
ISSN 1063�7761, Journal of Experimental and Theoretical Physics, 2012, Vol. 114, No. 1, pp. 107–117. © Pleiades Publishing, Inc., 2012.
Original Russian Text © I.M. Suslov, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 141, No. 1, pp. 122–134.

107

1 1. INTRODUCTION

The contemporary situation in investigating
Anderson localization is characterized by the fact that
the results of numerical modeling (see [1]) contradict
all other information on the critical behavior [1–3].
Such situation is unacceptable, since it undermines
the belief in analytical theory.

The critical behavior of conductivity σ and the cor�
relation length ξ

(1)
(τ is the distance to the transition point) obtained from
Vollhardt and Wölfle’s self�consistent theory of local�
ization by [4, 5], has the form

(2)

(d is the dimension of space), and in fact summarizes
all known results. Indeed, formula (2)

(a) distinguishes values dc1 = 2 and dc2 = 4 as the
lower and upper critical dimensions, which are known
from independent arguments (see [2, 6] for details);

(b) agrees with the theory for d = 2 + � [7],

(3)

(c) satisfies the Wegner scaling relation s = (d – 2)ν
[8] for d < dc2;

(d) gives independent of d critical exponents for d >
dc2, as is typical for mean�field theory;

1  The article was translated by the author.
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(e) agrees with the results ν = 1/2 [9, 10] and s = 1
[11] for d = ∞;

(f) agrees with the experimental results s ≈ 1, ν ≈ 1
for d = 3, obtained by measuring the conductivity and

dielectric susceptibility [12, 13].
2

It is clear that the Vollhardt and Wölfle theory gives
at least a very successful approximation that satisfies
all general principles and reproduces all known results.
Moreover, the suspicion arises that result (2) is exact

[14].
3
 This conjecture is supported by [16], where

Eq. (2) is derived without model approximations on
the basis of symmetry analysis.

As for numerical results [17–31], they can be sum�
marized by the empirical formula ν ≈ 0.8/(d – 2) + 0.5
[25], which has evident fundamental defects. Recent
developments make the situation even worse, giving
for d = 3 values of ν = 1.54 ± 0.08 [24], ν = 1.45 ± 0.08
[26], ν = 1.40 ± 0.15 [27], ν = 1.57 ± 0.02 [29], etc.

In our opinion, this means the existence of serious
defects in conventional numerical algorithms. It is not
reasonable to question the raw data that have been
obtained independently by many groups; however, it is
possible to doubt the algorithms themselves, which are
not based on any serious theory. In particular, there is

2 Paper [13] is especially interesting, since the experiment has
been performed for nondegenerate electron gas and the influ�
ence of interaction can be controlled explicitly.

3 According to Wegner [15], the term �2 in (3) is finite and large
negative. However, this result was derived for the zero�compo�
nent σ�model, whose correspondence with the initial disordered
system is approximate and valid for small �; so a difference can
arise in a certain order in �.
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a possibility of rough violation of scaling [32] or the
existence of a large characteristic length scale [3, 33].

In the present paper, the following approach is
accepted. We suppose that the Vollhardt and Wölfle
theory (Section 2) is correct (there are real grounds for
such an assumption [16]) and derive the quantities that
are immediately “measured” in numerical experi�
ments. Then comparison can be made on the level of
the raw data, avoiding the suspicious treatment proce�
dure.

We restrict the discussion to the popular variant of
finite�size scaling based on consideration of auxiliary
quasi�1D systems [34]. Thus, instead of the infinite 3D
system, we consider the system of size L × L × Lz,
where Lz  ∞. Such a system is topologically one�
dimensional and does not possess long�range order, so
the corresponding correlation length ξ1D is finite. If ξ1D

can be calculated, then its dependence at L  ∞
makes it possible to reveal phase transitions in the ini�
tial 3D system: it appears that ξ1D/L  ∞ in the phase
with long�range order and ξ1D/L  0 in the phase
with short�range correlations [32, 34]. In the numeri�
cal studies, the following scaling relation is usually
postulated

(4)

It is based on the assumption that the correlation
length ξ of the considered d�dimensional system is the
only essential length scale, so L enters only in the
combination L/ξ. If this relation is valid, then the
quantity ξ1D/L depends on L in accordance with
Fig. 1: it remains constant at the critical point, while
all curves for τ > 0 (and correspondingly τ < 0), it can
be reduced to one universal curve by scale transforma�
tion. If two curves for τ = τ1 and τ = τ2 are calculated,

ξ1D

L
������ F L

ξ
���⎝ ⎠
⎛ ⎞ .=

then the scale transformation makes it possible to
determine the ratio of two correlation lengths. Taking
succession τ0, τ1, τ2, …, we can determine ξ(τ) apart
from the numerical factor and investigate its critical
behavior.

We demonstrate below that scaling relation (4) is
indeed valid in the limit of large ξ and L for space
dimensions d < 4, while calculation of the scaling
function F for d = 2 and d = 3 shows a good agreement
with numerical results (Section 3). It signifies that the
Vollhardt and Wölfle theory is confirmed on the level
of raw data. Section 4 clarifies why values of the expo�
nent ν in the numerical experiments for d = 3 are
always greater than unity: in the vicinity of the critical
point the scaling parameter ξ1D/L behaves as τ(L + L0)
with L0 > 0, which is conventionally interpreted as
τL1/ν with ν > 1.

For higher dimensions, the scaling relation (4)
cannot be correct, and it can be stated on the level of a
theorem. The problem of the Anderson transition can
be exactly reduced to the φ4 field theory [6, 35–37],
which is non�renormalizable for d > 4 [38, 39]. There�
fore, the ultraviolet cut�off (i. e. atomic scale) cannot
be excluded from results, and ξ is certainly not the
only relevant length scale. However, it is possible to
derive the modified scaling relations

(5)

with

(6)

and

(7)

demonstrating the incorrectness of conventional data
treatment for d = 4 and d = 5 [1], but establishing the
constructive procedure for such treatment (Section 5).
Modified scaling (5) with

(8)

can also be derived for d = 4 – � dimensions. It can be
used for alternative treatment at d = 3, in order to esti�
mate the systematic errors related to the possible exist�
ence of the large length scale. Finally, in Section 6 we
discuss some consequences of the present analysis for
other variants of finite�size scaling.
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Fig. 1. Dependence of scaling parameter ξ1D/L on trans�
versal size L of the system.



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 114  No. 1  2012

FINITE�SIZE SCALING FROM THE SELF�CONSISTENT THEORY OF LOCALIZATION 109

2. VOLLHARDT AND WÖLFLE THEORY

The Vollhardt and Wölfle theory is based on the
existence of the diffusion pole in the irreducible four�
leg vertex Ukk'(q),

(9)

entering the Bethe–Salpiter equation and playing the
role of the scattering probability Wkk' in the quantum
kinetic equation. Neglecting the spatial dispersion of

the diffusion coefficient
4 and using the estimate in the

spirit of the τ�approximation, D ∝ , where 
is averaging over momenta, we arrive at the self�con�
sistency equation of the Vollhardt and Wölfle theory

(10)

It can be obtained by approximate solution of the
Bethe–Salpiter equation [4], or by accurate analysis of
the spectral properties of the quantum collision oper�
ator [16]. It can be written in a physically clear form if
the coefficients are estimated for weak disorder (which
is actual for lower dimensions) and the following situ�
ation near the band center in the Anderson model is
implied:

(11)

Here E is the energy of the bandwidth order, W is the
amplitude of disorder, Λ is the ultraviolet cutoff, and
Dmin is the characteristic scale of the diffusion coeffi�
cient corresponding to minimal Mott conductivity.
Generally, some monotonic function of W appears in
the left�hand side, but it is not essential for subsequent
considerations.

Let us introduce the basic integral

(12)

which can be estimated for m � Λ as

(13)

4 Such a possibility was justified in [16]. Attempts to relate the
spatial dispersion of the diffusion coefficient with the multifrac�
tality of wavefunctions [41] ignore the complex�valuedness of
the diffusion coefficient and its complicated rearrangement near
transition [42].
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where

(14)

and Kd = [2d – 1πd/2Γ(d/2)]–1 is the surface of the d�
dimensional unit sphere divided by (2π)d. The metallic
phase is possible when the value of I(0) is finite, i.e.,
for d > 2. Accepting D = const > 0 for ω  0 and
specifying τ as a distance to transition, we have

(15)

i.e., the exponent of conductivity is unity, in agree�
ment with formula (2). In the dielectric phase we per�
form the substitution

(16)

where ξ is the correlation length. Then Eq. (11) gives

(17)

with the exponent ν defined by Eq. (2). In what fol�
lows, we accept a = Λ–1, so that a is the atomic length
scale, not necessarily coinciding with the lattice spac�
ing.

3. SCALING FUNCTIONS FOR d < 4

3.1. Definition of Scaling Functions

For description of quasi�1D systems, it is sufficient
to represent the basic integral (12) in the following
form:

(18)

where d�dimensional vector q = (q1, q2, …, qd) is
replaced by its transversal and longitudinal compo�
nents

(19)

and the former is considered discrete, running the
usual allowed values. The term with q⊥ = 0 has diver�
gence m–1 for m  0, so that the system is always
localized.

cd
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After integration over q||, the following decomposi�
tion is convenient:

(20)

We separate the term with q⊥ = 0, while the remaining
sum is rearranged by subtraction and addition of the
analogous sum with m = 0. In the first term, we trivi�
ally have

(20')

The second term can be transformed by taking the
limit Λ  ∞ and substituting q⊥ = 2πs/L, where s =
(s1, …, sd – 1) is a vector with integer components si = 0,
±1, ±2, …:

(21)
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The third term can be estimated at L  ∞ by replac�
ing the summation by integration. For finite L and d >
2, it has the structure

(22)

Substituting formulas (20)–(22) in the self�consis�
tency equation (11), we have for d > 2

(23)

where we replace

(24)

in agreement with definition (15), since b0 corre�
sponds to I(0), calculated in the integral approxima�
tion. Expressing τ through the correlation length ξ of
the d�dimensional system (ξ–1/ν ~  = ±τ) and omit�
ting the terms dissapearing at a  0, we have

(25)

(26)

i.e., scaling relation (4) between variables ξ1D/L and
ξ/L, consisting of two branches.

For d = 2, instead of (22), we have

(22')

and, using the result from Section 2,

we obtain the scaling relation in the form

(27)

with the previous definition of H(z). The functions
H(z) for d = 2 and d = 3 are presented in Fig. 2, where
b1 = 0 was taken.

3.2. Two�Dimensional Case

For d = 2, the constant b1 can be eliminated by
changing the scale for ξ (see below) and we can take
b1 = 0. The asymptotics of H(z) for z � 1 is determined
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Fig. 2. Function H(z) for b1 = 0 in two and three dimen�
sions.
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by the last term in Eq. (26), while for z � 1, the sum in
Eq. (26) can be replaced by the integral

(28)

so that we have in variables y = ξ1D/L and x = ξ/L

(29)

The relation between x and y for their arbitrary values
can be found by the numerical calculation of the sum
in (26).

The definition of ξ1D and ξ in the Vollhardt and
Wölfle theory does not coincide with one used in
numerical experiments. In the former case, ξ2 (and

analogously ) is defined as an average  for the
localized eigenfunction ψ(r) [16]. In the latter case, we
mean the definition through the asymptotic behavior
exp{–r/ξ} of the correlation functions, since ξ1D is cal�
culated as inverse to the minimal Lyapunov expo�

nent;
5
 the scale of ξ in numerical experiments is arbi�

trary from the very beginning. Therefore, in compar�
ing the theory with numerical results, the scales of ξ1D

and ξ should be chosen from the best agreement; in
log–log coordinates, such fitting reduces to parallel
shifts along two axes. The general form of the scaling
curve is determined without adjustable parameters.

In Fig. 3, the calculated dependence of ξ1D/L on
ξ/L is compared with the pioneer results by MacKin�
non and Kramer [18] and the subsequent paper by
Schreiber and Ottomeier [19], which is cited as the
most detailed investigation of 2D systems in the frame�
work of this algorithm.

3.3. Three�Dimensional Case

The given definition of the sum I3(0) implies the
choice of cut�off in the form of the cilindrical domain
(  < Λ,  < Λ). It can be also defined for the

spherical (  < Λ) and cubical (  < Λ) regions:

5 In general, correspondence between ξ1D and the minimal
Lyapunov exponent is not so straightforward [32]; in the present
paper, we ignore such complications.
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Fig. 3. Comparison of the theoretical scaling curve for d =
2 with numerical results by MacKinnon–Kramer [18,
Fig. 2a] (a) and Schreiber–Ottomeier [19, Fig. 4] (b).
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Numerically we have for these three cases

(31)

i.e., the value of b1 is not universal but depends on the
way of cutoff. The change of this constant allows mak�

I3 0( )

0.0618Λ 0.180L 1–
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⎪
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⎪
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=

ing the scaling curve more symmetric, or less symmet�

ric; it was chosen from the best agreement,
6
 though its

variation in the interval (–0.3, 0) does not significantly
affect the results. As in the 2D case, the absolute scales
for ξ and ξ1D are not fixed by the theory.

Using the asymptotic behavior of H(z)

(32)

we have in variables y = ξ1D/L and x = ξ/L

(33)

where z* and y* = 1/z* are the z and y values at the
critical point. The same relation, considered in vari�
ables y and 1/x, determines the L dependence of the
scaling parameter (Fig. 1), giving two universal curves
for τ > 0 and τ < 0, to which all other curves are
reduced by the scale transformation:

(34)

In Fig. 4, the obtained scaling curves are compared
with the early results by MacKinnon–Kramer [18]
and the more precise results by Markos [1]. In the
former case, the agreement is satisfactory; in the latter
case, there is a discrepancy on the level of two to three
standard deviations. However, we should bear in mind
how the scaling curves are constructed: the L depen�
dences for different τ are “measured” in the interval
(Lmin, Lmax), and then they are fitted to each other by
changing the scale (Fig. 5). The full scaling curve is

6 The fitting was done by hand (using several reference points)
and probably is not optimal.
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Fig. 4. Comparison of theoretical scaling curves for d = 3
with numerical results by MacKinnon–Kramer [18,
Fig. 2b] (a) and Markos [1, Fig. 53, right] (b). The values
b1 = –0.240 and b1 = –0.0718 were used in the former and
the latter case correspondingly.
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Fig. 5. Construction of scaling curves.
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never present in one experiment, and only separate
fragments of it are measured. It is clear from Fig. 4b
that the change in scale along the horizontal axis
(reduced to a parallel shift in logarithmic coordinates)
allows satisfactory fits for the left, right, or middle por�
tion of the curve. It appears that there are no serious
contradictions to the Vollhardt and Wölfle theory on
the level of raw data.

4. DISCUSSION OF THE SITUATION AT d = 3

The interesting question arises: if the Vollhardt and
Wölfle theory describes the raw data successfully, then
why do all numerical experiments give ν > 1 for d = 3?

The history of this question goes back to two papers
[17] and [18] by MacKinnon and Kramer, based on
the same array of the data. The first of them gives the
result

(35)

compatible with the value ν = 1; the second paper
confirms this result for a certain fitting procedure, but
reports the “more precise” result

(36)

corresponding to the most extremal of present�day
values. The first result is based on the analysis of the
scaling curve, whose compatibility with the Vollhardt
and Wölfle theory is clear from Fig. 4a and has been
confirmed by the authors themselves. Further, they
indicate that scaling is not satisfactory in the small
vicinity of the critical point, and this vicinity was dis�
carded in their treatment. In fact, such a situation is
natural, because the small vicinity of the transition is
strongly affected by scaling corrections (see Eq. (23));
the latter are small in magnitude but should be com�
pared with the small value of τ. However, the authors
of [17, 18] estimated this situation as internally incon�
sistent and suggested another treatment procedure,
which is specially based on analysis of that small
region where scaling is absent. Already at this stage it
is possible to understand that the latter procedure is
unsatisfactory.

Indeed, using systems of restricted L size, we can
work straightforwardly only in the regime ξ � L, since
in another case, the correlation functions are strongly
affected by the finiteness of the system. The use of
finite�size scaling allows “jumping over the head” and
to advance to the region ξ � L; however, it is possible
only if (a) scaling exists theoretically and (b) it is
observed empirically. If either of the two conditions is
violated, no such advancement is possible and no
experimental information can be obtained on the large
ξ region: any manipulations in this region become
irrelevant. This conclusion is valid in respect to result
(36), since absence of scaling is admitted by the
authors. The same conclusion follows from common
sense: if value ν = 1 is compatible with the scaling

ν 1.2 0.3,±=

ν 1.50 0.05,±=

curve, then it is all the more compatible with the raw
data (see the end of Section 3). However, this value is
rejected by result (36), and hence the latter should be
qualified as essentially incorrect.

The indicated tendencies were continued in other
papers. The treatment based on the scaling curves gave

rather conservative estimates,
7 which are not very dif�

ferent from (35). Results close to (36) were stabilized
only when the control of scaling was no longer imper�
ative and the analysis of small vicinity of the critical
point was generally accepted.

The latter procedure is based on representation of
(4) in the form

(37)

i.e., the regular expansion in τ is used, motivated by
the absence of phase transitions in quasi�1D systems;
then the derivative over τ behaves as L1/ν and gives the
exponent ν straightforwardly. Such treatment is cor�
rect if the scaling relation (4) is exact. However, it is
not exact: linearization of (23) gives

(38)

Differentating over τ and excluding  from the
right�hand side in the iterative manner, we have

(39)

Producing subsequent iterations and taking into
account further corrections to scaling, we have the fol�
lowing structure of the result:

(40)

which can be obtained from the general considerations
based on the Wilson renormalization group [2].

In three dimensions, the main scaling correction in
(39) reduces to a constant and hence

, (41)

where the terms dissapearing at L  ∞ are neglected.
It is clear from Fig. 6a that Markos’ numerical data [1]
are excellently fitted by (41). The author himself inter�
preted them in accordance with (37) and also had
good fitting (Fig. 6b).

Such ambiguity of interpretation has a general

character. If the combination A1  + A2  can be

7 As was discussed in [22], the estimate of ν depends on the frag�
ment of the scaling curve used for fitting.
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linearized in log–log coordinates with the average
slope (β1 + β2)/2 and the accuracy �, then variation
β1  β1 + δ, β2  β2 – δ preserves the linearity at

the same level of accuracy, up to  � /2. If
several terms are retained in formulas (40), the situa�
tion becomes absolutely uncontrollable: nonlinear fit�
ting with minimization of χ2 reveals the huge number
of minima, and the most in�depth of them is not nec�
essarily correct; a vicinity of any minimum is accept�
able if it satisfies the χ2 criterion. Analysis of all such
minima is impossible, and there is no honest proce�

dure to deal with such a situation.
8 In conclusion,

conventional treatment is heavily based on the
assumption that only the main term in (40) is essen�
tial; the problem of fitting becomes hopeless if addi�
tional terms are not negligible.

In the framework of the Vollhardt and Wölfle the�
ory, we have a completely consistent picture. The
quantity L0 violates scaling and empirically has a
rather large value, L0 ≈ 5 (in lattice units). Good scal�
ing is possible only for L � 5, and even for the largest
systems (L = 20–30), deviations from scaling are
described by the parameter L0/L ~ 0.2; so discrepan�
cies in Fig. 4b should be of no surprise. The theoretical
value of L0 is of the order Λ–1 with the coefficient
depending on the way of cutoff; it is essential that L0 is
positive and limited from below by the atomic scale.

8 These questions were discussed [2] in relation to [29]. Neverthe�
less, this paper continues to be cited [1] as a prominent achive�
ment.

δ β1 β2–

5. SCALING FOR HIGHER DIMENSIONS

5.1. Dimensions d > 4

For d ≥ 4, the sum I2(m) is divergent at the upper
limit and the cutoff parameter Λ cannot be considered
infinite. For accurate transformation, we introduce
the scale Λ1, such as

, (42)

and divide summation in I2(m) into two regions  <

Λ1 and  > Λ1. In the first region we use the fact that

 � Λ, since

(43)

and

(44)

i.e., the result is obtained analytically (in the main
approximation) for the arbitrary relation between m
and L–1. Indeed, for m � L–1, the sum is estimated by
the integral converging at the lower limit already for

m � Λ1 � Λ
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Fig. 6. Numerical data by Markos for z1 = 2L/ξ1D in the small vicinity of the critical point [1, Fig. 53, left] and their fitting by
dependences (L + L0) (a) and L0.63 (b).
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m = 0; so, finiteness of m gives only small corrections.
In the case m � L–1, the main effect from finiteness of
L is related to the absence of the term q⊥ = 0, which
can be estimated as restriction  � L–1 in the inte�
gral approximation.

In the region  > Λ1, we make use of condition

 � m and produce expansions in m/ ; after sep�

aration of the factor m2, we can set m = 0 in the sum
and estimate it by transformation to the integral

(44')

where c depends on the way of cutoff; dependence on

Λ1 dissapears in the sum  + .

The results for I1(m) and I3(0) are the same as in
Section 3. The self�consistency equation takes the
form

(45)

Substituting τ ∝ ξ–2 and introducing variables

(46)

we obtain the scaling relation in analytical form:

(47)

where all coefficients are made equal to unity by redef�
inition of the scales for ξ1D and ξ. Relations (46), (47)
contain the atomic scale a, as was expected from the
nonrenormalizability of the theory (Section 1).

According to (46), (47), the role of the scaling
parameter is played by quantity y instead of ξ1D/L; the
L dependence of y is analogous to Fig. 1; i.e., all curves
corresponding to τ > 0 and τ < 0 can be reduced to two
universal ones by the scale transformation. The transi�
tion point corresponds to y = 1, since

(48)

and the critical point cannot be fixed by the condition
ξ1D/L = const.

5.2. Four�Dimensional Case

In the case d = 4, we analogously have

(49)

i.e., the two results differ by ln(mL), which reduces to
a double�logarithmic quantity in the actual region (see
below). Neglecting such quantities, we can also obtain

q⊥
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=

scaling for d = 4. The self�consistency equation has
the form

(50)

and after changing to ξ and ξ1D

(51)

The scaling relation (47) is obtained in variables

(52)

i.e., scaling parameter y is logarithmically modified in
comparison with ξ1D/L and should be considered as a
function of “modified length” μ(L) = L[ln(L/a)]–1/6;
then all dependences become analogous to Fig. 1 and
a change in scale for μ(L) allows reducing them to two
universal curves for τ > 0 and τ < 0. The critical point
corresponds to y = const, since

; (53)

i.e., parameter ξ1D/L increases logarithmically in the
transition point.

5.3. Modified Scaling for d = 4 – �

From the methodical point of view, it is interesting
to derive the modified scaling for d = 4 – �; in this
case, the sum I2(m) converges formally at the upper
limit, but this convergence is slow and finiteness of Λ
gives the essential effect. Analogously to (49) we have

(54)

and the scaling relation (47) is obtained in variables

(55)

Once again we have the modified scaling parameter y
and modified length μ(L) = L1 – �/2[1 – (L/a)–�]–1/6, in
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terms of which the dependences of Fig. 1 are recov�
ered. In the critical point we have y = 1 and

(56)

i.e., parameter ξ1D/L increases logarithmically up to
the large length scale L0 ~ aexp{const/�} and then is
saturated at the constant value. Such scaling is useful

ξ1D

L
������ 1 L/a( ) �––

�
����������������������

1/3

=

=  
L/a( )ln[ ]1/3

, L/a( ) � 1/�ln

1/�( )1/3
,   L/a( ) � 1/�;ln⎩

⎨
⎧

as an alternative treatment for d = 3 in order to inves�
tigate systematic errors related to the possible exist�
ence of the large length scale. In this case, parameter a
in fact corresponds to L0 and can be essentially differ�
ent from the lattice constant; it should be adjusted
from the condition of best scaling quality. There is no
need to be bound by Eq. (47), which is valid for small
�; it is more reasonable to determine the relation y =
F(x) empirically. As for expressions (55), their extrap�
olation to � = 1 does not present any problem, since
for L, ξ � a the modified scaling safely reduces to the
usual one (see Eq. (4)). In fact, it is identical to Eq. (4) if
no large scale L0 is present. However, in the presence of
large length L0, such scaling is more adequate than (4).

6. CONCLUSIONS

The above analysis allows us to conclude that the
Vollhardt�Wölfle theory has no significant contradic�
tions to numerical results on the level of raw data. The
different critical behavior usually reported in numeri�
cal papers originates from the fact that some time ago,
the purely “experimental” approach to the problem
was rejected and replaced by phenomenological anal�
ysis, which is practically hopeless in the corresponding
region. In particular, dependence L + L0 with L0 > 0 is
interpreted as L1/ν with ν > 1.

We have limited our discussion to the widespread
variant of finite�size scaling, based on application of
auxiliary quasi�1D systems. Apart from it, another
algorithms are used, based on level statistics [20], con�
ductance distribution, mean conductance, etc. [1].
The scaling curves calculated above are not universal
and cannot be used for comparison with such results.
Scaling for higher dimensions is also not universal: for
example, another behavior in the critical point is
expected for the Thouless parameter differing from
(48), (53) [40]. The only exclusion is result (40), which
remains unchanged in all cases. Indeed, this result can
be obtained from the general arguments based on the
Wilson renormalization group [2]; the exponents ω1,
ω2, y1, y2, … are determined by the scaling dimensions
of irrelevant parameters and are hence universal. Cor�
respondingly, result (41) is unchanged, which explains
the origin of the effective values ν > 1 (Fig. 7).

Figure 7a can be considered as a benchmark illus�
tration, corresponding to most of the numerical
papers. Indeed, there is an overall consensus that data
for L � 5 fall out of the scaling pattern and should be
discarded; large systems with L � 30 are hardly ever
used; the error corridor between dependences L0.80

and L0.65 corresponds to the typical accuracy of
numerical papers. Figure 7b illustrates one of the rare

papers treating systems of record size [43].
9

9 The rare example of high�precision data is illustrated by the col�
ored Fig. 8 in the online version of the paper [44].
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Fig. 7. Fitting by dependence (L + L0) (dashed line) for
numerical data, based on the level statistics: (a) Data by
Zharekeshev and Kramer [27]. The points correspond to
the average derivatives of the scaling parameter A (arbitrary
units), determined from Fig. 4 of [27] in the interval 16 <
W < 17; a statistical error related with each point can be
estimated very conservatively (see Table in [2]) due to the
irregular character of curves given in the indicated figure;
uncertainty allowed by the authors themselves corresponds
to the gap between dependences L0.80 and L0.65, determin�
ing the upper and lower bound of the result for the critical
exponent, ν = 1.40 ± 0.15. (b) Data obtained by Schreiber’
group [43]; the points correspond to the derivative of the
scaling parameter α (arbitrary units) determined by the
slope of solid lines in the inset of Fig. 3 in [43]; their uncer�
tainty is obtained by variation of the slope allowed by the
size of experimental points.
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Our final remark is as follows. Even if subsequent
investigations reveal that the Vollhardt and Wölfle the�
ory is not exact, nevertheless no confidence can be
given to the present�day estimates of the exponent ν
[17–31]. Figure 6 clearly demonstrates that values ν ≈
1.6 and ν = 1 are equally compatible with the raw data,
and hence the treatment procedure is extremely
ambiguous.
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