “prove” the equiva-
lence of two definitions.

As an illustration to the latter point, consider the
following reasoning. The only alternative to the per-
turbative approach is to express all quantities related to
renormalized theory in terms of functional integrals.
The latter depend on the bare charge g, bare mass m,,
and the ultraviolet cut-off A. Taking into account their
dimensional character, we have the following relations
for the renormalized charge g, renormalized mass m,
and observable quantities A4;:

g = FJ(gp, my/N), m=AF,(g,my/N), ()

dl
A; = NF(go, my/N), (3)

where d; is a physical dimensionality of 4;. Excluding
g, and my/A in favor of g and m/A, we have

;= m"F(g m/\).

A 4

To eliminate the dependence on A we should take the
limit m/A — 0. In the lattice approach, this limit
corresponds to {/a — o (§ is the correlation length
and a is lattice spacing), i.e., to the phase transition
point. The latter is determined by a zero of the B-func-
tion, which gives g = 0 in four-dimensional ¢* theory.
In this argumentation, Wilson triviality was consid-
ered as given, while true triviality was “derived” from
it. Of course, it cannot be correct, because two defini-
tions are surely not equivalent. This shortcoming orig-

2 A definition of true triviality in the lattice approach was given in
mathematical papers [9, 10]. When the lattice spacing a tends to
zero, the bare parameters g, and m should be considered as
functions of a. A theory is nontrivial if there exists some choice
of functions gy(a) and m(a) providing finite interaction at large
distances; if such functions do not exist, then a theory is trivial.
Of course, it is rather difficult to test “existence” or “nonexist-
ence” in numerical simulations.
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inates from our assumption that a general-position sit-
uation takes place in Eq. (4): in this case we indeed
should take the limit 7 — A. This limit is unneces-
sary if dependence on m/A is absent in Eq. (4). Such a
special case fills the “gap” between the two definitions
and renders the inequivalent.

Such a special case actually holds in ¢* theory [3,
4]. Let us return to Egs. (3) and impose the condition
m <€ A, corresponding to the continuum limit of the
renormalized theory. If this condition is imposed in
the region g, > 1, then ¢* theory reduces to the Ising
model, containing the single parameter k, which plays
the role of inverse temperature [3, 4]; relations (3) take
the form

g = F(x),

A = A"E(x).

m = AF,(x),
5)

So far there is nothing unusual: the condition m/A —
0 gives a relation between g, and m,/A, so all functions
in Eq. (3) depend on the single parameter, which we
denoted as k. The nontrivial point consists in the fol-
lowing: the condition m <€ A is sufficient for transfor-
mation to the Ising model, but not necessary for it. In
fact, such transformation is possible under the weaker
conditions, which are compatible with the arbitrary
value of m/A [3, 4]. Excluding k from Egs. (5), we
obtain the equations

A

4,
i m E(g)a

(6)

which are analogous to (4), but do not contain the
parameter m/A. As a result, the program of renormal-
ization is completely fulfilled and no additional limit-
ing transitions are necessary. It means that (a) we can
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retain the lattice in the bare theory (as a convenient
tool for representation of functional integrals) and (b)
the relation between m and A (or § and a) can be arbi-
trary, so the arbitrary value of g becomes possible.

Usually, the lattice theory contains more parame-
ters than the initial field theory. For example, discreti-
zation of the gradient term in d-dimensional ¢* theory

[d5 Vo] = = [d'xo () V*6(x)

(7)
- Z‘]x—x'q)xq)x"

corresponds to the replacement of —V? = 132 by e(p),
where €(p) is a bare lattice spectrum

e(p) = Y 1™ = p’ + 00", (8)

while p is the momentum operator and exp{ip x} is the
operator of shift on the vector x. The overlap integrals
J, can be taken as arbitrary and are restricted only by
the condition (8). The interesting question arises: if we
can retain a lattice in the bare theory, then what lattice
model should be chosen?

A solution can be found from Eq. (4). Since the
dependence on m/A is absent, we can take m/A — 0.
However, in this limit (when £/a — ) there are
physical grounds for independence of functions F; on
the way of cut-off. If such independence takes place
for m/A — 0, it is retained for arbitrary m/A due to
independence of functions F; on this parameter. In
fact, this argumentation implies renormalizability of
the theory (due to which the dependence on A can be
excluded) and belonging of the lattice model to the
proper universality class (inside which the dependence
on the way of cut-off is absent).

The lattice theory is frequently considered a rea-
sonable approximation to the true field theory. In this
case we should accept the condition & > a, which sig-
nifies that there are a lot of lattice sites on the charac-
teristic scale of variation of field. This condition can be
stregthened up to {/a — oo or liberalized up to & = a.
The first case corresponds to the point of the phase
transition and gives g = 0. In the second case, we
obtain restriction g < 1 (for the proper charge normal-
ization [4]), which can be used to obtain the upper
bound on the Higgs mass [12, 14].

In fact, the lattice theory should not be considered
as any approximation to field theory, though it is pos-
sible for g —= 1. The true field theory is continuous
from the very beginning and does not contain any lat-
tice. The lattice is present only in the bare theory,
which is an auxiliary construction and is completely
removed later. No physical requirements, like & > a,
are relevant for it. If one removes the condition & > a,
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then any values of g become admissible.3 In fact, a real
designation of the bare theory is to represent the rela-
tions between physical quantities in the parametric
form (3). Such representation has no deep sense
already due to its ambiguity: it can be written in many
different forms, replacing g, and m,/A by any other
pair of variables.

We see that contradiction between the continual
and lattice approaches is resolved by a special charac-
ter of renormalizability in ¢* theory:

Correct relations (6) between physical quantities
can be obtained for the arbitrary value of the parame-
ter a/&, while the dependence on this parameter is
absent. To obtain the continuous renormalized theory,
there is no need to eliminate a lattice from the bare
theory.

3. GENERAL SITUATION
IN RENORMALIZABLE THEORIES

The interesting question arises: Is such kind of
renormalizability related with the specific properties
of ¢* theory, or it is a manifestation of some general
mechanism?

We shall see below that the second variant is cor-
rect. It can be understood in the framework of Wilson’s
many-parameter renormalization group (RG) [8].
According to it, the parameters p; of some lattice
Hamiltonian are considered as functions of the length

4
scale /. The flow of these parameters is determined by
the RG equations, which can be written in the differ-
ential form

dp;
—F— =F . 9
din(l/a) {pi} 9)
These equations can be linearized near the fixed point
p{l) = pi (forall /) (10)

and investigated by the standard methods of linear
algebra. The ordinary phase transitions are described
by the saddle points of such equations. The simplest

3 One can consider &/a > 1 as a technical condition providing a
good approximation, but it is not actual due to the absence of
&/a dependence (6). The stated point of view is in complete
agreement with mathematical definitions [9, 10], according to
which the limit ¢ — 0 is taken for the arbitrarily chosen
dependences gy(a) and my(a) (see Footnote 2). We impose con-

.. 12 22 1 22
ditions gy —> o, g, " "mya” — —oo, g, mya” = —x, neces-
sary for transformation to the Ising model [3, 4].

4 Physically it is explained by the well-known Kadanoff construc-
tion. In the description of magnetics, one begins with the micro-
scopic Hamiltonian for elementary spins in the lattice sites.
Then it is possible to introduce the macroscopic spin variables
corresponding to the blocks of size / and write the effective
exchange Hamiltonian for them. Since the blocks of size n/ can

be composed of n? blocks of size /, then recalculation p;,(/) —>
pinl) is possible, i.e., pi(nl) = Hyn, {p,())}). Taking n close to
unity, we can obtain Egs. (9).

Vol. 113 No. 4 2011



622 SUSLOV
é = const é = ®©
a a
Ideal RG ]
trajectory 7 Fixed
> point
———
K

N

Fig. 2. Simplest variant of the saddle point.

saddle point in the two parameter space (Fig. 2) has
straight-line trajectories in two main directions (one
stable and one unstable), while the rest of the trajecto-
ries are hyperbolic. For the usual phase transitions,
there are an infinite number of stable directions and
one (in the simplest case) unstable direction. The lat-
ter is related to some controlling parameter like tem-
perature, measuring the distance to the critical point.

Instead of increasing / for fixed a, we can decrease
a for fixed /. The continuum limit a — 0 of field the-
ory corresponds to the critical surface £/a = o in the
many-parameter space (Fig. 3). All trajectories at the
critical surface tend to the fixed point. The unstable
trajectory originating at the fixed point will be referred
as an “ideal RG trajectory”: along it one has exact
one-parameter scaling, which is a pipe dream in many
fields of physics (see, e.g., [15]). To define it rigorously,
let us consider the limit a — 0 with fixed &/a; then all
trajectories lying at the surface £/a = const (Fig. 3)
tend to one point (analogously to the critical surface),
while the locus of such points is the ideal RG trajec-
tory.

Let parameter k¥ measure the distance along the
ideal trajectory: then {/a (or A/m) is a function of k.
Analogously, all dimensionless quantities depend only
on k, while the dimensional quantities are measured in
units of A. As a result, we come to the equations

g = F(x), m=AF,(x), A =A"F(), (1

which coincide with (5) and give the relations (6) with
no dependence on m/A.

The above construction has the following sense. If
the limit @ — 0 is taken in the arbitrary manner, then
the system will go to infinity along the unstable direc-
tion and appear far from the critical surface, which is
our goal. Therefore, we suggest taking the continual
limit in two steps:

(a) take a limit @ — 0 for a/€ = const;

(b) take a limit a/§ — 0.
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Critical
surface

Fig. 3. Schematic of the Wilson many-parameter space.

It appears that the dependence on a in renormal-
ized theory disappears already at the first step. The
second step becomes unnecessary and we need not
take the continuum limit in the bare theory. The const
appearing in (a) is one of the possible definitions of
parameter K.

These ideas are close to those of QCD specialists,
and in fact the above consideration was partially taken
from “Introduction to Lattice QCD” by R. Gupta
[16]. This picture is discussed there in relation to
improvement in the lattice action, and the author
claims that simulations performed along the ideal RG
trajectory will reproduce the continuum physics with-
out discretization errors. It implies the absence of the
a/& dependence, in accordance with our results. Only
a final conclusion was not made, that the continuum
limit is not necessary in the bare theory. In fact, this
conclusion goes against the present-day practice in
lattice simulations, which are made in the region of
large &/a (typically £/a = 5—15) with accurate extrap-
olation to a/§ — 0.

Any RG trajectory is a line of “constant physics,”
since the RG transformation is simply a mental con-
struction, which does not affect the large-scale prop-
erties of the system. All trajectories belonging to the
critical surface and meeting at the fixed point are
physically equivalent, corresponding to the unique
continuous field theory. The ideal RG trajectory orig-
inating at the fixed point gives the equivalent represen-
tation for field theory. Let us consider the trajectory
AB, which begins near the critical surface, goes along
it, and then tends to the ideal RG trajectory (Fig. 3).
Introducing x as a distance along AB, we come to the
parametric representation analogous to (11)

g = FuR), m = AFu(R), A = A“F(%), (12)

and relations (6), independent of £/a. The choice of
small or large &/a values corresponds to the “ends” of
trajectory AB which are arbitrarily close to the critical
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surface and the ideal trajectory; hence, the obtained
relations (6) correspond to continual theory. However,
the parametric representation (12) is essentially differ-
ent from (11) and is not reduced to the change of vari-
ables k = f(x ). To understand it, let us retain the defi-
nition of k as a distance along the ideal trajectory and
assign it to the point of AB, corresponding to the same
value of £/a. Then the second relation (12) will be the
same as (11), but the other two relations remain differ-
ent:

g = F(x), m=AF,(x), 4 =A"F(x).(12)

Indeed, the charge g usually belongs to irrelevant
parameters and we can introduce “the axis of charges”
at the critical surface; the fixed point corresponds to
g =0. Ifthe limit a/§ — 0 is taken along the ideal tra-
jectory, then g — 0. If this limit is taken along AB,

then the arbitrary function g = F, (k) in (12') is possi-
ble: it depends on the direction of 4B relative to the

axis of charges. The functional relation between g and
K becomes indeterminate and can be omitted.

As a result, the renormalized and bare sectors of
theory become decoupled. The renormalized sector
contains relations (6), where g and m are considered
independent variables. The bare sector contains only
relation a/§ = m/A = F,(x), which determines k as a
function of a and is irrelevant from the viewpoint of
physics. Parameter a/& becomes absolutely free.

The set of different trajectories AB defines the uni-
versality class of the corresponding field theory. Such
trajectories fill the whole space if the critical surface
and the ideal RG trajectory are unbounded. In fact,
the critical surface is certainly restricted in some direc-
tions, because there are a lot of such surfaces corre-
sponding to different phase transitions. To obtain the
correct relations (6), there is no need to construct the
ideal RG trajectory: it suffices to find the arbitrary tra-
jectory like AB, belonging to the same universality
class.

As a result, we come to the following conclusion:

Renormalizable theory of the considered type
allows representation in the form of lattice theory,
which gives the correct relations between physical
quantities and contains free parameter a/§, which
does not enter these relations.

4. APPLICATION TO THEORY
OF CONFINEMENT

QCD with one sort of quarks contains two param-
eters, interaction constant g and the quark mass m.
Its renormalization properties are analogous to those
of ¢* theory or QED and are expressed by the rela-
tions (3), (4); in fact Section 3 is axiomatic for study
of such theories. We restrict our discussion to a theory
without quarks, i.e., the pure Yang—Mills theory; then
the quark mass is not included as a parameter and the
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Fig. 4. Gell-Mann—Low function of the Yang—M ills the-
ory in the cut-off scheme.

theory does not contain any natural mass scale. To
avoid specific difficulties related to such a situation,
we introduce the “extended version” of the Yang—
Mills theory, where the role of the bare quark mass m,,
(more exactly, the ratio m,/A) is played by some auxil-
iary parameter p characterizing the lattice theory; as a
renormalized mass, we accept the mass m of the light-
est glueball (the bound state of several gluons), while
the correlation length & is defined as m~!. Thereby, two
bare parameters g, and p provide the observable values
for renormalized g and m (g corresponds to the
momentum scale m). In order to return to the standard
variant of the theory, we should remove the introduced
extra degree of freedom by fixing one relation between
observable quantities. However, it can be done at the
late stage (see the end of Section 4), while the main of
analysis is produced for the “extended version,” which
is analogous to ¢* theory.

According to Wilson [17], confinement can be
proved in the lattice version of the Yang—Mills theory
for a large value of the bare charge g,. The interaction
energy for two probe quarks, separated by a distance R,
is (R) = o R, while the string tension o and the glue-
ball mass m are given by expressions [16—18]

nGg) . _ 4In(3g)

b
a a

(13)

In spite of the evident success, the Wilson theory is
considered purely illustrative and having no relation to
real QCD. As was indicated by Wilson himself, his the-
ory corresponds to the situation

E<<a or m> A, (14)

which is considered unphysical. An attempt to
advance into the physical region inevitably destroys
the strong coupling regime. Indeed, fixing o to its

observable value, we have gé (a) = (1/3)exp(ca?) and
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substitution to the Gell-Mann—Low equation in the
cut-off scheme [19]

dg; 2 4 6
—% = B(g0) = Pogo+Pig+ -
dlna

(15)

gives ﬁ(gé ) = —gé ln(3g§ ) for large g, [20]. Together
with a negative sign of 3, and [, it implies the negative
B-function for all g, (Fig. 4); the lattice results confirm

this conclusion (see also [21]).5 In this case g, tends to
zero in the continuum limit @ — 0. It does not mean
triviality of the theory, because the behavior of gy — 0
is compatible with the finite value of the renormalized
charge g, as can be seen from the one-loop result for
L — oo,

2 g2 1
0 = B —
1+ |Bolg’ InA?/m’ Bo|InA*/m’

—. 0. (16)

Triviality is avoided, but the strong coupling regime is
inevitably destroyed and Wilson’s theory becomes
inapplicable. The standard point of view is based on
the argument that the strong coupling and weak cou-
pling regions are not separated by the phase transition
point and the Wilson picture can be extended qualita-
tively to the region & > a. This argument is confirmed
by numerical simulation but of course cannot be con-
sidered as a proof.

The situation changes drastically if we use repre-
sentation (5), (6) introduced in the previous sections.
In this case:

(1) We do not need to take the continual limit in the
bare theory, so g, remains finite.

(2) Due to absence of the £/a dependence, this
parameter can be taken as arbitrary: it eliminates
objections against the unphysical regime in Wilson’s
theory.

(3) Experience of ¢* theory shows that there is no
direct relation between the bare and renormalized

6
charge: representation (5) is rigorously introduced in
the limit g, — oo (see Footnote 3), while g remains to
be a finite function of k [4]. With some reservations,

3 The difference between the Abelian and non-Abelian cases
arises in this point. It is well-known that Wilson’s proof of con-
finement is equally valid for Abelian theories like QED [16].
Therefore, the B-function in QED has the same strong coupling
behavior as in QCD (see Fig. 4), but appears to be positive for
small gy. As a result, the existence of the fixed point is inevitable
and the regions of small and large g, are separated by the phase
transition point. The subsequent considerations are equally valid
for QED but refer to its unphysical branch. Strictly speaking, we
cannot prove that QCD does not have the unphysical branch
without confinement, but in any case the variant with confine-
ment is preferred on physical grounds.

6 Usually it is accepted that g, coincides with the renormalized
charge g taken at the scale A; it is valid only if g < 1 and gy < 1
simultaneously.
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the same property is valid in the Yang—Mills theory.
Rewriting the second expression (13) in the form

g2 = lexp(nﬂ) = lE?Xp i
*7 3 4 370 |4

we see that, independently of renormalized values of g
and m, it is possible to choose the free parameter a/g
so as to obtain a sufficiently large value for g,. Then
Wilson’s theory becomes applicable and the first rela-

(17)

7
tion (13) gives a finite value for o, i.e., confinement.

We have used the relations (13), which are valid for
the simplest Wilson action [16—18]. However, the lat-
ter is not suitable for our purposes due to a trivial fact
that it does not contain the sufficient number of
parameters. To obtain the observable values of ¢ and m

-2 -1
c =a fi(&), m=a f,(&), (18)
one should fix both g, and a; but the fixed a means that
it is impossible to introduce representation with free
parameter a/&. Therefore, we should consider some
generalizations.

The simplest Wilson action [16—18]

1 .
S = —GZWID : (19)

g0|:|

is the sum over all plaquettes (1 of size 1 x 1, where the

plaquette contribution W‘DX ' is determined by a prod-

uct of matrices attributed to the sides of a plaquette. In
the contemporary investigations, more complicated
forms of the action are used which contain contribu-
tions of m x n plaquettes [16]:

s=lyyem

8o O myn

(20)

The coefficients C,,, sufficiently quickly decrease with

an increase in m and n.8 If a contribution of the n x n
plaquette is dominant in the sum, we obtain Eq. (13)
with na instead a. It is clear that generally we will have
the effective averaging of (13) over a in some finite lim-

7 As opposed to the standard point of view (see the text after
Eq. (16)), we do not try to justify the smooth crossover between
the strong coupling and weak coupling regions but establish
crossover between the a < £ and a > & regimes. The latter cross-
over is trivial due to the absence of dependence on a/§,.

8 To understand this point, let us return to Eq. (8). The exchange
integrals J, should fall with |x| in an exponential manner, so that

the bare spectrum €(p) can be regularly expanded in p. Analo-
gous arguments can be given for the Yang—Mills theory.
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its from a,,;, = a till a,,,, = ka. As a result, relations
(13) will have the form

2 2
In(3 4In(3
c = n( gO)’ m = n( gO)’ (21)
2 a
a; 2
where a, = k,a, a, = k,a simply by dimensional rea-
sons. These modifications do not affect the qualitative
conclusions made above.

Relation (6) for ¢ has the form

o = mFy(g), (22)

so gis functionally related to o/m?. Equations (21) give

2
G a,

m’ B 16a?1n(3g§)’

(23)
and for a, ~ a, the ratio 6/m? is small in the strong cou-
pling region. It means that only a restricted range of g
values can be reproduced. Such a restriction is natural
due to the physical essence of the problem. Indeed, the
linear confinement potential is expected only at large
distances, where g is certainly not small; hence, small
values of g are inaccessible in the Wilson regime. On
the contrary, the restricted range of 6/m? values goes
against the logic of the theory. Indeed, a/¢ is a free
parameter and all physical results can be obtained
(analytically or not) at its arbitrary value. In the case
a/€ > 1, the regime of confinement is controlled ana-
Iytically and any physically accessible value of c/m?
should be possible in this limit. Probably, the range of
o/m? values can be extended if we use the models with

essentially different a, and a2.9 Absence of restrictions
on 6/m? in the presence of restrictions on g is possible
only if 6/m? has a maximum as a function of g; fortu-
nately, we can demonstrate that it is really the case.

Investigations of complicated lattice versions of the
Yang—Mills theory [16] show the existence of phase
transitions (lying in the region g, ~ 1), corresponding
to vanishing of the lightest glueball mass m, with finite
values of o and other mass parameters. These transi-
tions are considered as lattice artifacts, since they do
not survive in the continuum limit ¢ — 0, when
gy — 0. In our approach the limit @ — 0 is not nec-
essary and such phase transitions acquire physical
sense. Their existence means that the dependence
o/m?* = F(g) is singular (Fig. 5) and provides accessi-

9 Such models certainly exist. If the contribution of plaquette 1 x
n dominates in the sum of (20), then usual tiling of the Wilson

loop or correlational tube [16, 18] gives a? = naz, a, = na, and

the right-hand side of Eq. (23) is n times greater than for the

Wilson action. To understand which values of cs/m2 are actually
accessible, it is necessary to investigate, does the strong coupling
regime still correspond to condition gy > 1 or it is replaced by
the more general n-dependent condition.
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Fig. 5. Dependence of cs/m2 against g. In order to obtain
the special values cg’), corresponding to zero values of

the mass gap, one should mark all stable fixed points g(i)
on the horisontal axis and make a construction shown in
the figure.

bility of arbitrary 6/m? values, retaining the restriction
on values of g.

Existence of points with m = 0 in the parametric
space means that the extended version of the Yang—
Mills theory does not possess the mass gap. To elimi-
nate this defect, we should return to the standard vari-
ant of the theory, fixing one relation between observ-
able quantities. The character of such relations is well
known and is determined by the so-called “dimen-
sional transmutation” [16, Section 14.1], [22, Sec-
tion IV.6]. If we have A = a*f(g,) for the observable
quantity A, then its independence of @ means

dA_ o wdf (g0)dgg
1o " M (&) +a ig da
_ d
= o [wie - 2225 | = o,
dg;

where Eq. (15) is taken into account. Integration of
the obtained equation for f(g,) gives

dg;
B(g0)

i.e. all quantities of the same dimensionality differ
only by a constant factor, independent of g,. For our
purposes it is convenient to accept the condition

A= consta”exp{%B(gé)}, B(g) = I

(24)

which defines the one-parameter family of Yang—
Mills theories with different values of the structural

cs/m2 = ¢,
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10
constant ¢. Under condition (24), the points with
m = 0, ¢ = const become inaccessible.

It does not yet prove the existence of a mass gap,
since ¢ and m can vanish simultaneously. In order to
analyze such situations, consider the Gell-Mann—
Low equation for the renormalized charge g attributed
to the scale m:

d 2
dlg - = B(g) = Bog' +Big + ..,
nm

(25)

where the B-function does not coincide with (15), but
has the same first coefficients B, and f3;. It is clear that
value g* (Fig. 5) is a root of B(g?); generally, it has sev-
eral roots determining the RG fixed points. In the
limit m — 0, the charge g tends to one of these fixed
points, while the following variants are possible for
o/m* (a) 6/m* — «, (b) 6/m> —= 0, (¢) 6/m* — ¢,
The first two variants are incompatible with Eq. (24),
while the third variant is possible in the case ¢ = ¢,. If

there are several stable fixed points g2, then there are

several special values cff) (see Fig. 5) for which the

mass gap vanishes; for all other values of ¢ the mass gap
is finite.

11
Physically, it looks most probable that only one
fixed point g* with 6/m? — oo is present, so no special

values cff) arise. Mathematically, an infinite number of

fixed points can be suggested, which form a sequence
cf,i) everywhere dense in the interval (0, «). However,
small values of 6/m? correspond to the Wilson regime
where finiteness of ¢ and m is verified immediately. As
a result, the proof of the mass gap is complete for small

values of the structural constant c.1 The real perspec-
tive to strengthen this statement is outlined in Foot-
note 9.

It is worthwhile to indicate the papers [6, 23],
which deal with B-functions close to (25). Paper [23]
considers B(g?) defined in the MS scheme, where dif-
ferentiation in (25) is performed over an arbitrary
momentum scale p; the behavior of B(g?) = B..g>* with

10 The extended theory corresponds to the set of all “standard”
theories with different ¢ values.

I Calculation of B functions in different theories [5, 21] shows
that they usually have the simple behavior interpolating between
strong coupling and weak coupling regime.

1215 fact, we have suggested that the extended Yang—Mills theory
belongs to the type considered in Section 3. Motivation for this
is as follows. The bare Yang-Mills theory contains the single
parameter g, immediately related to the unstable direction. We
can extend the theory along the stable directions in the many-
parameter space; if there are unstable directions, we can artifi-
cially forbid extension along them. Indeed, additional essential
parameters correspond to a theory that is more general than the
Yang—Mills theory; such theories certainly exist, but they are
not a subject of our consideration. We see that belonging of the
extended Yang-Mills theory to the type considered in Section 3
can be accepted axiomatically.
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o =~ —13 is obtained for large g, while the sign of B,
remains indefinite, so the existence of fixed point is
one of the possible variants. An alternative definition
of B(g?) can be obtained in QCD if g is attributed to the
scale of the quark mass m; if g is defined through the
quark-gluon vertex, then calculation of the asymptot-
ics for the B-function can be performed in complete
analogy to QED [6], giving the result B(g?) = g* with
necessary existence of a fixed point. We have seen
above the existence of fixed point when the glueball
mass m was making the scale. The listed definitions of
B(g?) are technically different, but they physically cor-
respond to the same dependence of renormalized

13
charge on the length scale. The physical sense of
existence of the fixed point was clarified above.

If quarks with zero malss14 are introduced, then the
regime of dimensional transmutation is conserved and
the trick with extension of theory remains actual; it
seems, that the general structure of theory is also
retained.

Final conclusions are as follows:

Whatever the properties of the continuous Yang—
Mills theory, there exists a lattice theory that repro-
duces them. The bare charge g, in this lattice theory
can be taken as arbitrary and, in particular, infinitely
large. Any reasonable lattice version of the Yang—M ills
theory gives finite values of @ and m in the strong cou-
pling limit. Vanishing of ¢ and m is possible for excep-
tional configurations in the many-parameter space,
which are avoided in the general situation. As a result,
the problem of analytical proof of confinement and
the mass gap can be considered solved, at least at the
physical level of rigor.
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