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1 1. INTRODUCTION

The general picture of coexistence of superconduc�
tivity and the Anderson localization was formed in the
papers by Bulaevskii and Sadovskii [1–5] (see also [6,
7]). According to the Anderson theorem [8], the criti�
cal temperature Tc of a disordered superconductor is
determined by the average density of states and does
not depend on the form of one�particle eigenstates.
Since the average density of states does not have singu�
larity at the Anderson transition, so Tc has the analo�
gous behavior. The coefficient of the gradient term in
the Ginzburg–Landau expansion, determining the
superconducting response of the system, remains
finite at the critical point. In the localized phase, the
system breaks up into quasi�independent blocks of size
ξ (ξ is the localization length) and superconductivity is
suppressed due to the size effect, when the average
level spacing in such a block becomes greater than Tc.

Recently it was stated by Feigelman et al. [9, 10]
that Tc increases at approaching the Anderson transi�
tion from the metallic side and continues to grow in
the localized phase (with a maximum in the deep of
it); it is related with multifractality of wave functions.
More than that, Tc depends on the Cooper interaction
constant g not exponentially, but in the power�law
manner. Formally, this statement does not contradict
to the papers [1–5]. Indeed, the Anderson theorem is
valid under assumption of a self�averaging character of
the order parameter, which in fact reduces to its spatial
uniformity. According to estimates of [3, 4], the self�
averaging property tends to violate when the localiza�
tion threshold is approached and the space�inhomo�
geneous superconductivity is expected in the deep of

1 The article was translated by the author.

the localization phase; so the true Tc can be greater
than its value given by the Anderson theorem. In fact,
controversy between the papers [1–5] and [9, 10] has
an ideological character. The authors of [1–5] proceed
from the standpoint that localization counteracts to
superconductivity, so the latter encounters a lot of
problems in the localized phase [2, 5]. Contrary, the
growth of Tc after the mobility edge [9, 10] indicates
that superconductivity not only “survives” but even
“prospers” in the localized phase. It looks suspicious
from the physical viewpoint and contradicts the exper�
imental situation, which is in complete agreement
with [1–5].

The present paper has an aim to clarify a situation.
In fact, the essence of the problem is: how and in what
extent self�averaging of the order parameter can be
violated? The efficient approach to such problems was
developed in [11–14] and consists in the study of indi�
vidual defects and their influence on the transition
temperature. In particular, for the plane defects
arranged perpendicularly to the z axis with the period
L along it, the change of Tc is determined by the for�
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(1)

if there are no surface states localized near defects.
Here, g is the Cooper interaction constant, ν1(z) is a
deviation of the local density of states ν(z) from its
unperturbed value ν0, λ0 = gν0 is the dimensionless

2 We accept for simplicity that a plane defect changes only the
density of states. Generalizations of (1), accounted for the
change of the interaction constant g [12, 13] and the cut�off fre�
quency ω0 [14] are also available.
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coupling constant, Tc0 is the transition temperature in
the absence of defects, integration is carried out over a
vicinity of the single defect. For weak defects, only the
linear in ν1(z) term is essential, which exactly corre�
sponds to the Anderson theorem and relates the
change in Tc with the change of the average density of
states. Generally, ν1(z) is comparable with ν0 and
already Eq. (1) predicts a possibility of essential viola�
tion of the Anderson theorem. It is related with the fact
that the initially uniform order parameter is influenced
by strong defects and can increase or decrease in their
vicinity. More essential violations of the Anderson the�
orem are possible, if the surface states localized near
defect appear at the Fermi level (Fig. 1). In this case, the
order parameter can be strongly localized near the plane
defects, so Tc does not depend on L and is determined
by the BCS formula Tc = 1.14ω0exp(–1/λ2D) with the
coupling constant λ2D, corresponding to the separated
two�dimensional band (Fig. 1). A crossover between
two regimes is appeared to be very sharp and the inter�
mediate situation is of little interest. Formally, the
described results correspond to the periodical arrange�
ment of defects, but their character shows that the
assumption on periodicity is not essential; so they give

a complete picture for the small “impurity” concen�
tration in the 1D geometry.

Analogous effects are possible in case of the point
defects, where the localized regime for the order
parameter is related with existence of the quasi�local
states (Fig. 2). A detailed investigation of these effects
allows to obtain the complete picture of possible viola�
tions of self�averaging. The main conclusion is that
such violations are determined by individual defects
and have no direct relation to the Anderson transition.
One can distinguish two typical situations.

If disorder is created by weak impurities (Fig. 3a),
then the assumption of self�averaging is always true
and the Bulaevskii�Sadovskii picture is literally appli�
cable. The mobility edge lies near the initial band edge
and Tc is falling quickly at approaching it from the
metal side due to decrease of the density of states;
hence, superconductivity becomes practically unob�
servable before the mobility edge is reached. Such sit�
uation is typical for the traditional superconductors,
which are good metals and effectively screen any
impurity which is introduced in them. The experi�
mental situation is in complete agreement with these
considerations [5].

k||

EF

ε

Fig. 1. If plane defects are arranged perpendicular to the z
axis, the problem allows a separation of variables and the
longitudinal quasi�momentum k|| can be introduced. For
fixed k||, the spectrum is a set of bands with discrete levels
splitted from them; if dependence on k|| is taken into
account, these levels turn into 2D bands, which can appear
at the Fermi level.

ν(E, n0)

ν0(E)

E0

EF

E
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Fig. 2. A strong point defect inserted into site n0 of an ideal
lattice leads to appearance of the local (E1) and quasi�local
(E0) levels. The latter corresponds to the maximum of the
local density of states ν(E, n0).
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In case of strong disorder (Fig. 3b), the mobility
edge can be located in the region of the practically uni�

form density of states,
3
 so the Tc value given by the

Anderson theorem does not fall in approaching the
localization threshold. In fact, the true Tc appears to
be much larger and corresponds to localization of the
order parameter at the small number of the “resonant”
impurities, which produce the quasi�local states near
the Fermi level. In accordance with papers [9, 10], Tc

depends on the interaction constant g in the power�
law manner, but contrary to them, it has no essential
dependence on the Fermi level position. It removes an
illusion that localization “helps” superconductivity. In
the vicinity of the true Tc, observation of superconduc�
tivity is practically impossible due to a small fraction of
the Meissner phase and negligible values of the critical
current. Superconductivity becomes easily observable
when it spreads to the whole volume: it occurs at some
effective temperature, which we refer as the “bulk Tc”;
it can be defined theoretically as a transition tempera�
ture of the system with removed “resonant” impuri�
ties. Such “bulk Tc” corresponds qualitatively (but not
quantitatively) to the Anderson theorem and the

3 According to results by Zharekeshev [15] for the strongly disor�
dered Anderson model there is a wide plateau for the density of
states in the center of band.

Bulaevskii–Sadovskii picture is confirmed at this
level. In such a case, Tc obeys the “rectangular”
dependence (Fig. 3b), which exponentially weakly
deviates from the horizontal line near the mobility
edge Ec, and exponentially weakly deviates from the
vertical line near the endpoint E* of superconductiv�
ity. Such situation is typical for high Tc superconduc�
tors, where coexistence of localization and supercon�
ductivity is easily observable [5].

The estimate for the true Tc

(2)

(a is the lattice spacing, J is a bandwidth, and d is the
space dimension) gives an impression that the “room”
superconductivity is a widespread phenomenon. In
fact, the growth of Tc with the increase of λ0 is
bounded by a quantity ω0/π, where ω0 is a cut�off fre�
quency. For the phonon mechanism, such upper
bound corresponds to the values already attained in
high Tc superconductors, and their further increase
requires the use of higher frequency Bose excitations.
In addition, the observation of true Tc is probably pos�
sible only with the use of the scanning tunnel or squid
microscopy [16].

It should be stressed that Eq. (2) is a result of the
mean field theory. The corresponding solution for the
order parameter shows existence of the certain uni�

Tc ga d– λ0J∼ ∼

Fig. 3. (a) If disorder is created by weak impurities, self�averaging of the order parameter is not violated; Tc strongly falls near the
mobility edge due to decrease of the density of states. (b) In case of strong disorder, the true Tc is determined by localization of
the order parameter at rare resonant impurities, while the “bulk Tc” obeys to the “rectangular” dependence.
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form contribution with abrupt peaks near the rare res�
onant impurities (with concentration Tc/J). The order
parameter can be considered as positive (see Section 2)
and so its phase is constant in the whole volume. In the
fluctuational theory, the modulus of the order param�
eter remains practically unchanged, while the essen�
tial phase fluctuations arise. If the uniform contribu�
tion is neglected, then the system is divided into prac�
tically independent superconducting “drops”, whose
phases are fluctuating freely and destroy the macro�
scopical coherence of the superconducting state. If the
uniform contribution is taken into account, the
Josephson coupling between drops arises and their
phases become correlated. The accurate fluctuational
analysis of such a system is non�trivial, but the general
character of results is the same as for the granular
superconductors [17]. If the ratio Tc/J is not too small,
then the resonant impurities are close to each other
and their Josephson interaction is strong enough for
stabilization of the mean�field solution at practically
the same Tc value (in this sense it can be qualified as
“true”); if a concentration of the resonant impurities
appears to be small, then Tc is suppressed by fluctua�
tions to the value somewhat greater than the “bulk Tc”
(Section 7).

According to the results of [9, 10]
4
 

(3)

where f is a portion of volume occupied by supercon�
ductivity, and parameter γ = 0.57 is related with a frac�
tal dimensionality of wave functions. We do not deny
the existence of the order parameter configurations,
leading to results of type (3) (Section 3), but Eq. (2)
corresponds to the higher value of Tc; the correspond�
ing configuration of the order parameter is determined
by the rare peaks near the resonant impurities, occur�
ring at the atomic scale and occupying a portion of
volume f ~ Tc/J. If superconductivity is considered as
a variational problem, then it is possible to say that our
trial function is more successful than one in [9, 10].
Formally, our results correspond to Eq. (3) with γ = 1
and do not contain any information on multifractality;
hence, there are no grounds to say on “fractal super�
conductivity” [10] near the localization threshold.

4 In the recent paper by Burmistrov et al [18] the results analogous
to [9, 10] are obtained in the Finkelstein renormalization group
approach [19]. However, these papers are essentially different
both in the initial assumptions and in the discussed physical
mechanism, so one cannot say that one paper confirms another.
The authors of [9, 10] tried to advance beyond the assumption
on self�averaging, while a fixed value of the interaction constant
is accepted; contrary, [18] takes into account a disorder depen�
dence of the interaction constant, while a self�averaging prop�
erty is taken for granted. By the latter reason, the present results
cannot be reproduced in [18], whereas the considered there
effect is more weak.

Tc g1/γ
, f Tc/J( )γ,∼ ∼

2. ANDERSON THEOREM
AND INEQUALITIES FOR Tc

A basis for description of the spatially inhomoge�
neous superconductivity is given by the Gor’kov equa�
tion for the order parameter Δ(r)

(4)

with the kernel K(r, r') in representation of exact one�
particle eigenstates ϕs(r)

(5)

where �s are eigen energies (counted from the Fermi
level), and summation occurs over the Matsubara fre�
quencies ωn = πT(2n + 1) with integer n. Following
de Gennes [20], we use the frequency cut�off  < ω0,
which corresponds to the electron interaction

(6)

which is strictly local and can be specified indepen�
dently of one�particle eigenstates (in contrast to the
momentum cut�off in the original BCS formulation,
where interaction is defined by the matrix elements
over plane waves). In the absence of magnetic effects,
eigenstates ϕs(r) can be taken real and their orthogo�
nality leads to the sum rule [20]

(7)

where νF(r) ≡ ν(0, r) is the local density of states

(8)

at the Fermi level. It is accepted in derivation of (7)
that ν(�, r) is a slow function of � on the scale of Tc;
generally νF(r) should be understood as a local density
of states smoothed at the scale of Tc.

The Anderson theorem follows from Eq. (4) under
assumption of a self�averaging order parameter, when
Δ(r) and K(r, r') can be independently averaged over
disorder. Since  does not depend on r due to the
spatial uniformity in average, the use of the sum rule
(7) gives

(9)

and Tc is given by the BCS formula, which contains
the average density of states . The latter does not
change at the Anderson transition point, suggesting
the analogous behavior for Tc. More detailed informa�
tion can be obtained, if Eq. (4) is averaged over vari�
able r

(10)

Δ r( ) K r r ',( )Δ r '( )ddr '∫=

K r r ',( ) gT
ϕs* r( )ϕs r '( )ϕs '* r( )ϕs ' r '( )

�s iω–( ) �s ' iω+( )
�����������������������������������������������,

s s ',

∑
ω

∑=

ω

V r r'; ω,( ) gθ ω0 ω–( )δ r r '–( ),–=

K r r ',( )ddr '∫ gνF r( )
1.14ω0

T
�������������,ln=

ν � r,( ) ϕs r( ) 2δ � �s–( )
s

∑=

Δ r( )〈 〉

Δ〈 〉 g νF〈 〉
1.14ω0

T
������������� Δ〈 〉 ,ln=

νF〈 〉

Δ〈 〉 g
1.14ω0

T
������������� νF r( )Δ r( )〈 〉 .ln=
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The function Δ(r) can be considered as positive,
5
 and

one has
(11)

where νmin and νmax are the minimal and maximal val�
ues of νF(r). It gives inequalities for Tc

(12)

which can be also obtained from the known theorems
of the matrix theory [13, Section 2]. According to
Eq. (12), the power law dependence of Tc on the cou�
pling constant g [9, 10] is impossible, if νF(r) has an
upper bound νmax.

Near the Anderson transition, there are systematic
reasons for growth of the νF(r) fluctuations [3, 4]. As
noted in [5], the correlator  at
r = r' coincides with the Berezinskii–Gor’kov spectral
density [22], which is determined by the diffusion pole
with the observable diffusion coefficient D(ω, q) [23]:

(13)

In the metallic phase, the static diffusion constant

D(0, q) is real, so  diverges at the transition

point as D–1. In the dielectric phase, the analogous
estimate can be obtained from the self�consistent the�
ory of localization [24] by iteration of [23, Eq. (112)]

(14)

(τ is a distance to the critical point), so  ~

 and fluctuations grow symmetrically on two sides

of the transition.
6
 Estimations of the correlator (13) at

the critical point based on multifractality of wave
functions [10] suggest the dependence ω–γ for ω  0;
if divergency is cut off at the scale Tc, then νmax ~
ν0(J/Tc)

γ/2 and the maximum value Tc ~ g2/γ allowed by
Eq. (12) is in a qualitative agreement with [9, 10].
Consequently, if the upper bound for Tc is realized in
Eq. (12), then it reaches the maximum value at the
localization threshold depending on g in the power
law manner.

However, the distribution of quantities  has
the power law tails [10] and Eq. (13) determines nei�
ther the typical, nor the maximal value of νF(r). In

5 For real ϕs(r), the kernel K(r, r') is positive, since it can be written

as gT  (see Eq. (5)). The Cooper instability corre�

sponds to the minimal characteristic number (or maximal eigen�
value) and the nodeless eigenfunction (the Entch theorem) [21].

6 According to the self�consistent theory, D ~ τ in the metallic
phase [24].

G
ω

r r ',( )
2

ω∑

νmin Δ〈 〉 νF r( )Δ r( )〈 〉 νmax Δ〈 〉 ,< <

1.14ω0 1/gνmin–( )exp Tc<

< 1.14ω0 1/gνmax–( ),exp

ν E ω+ r,( )ν E r ',( )〈 〉

ν E ω+ r,( )ν E r,( )〈 〉 Re d
dq

iω– D ω q,( )q2+
����������������������������������.∫∼

νF r( )2〈 〉

D ω q,( ) iω–( )d q( ) ω2d1 q( ),+=

d q( ) ξ2
, d1 q( ) ξ4 τ 1–∼ ∼

νF r( )2〈 〉

τ 1–

ϕs r( ) 2

fact, the given estimate for Tc is not reached for weak
disorder and is exceeded for strong disorder. Formally,
the approach of [10] is questionable due to replace�
ment of matrix elements Mijkl =

rϕi(r)ϕj(r)ϕk(r)ϕl(r) by their mean values with

averaging independently of the order parameter.
More efficient approach is based on the study of

effects from individual impurities, since it allows to
work with specific realizations of the random potential
and contains no problems of averaging. Introducing
one impurity after another, one can easily be con�
vinced (Section 4), that unbounded values of νF(r) can
arise only from existence of quasi�local states (Fig. 2).
The problem of quasi�local states has a general char�
acter. Indeed, one can imagine such fluctuation of the
random potential, that a finite region of space is iso�
lated from its environment by the high barrier; the cor�
responded discrete levels can have a very weak broad�
ening and, appearing close to the Fermi level, can lead
to unbounded values of νF(r). Such problems are dis�
cussed in the next section.

3. RESONANCES AT QUASI�DISCRETE 
LEVELS

Suppose that a system has a discrete spectrum and
only one state is close to the Fermi level; then we can
retain only one term in the sum over s, s' in (5):

(15)

Then Eq. (4) gives

(16)

and self�consistency of these equations determines Tc:

(17)

Calculation of A(T) is possible without the cut�off fre�
quency taken into account, since the sum converges at
large ω:

(18)

For the exact resonance (�0 = 0) we have A(T) = 1/4T, so

(19)

and Tc has a power law dependence on the interaction
constant g. In the general case (see Fig. 4a)

(20)

d
d

∫

K r r ',( ) gT
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2 r( )ϕ0
2 r '( )
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2 ω2+

����������������������
ω
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≡ gA T( )ϕ0
2 r( )ϕ0

2 r '( ).

Δ r( ) Xϕ0
2 r( ),=

X gA T( ) ϕ0
2 r '( )Δ r '( )ddr '∫=

1 gA T( )I4, I4 ϕ0
4 r( )ddr.∫= =

A T( ) T 1

�0
2 ω2+
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ω

∑
1

2�0

������
�0

2T
�����.tanh= =

Tc gI4/4,=

Tc
�0

�c �0+( )ln �c �0–( )ln–
�����������������������������������������������, �c

gI4
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and a solution exists under condition

(21)

At first glance, the considered regime is destroyed due

to fluctuations
7
 or coupling with the continuous spec�

trum; in fact, it is not so (see below) and the main
problem consists in the possibility to match the dis�
crete level with the Fermi energy.

Indeed, let the system has a finite size L, while its
eigenstates are extended. Then the Fermi energy is

located between two discrete levels,
8
 and �0 is deter�

mined by the average level spacing J(L/a)–d; estimat�
ing I4 ~ L–d from the normalization condition, we see
that

(22)

and condition (21) cannot be fulfilled in the weak cou�
pling regime, which is the only allowable in the BCS
scheme.

Let us couple the given system with a reservoir,
and try to match the chemical potential of the latter
with the discrete level of the system. However, noth�
ing good will occur from it: the local Fermi level of
the system is still arranged between two discrete levels
and it tends to equalize with the Fermi energy in the
reservoir. The real flow of electrons is impossible due
to elecroneutrality, and the problem will be solved by
a minimal deformation: a double layer will arise
between the reservoir and the system, and it will
equate the Fermi levels.

By the same reason, the situation cannot be
improved due to localization of states. At first glance,

7 If eigenstate ϕ(r) is localized, then according to (20) a supercon�
ducting transition takes place in a finite system; of course, such
conclusion is an artifact of the mean field theory and in fact the
transition is destroyed by fluctuations.

8  For a discussion of the parity effect see Footnote 19.

�0 �c.<

�0 J L/a( ) d–
, �c gL d–∼ ∼

in this case �0 ~ J(L/a)–d, �c ~ gξ–d (ξ is the localization
radius of ϕ0(r)), so condition (21) reduces to g �
Jad(L/ξ)–d and can be fulfilled at sufficiently large L.
In fact, blocks of size ξ are quasi�independent and
each of them has its own local Fermi level; these levels
equalize due to double layers between blocks, and the
given estimates are valid only for L ~ ξ. In fact, the
above arguments clarify the mechanism for the Cou�
lomb gap [25].

It looks that the only possibility to avoid the given
arguments is to take the size L of the atomic order.
Indeed, at such a scale: (a) the notion of the Fermi level
becomes senseless; (b) electroneutrality can be violated;
(c) a size of the double layer is comparable with L.
It means that the strong violations of the Anderson the�
orem can be exhaustively analyzed by consideration of
the one�impurity problem (Section 4).

Already at this stage it is possible to establish the
relation with results of [9, 10]. In the considered there
strictly one�electron picture, the discrete system of
levels fluctuates freely relative to the Fermi energy, so
resonances are possible at any length scale L. Then all
principal statements of [9, 10] are reproduced: Tc has
a power law behavior as a function of g and does not
depend on the cut�off frequency ω0, while the order
parameter Δ(r) follows the form of the wave function
(see (16)) and will have multifractal properties simul�

taneously with multifractality of the latter.
9
 However,

this picture is completely destroyed, if electroneutral�
ity is taken into account, since resonances at large scales
become impossible. In fact, large scale fluctuations are
insignificant even in a strictly one particle picture: a
value of Tc for an exact resonance, Tc ~ gL–d (see (17),
(19)), is greater for small scales.

9 We have no doubt that papers [9, 10] implicitly dealt with the
same effect, but the improper averaging procedure led to a dom�
ination of large length scales.

(a)

Tc

εc/2

0 εc ε0−εc

(b)

Tc

2

ε0

Tc0

1

Fig. 4. (a) Tc of the one�level system as a function of the level position �0 in the absence of attenuation (solid line); attenuation γ
produces a shift of the curve by the quantity ~γ (dashed line). (b) The same, for a situation when the quasi�discrete level lies in
the background of the continuous spectrum. 1—Localized superconductivity, 2—bulk Tc.
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Generally, the considered regime is not destroyed
in the presence of the continuous spectrum. In this
case, the level �0 acquires the finite decay γ, which can
be taken into account by replacement

(23)

so

(24)

where we have estimated the sum by the integral,
introducing the cut�off   > bT (for the choice b =
4/π such estimate practically coincides with the exact
result (18) for γ = 0). The finiteness of γ leads qualita�
tively to the shift of the curve in Fig. 4a by a quantity
~γ, so a solution survives for γ � �c.

For finite ω0 one obtains instead (24)

 (24')

and can be easily convinced that finiteness of ω0 is
irrelevant under condition ω0 � �c. In the opposite
case ω0 � �c the allowed values of �0 and γ have an
order (�cω0)

1/2, while the maximal critical temperature
Tc is of the order ω0; in fact, restriction Tc < ω0/π is evi�
dent, since for T > ω0/π the sum over ω contains no
terms.

To investigate the effect of the continuous spec�
trum on the order parameter, one can use the follow�
ing approximation for the kernel K(r, r')

(25)

which ignores the backward influence of the discrete
level on the continuous spectrum. According to [11,
12], such approximation provides qualitatively correct
description and can be justified in certain limiting

cases.
10

Having in mind a consideration of periodical con�
figurations, we solve Eq. (4) with the kernel (25) for a
finite system of size L with the periodical boundary
conditions. We accept L � ξ0τ–1/2, where τ = (T –
Tc0)/Tc0, ξ0 is the coherence length, and Tc0 is a transi�

10 In Section 4. we consider the one�impurity problem with the
backward influence on the continuous spectrum.

�0 iω �0 iω iγ ω,sgn±+±

A T( ) T 1

�0
2 ω γ+( )2+

����������������������������

ω

∑=

≈ 1
π�0

������
�0

γ bT+
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tion temperature, corresponding to the continuous

spectrum.
11

 After the Fourier transform one has

(26)

and self�consistency of two expressions leads to

(27)

Using expansion in q2

(28)

it is easy to see that the main contribution to the sec�
ond sum in (27) occurs from small q, and the single
term with q = 0 is sufficient for L � ξ0τ–1/2. Then
Eq. (27) accepts a form

(29)

and the analogous approximations in (26) give

(30)

If Tc0 � �c, then dependence of Tc on �0 has a form
shown in Fig. 4b. In the zero approximation there are
two independent systems, the quasi�local one with the
transition temperature (20) (if attenuation γ is small)
and the continuous one characterizing by Tc0, while Tc

of the composed system is given by the maximal of two
values. Interrelation of two systems reduces to
smoothing of dependence Tc(�0) at the scale
Tc0(a/L)d/2, if ϕ(r) is localized at the atomic scale a.

It is clear from (30) that the order parameter Δ(r) is
practically constant for small τ and localized at the
scale a for large τ. Crossover from one regime to
another is very abrupt, and one can say on the “Ander�
son transition” for superconducting electrons. We see
that the localized regime survives in the presence of
the continuous spectrum, if the corresponding Tc
exceeds Tc0. In fact, existence of the continuous spec�

11 Appearance of the characteristic scale ξ(T) = ξ0τ
–1/2 was dis�

cussed previously [11] for the case of plane defects. If L � ξ(T),
then individual defects becomes practically independent and the
order parameter is localized near them on the scale ξ(T). In the
opposite case L � ξ(T), the order parameter is practically con�
stant in the space between defects. Below (Section 5) we con�
sider configurations with small concentration (~Tc/EF) of the
resonant impurities, so the distance between them a(EF/Tc)1/3

is less than ξ0 ~ a(EF/Tc).
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trum has a stabilizing effect on the localized supercon�
ductivity, since the order parameter takes non�zero
values in the whole volume.

4. ONE�IMPURITY PROBLEM

If  is the Green function of an ideal lattice,

Vn =  is an impurity potential, then the Green

Gnn '
0

Vδnn0

function Gnn' of the perturbed system is determined by
the Dyson equation [26]:

(31)

Setting n = n0, one has the closed equation for ,

whose solution is substituted into (31)

(32)

where the scattering ��matrix reduces to a constant in

the given case. For an ideal lattice  does not
depend on n,

(33)

and so ��matrix has no n0 dependence. Condition
1 ⎯ VI(E) = 0 corresponds to existence of the local (if
ν0(E) = 0) or quasi�local (if ν0(E) ≠ 0) level [26, 27]
(Fig. 5). The local density at site n0

(34)

Gnn ' Gnn '
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0 VGn0n ' .+=
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�������������������∫ I E( ) iπν0 E( ),–≡

ν E n0,( )
ν0 E( )

1 VI E( )–[ ]2 πVν0 E( )[ ]2+
������������������������������������������������������=

Fig. 5. (a) If the impurity  is inserted in an ideal lattice, equation 1 = VI(E) has two roots for large V, E1, and E0, which

correspond to the local and quasi�local levels. (b) If the same impurity is inserted in the disordered lattice, both solutions corre�
spond to the quasi�local levels.

Vδnn0

ν(EF, n0)

~1/ν0

ν0

1/I(EF) V

Fig. 6. The local density of states at the point n0 as a func�
tion of the impurity potential V.

(a) (b)
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ν(E) ν(E)

E0 Ec E1 E EE1E0
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has an abrupt maximum near the resonance
1 ⎯ VI(�0) = 0 (Fig. 6) with a value in it

(35)

which grows unboundedly near the initial band edge
(where ν0(�0)  0). In the vicinity of the band edge,

a calculation of  is possible in the continual

approximation and gives at d = 3 (for ):

(36)

Deviation of ν(E, n) from ν0(E) is maximal for n = n0

and tends to zero for   ∞.

The Matsubara representation for the Green
functions is obtained from (32) by replacement
E  �F + iω, where �F = 0 for the corresponding
choice of the energy origin. Setting n0 = 0, one has
for the kernel in (4)

(37)

Solution of the Gor’kov equation with the kernel (37)
is sought in the form

(38)

where Δ1(r) is localized near r = 0. Substituting in (4)
and using the sum rule (7), one has

(39)

where ν1(r) is deviation of the local density of states
from ν0 and

(40)

Consideration of the isolated impurities is not actual
(see Footnote 7), so we accept their periodical
arrangement and solve the Gor’kov equation for a
finite system of size L with periodical boundary condi�
tions for L � ξ0τ–1/2. Resolving (39) for Δ(r) by the
Fourier transform and simplifying the result analo�
gously to (27), it is possible to separate the uniform
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term corresponding to Δ0, while the rest is attributed to
Δ1(r) (  is the zero Fourier component):

(41)

Using the explicit expression for F(r) and setting in the

integrals
12

 

(42)

one can transform (41) to the form

(43a)

(43b)

where

(44)

Substituting Δ1(r) from (43b) into expressions (44),
and estimating arising integrals

(45)

with the use of expressions for (r) and ν1(r) (where
the real and imaginary parts are denoted by a prime
and two primes)

(46)

it is easy to see that the integrals converge already for
ω, ω' = 0, so parameters λ01, λ11, etc. can be consid�
ered as constant; it allows to write (44) in the form

12 This approximation is not quite rigorous, but in fact it is used
only for estimates: the corresponding terms characterized by
parameters λ02 and λ12 have no significance both far from the
resonance, and in its vicinity (see Appendix).
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(47)

The region remote from the resonance. The natural
scale for the energy dependence of ��matrix is given

by the bandwidth J, so  and  can be consid�
ered as independent of ω anywhere, excepting the
vicinity of the resonance (see below). Then Z

ω
 is also

independent of ω, and substitution of Δ1(r) from (43b)
into (44) leads to the linear system of equations for Δ0

and Z (see Appendix), whose solubility condition gives

(48)

Equation (48) is a natural generalization of the
result (1): the first term in the numerator corresponds
to the Anderson theorem, while the second deter�
mines corrections to it. A configuration of the order
parameter shows that (48) corresponds to the delocal�
ized regime.

For weak impurities (  � J) one has the estimates

(49)

and

(50)

so the Anderson term is leading both in parameter V/J
and in parameter (kFa)–1. We accepted here kFa � 1,
having in mind a situation near the band edge, while
estimates for the band center follow at kFa ~ 1.

The delocalized regime retains in the case when the
resonance condition 1 ≈ VI(EF) is formally fulfilled,
but the density of states ν(EF) is sufficiently large to
provide a strong attenuation of the quasi�local state. In
this situation

(51)

and one has under condition γ � �0 (where �0 and γ are
defined in Eq. (54))

(52)

i.e., the Anderson term has the same order, as a cor�
rection to it.

Vicinity of the resonance. If �0 is a root of equation
1 = VI(�), then in the vicinity of it

(53)

and hence

(54)

In the Matsubara representation one has
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where

(56)

so ��matrix can be considered as independent of ω
under condition

(57)

i.e., not very close to the initial band edge. If this con�

dition is not fulfilled,
13

 then the ω dependence is

essential for the quantities  and , and hence
for Z

ω
. In fact, only one combination is relevant,

(58)

and substitution of Δ1(r) from (43b) into (44) allows to
express Z

ω
 through Δ0 and S; substituting this expres�

sion for Z
ω
 into (58) and (43), one comes to the linear

system of equations for Δ0 and S; its solubility condi�
tion with only leading terms retained (see Appendix)
reduces to

(59)

where A(T) corresponds to expression (24). Equation
(59) describes the typical situation related with inter�
section of terms. The zero of the first bracket corre�
sponds to the delocalized regime (see Eq. (48)), and
vanishing of the second bracket corresponds to equa�
tion for Tc of the localized superconductivity (com�

pare with (17), (24)), while the term  ~ (a/L)3

removes the degeneracy of terms in the intersection
point (Fig. 7).

5. CONSEQUENCES
FOR THE ANDERSON MODEL

Usually localization is studied in the framework of
the Anderson model, which is a discrete version of the
Schrödinger equation with a random potential: the
bare spectrum is a band of width J, while the potential
values Vn on the lattice sites are independent random
quantities with the distribution P{V} of width ~W,
which is supposed to be rectangular. To transfer from

13 In this case, the factor exp(– r/vF) restricts contribution to
the integrals (45) by the atomic scale, where expression (46) are
inapplicable.
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the one�impurity problem to the Anderson model, it is
sufficient to accept that a potential V of impurities
fluctuates in the interval (–W, W), while their con�
centration c is gradually increased from small values to
values of the order of unity.

The results of Section 4 correspond formally to the
periodic arrangement of impurities, but in fact their
periodicity is not essential: each impurity arouses only
a local deformation of the order parameter and these
deformations are independent in case of a small con�
centration. If Δ1(r) and ν1(r) correspond to the one�
impurity problem, then configurations

(60)

correspond to a situation, when several impurities are
arranged in points ri : it is a consequence of localiza�
tion of the kernel K1(r, r') in both variables near the
defect position. It is clear from (41) that the amplitude
of Δ1(r) is proportional to Δ0, so Δ1(r) = Δ0 f(r) and
substitution of (60) into (10) gives for Tc close to Tc0:

(61)

Here, m is a number of impurities in the volume L3,
and f(r) can be identified as ν1(r)/ν0 from comparison

with (48).
14

 One can see that effect is proportional to a
concentration of impurities, while their arrangement is
irrelevant. The Anderson theorem is valid under condi�
tion  � 1, which is fulfilled for weak impurities. In
case of nonequivalent impurities, the result (61) should
be averaged according to distribution P(V).

In the regime of the localized order parameter,
each impurity is practically independent of environ�
ment and Tc of the system is determined by those of
them, which are close to a resonance; if distribution
P(V) is continuous and sufficiently wide, then the con�
dition of almost exact resonance is always realized
with a certain probability. Therefore, the concentra�
tion of the resonant impurities is finite and their qua�
siperiodic arrangement stabilizes the mean�field solu�
tion.

Above considerations completely clarify a situation
for small impurity concentrations. Advancement to
higher concentrations is simplified by observation that

equations (31), (32) never used a fact that  corre�
sponds to an ideal lattice; the same equations describe

14 For weak disorder, relation Δ1(r) = Δ0ν1(r)/ν0 follows from the
second equation (41) after neglecting the quantity F(r), which is
of the second order. Its validity for the delocalized regime with�
out assumption of small ν1(r) is a non�trivial result expressed by
equation (48).
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insertion of an additional impurity in the disordered
superconductor. Noticing that

and replacing ν(�, n0) by its mean value , we
obtain the same representation I(E) – iπν(E) as in
Eq. (33), with a predictable behavior of I(E) and ν(E)
(Fig. 5b).

Weak impurities. In this case, a behavior of func�
tions I(E) and ν(E) differs from their behavior in an
ideal crystal by small smoothening of the Van Hove
singularities (Fig. 5b). Dependence on n0 results in
fluctuations of the form of these functions, which are
also small. It is clear that for weak impurities (  � J)
the resonance condition is not fulfilled and no local�
ization of the order parameter is possible.

For the delocalized regime, it is convenient to
present the result (61) in another form. Taking the
one�impurity configuration Δ(r) = Δ0 + Δ0 f(r), ν(r) =
ν0 + ν1(r) and substituting it into equation (10), we
have for the effective density of states entering into the
BCS formula:

(62)

Subtracting the result with f ≡ 0 and retaining the main
terms in L–d:

(63)

where we have taken into account that only the term
with �' ≈ V + V2I(EF) is essential in Eq. (46) for weak
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Fig. 7. Dependence of Tc on the impurity potential V for a
small impurity concentration. (1) Localized superconduc�
tivity; (2) delocalized regime.
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impurities. Inserting impurities one after another and
averaging over V,

(64)

we see that in the course of increasing a concentration,
the increment of the quantity νeff –  is by a factor kFa
smaller than the increment of   – ν0. Near the band
edge one have  � ν0 for sufficiently large concentra�
tions, so νeff –  ~ kFa  and deviations from the
Anderson theorem are small. Near the band center we
have kFa ~ 1 and differences  – ν0 and νeff –  are
small till concentrations c ~ 1; so νeff ⎯  � . It is
clear that violation of self�averaging for the order param�
eter does not occur for weak impurities.

In the 3D case, isolated weak impurities do not
produce bound states beyond the initial spectrum (it
is clear from Fig. 5a), and a finite density of states in
this energy interval is a collective phenomenon
related with long�range fluctuations of the band
edge. Consider a fluctuation in the region of size L,
due to which the range of V values is somewhat
restricted, (–W, W – 2δ) instead (–W, W). Then the
mean value of the random potential is decreased by a
quantity δ, while a probability of such fluctuation
exp(–Ldδ/W) is not small for Ldδ/W � 1. Such fluc�
tuations occur at all scales and produce a finite den�

sity of states beyond the bare spectrum.
15

 If size L of

15 The amplitude of long�range fluctuations can be seen from the
fact that in the extremal cases the whole band is shifted by a
quantity W or –W, i.e. such fluctuations by themselves (with no
account for partial discretization of spectrum) cannot produce
unbounded values of νF(r).
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the fluctuation is sufficient for existing of supercon�
ductivity, the latter will not differ from superconduc�
tivity in the initial system with not shifted band edge;
i.e., impurities will not violate the uniformity of the
order parameter. Near the initial band edge, the indi�
cated fluctuations strongly overlap and superconduc�
tivity is quasi�homogeneous. Such fluctuations
become spatially isolated in the region of strong
localization, where they can be described in terms of
the size effect (Section 6).

Strong impurities. For a small concentration of
strong impurities (  � J), a behavior of functions
I(E) and ν(E) is not very different from their behav�
ior in an ideal crystal. However, in the region of the
maximum of I(E) the density of states becomes finite
and, at first glance, complicates the occurrence of
resonances. In fact, a new phenomenon comes to

life. Since now  depends on n0, the attenuation

of the quasi�local state will be determined not by
average density of states, but its local value at the
point n0, which can be small in a fluctuational man�
ner. As a result, resonances become possible even for
energies in the deep of the band, where they were
forbidden in the ideal lattice. The typical situation,
when the local density of states νF(n0) is small, cor�
responds to large values of the random potential in
the vicinity of n0; if now an impurity with large neg�
ative V is inserted into the site n0, then a specific res�

onance configuration arises (Fig. 8).
16

 In the “min�
imal” variant, such configuration corresponds to
existence of large barriers at the nearest neighbours
of site n0, while a value of the potential at n0 is chosen
so that a corresponding level was in the interval of
width ~Tc near the Fermi energy (the probability of
this event is ~Tc/W). For a finite band, both large
positive and large negative value of the potential are
locking, and for W � J such values occur with prob�
ability p close to unity. Therefore, the probability of
the “minimal” fluctuation

(65)

where Z is a number of the nearest neighbours. It is
clear that such resonances can occur for any position
of the Fermi level. In the region of the fluctuational
tail, the density of states is small by the natural reasons
and there is no need to create the barrier around n0; so
the factor pZ will be absent but the less probable form
of the effective potential well is necessary, in order the

16 According to [28], such configurations are responsible for
multifractal statistics. It appears, that the tails of the distribu�
tion function are determined by individual peaks (and not
fractal clusters), in correspondence with our conception.
Thereby, we do not ignore the existence of multifractality
but give another description of its influence on superconduc�
tivity.

V

Gn0n0

0

Pres pZTc/W,∼

n

n0

E0
EF

Vn

Fig. 8. A typical fluctuation of the random potential
responsible for existence of the quasi�local state in the
deep of the allowed band.
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level was in the desired part of the spectrum.
17

 With
increasing of the impurity concentration, the effective
bandwidth is extended and the maximum of I(E) is
shifted correspondingly. However, the general mecha�
nism of resonances and estimation of their probability
remain unchanged.

Since the true critical temperature is hardly observ�
able, it is actual to consider the “bulk Tc,” which can
be defined as Tc of the system with excluded resonant
impurities. For strong but not resonant impurities, two
terms in Eq. (48) are of the same order (see (50), (52)),
and impurities are independent till concentrations
c ~ 1, since the mobility edge lies far from the bare
edge of spectrum and kFa ~ 1. Validity of the Anderson
theorem holds on the qualitative level: Tc is deter�
mined by the effective density of states, which differs
from the average one by a factor of the order of unity.

6. SIZE EFFECT IN THE LOCALIZED PHASE

In the localized phase, the system breaks up into
quasi�independent blocks of size ξ, and superconduc�
tivity is suppressed due to the size effect. Below we
analyze this effect in terms of the Gor’kov equation.
Superconductivity in small samples was discussed in
many papers (see a review article [29]), but this discus�
sion mainly concerns the aspects:

(a) inadequacy of the grand canonical ensemble
due to a fixed number of electrons in small granules;

(b) parity effects;
(c) insufficiency of the mean field approximation;
(d) absence of an abrupt phase transition, etc.

which are essential for finite systems and completely
not actual in the present context. In principle, it is cor�
rect to stress unreliability of the mean field approach,
but all attempts to overcome it (from modified mean
field approximations till the exact Richardson solution
and a direct numerical modelling) are based on the
truncated BCS Hamiltonian, which by itself induces

the certain way of pairing (in general incorrect).
18

 As
for the Gor’kov equation, it corresponds to the saddle�
point approximation in the functional integral [30, 31]
and is the most grounded of all mean�field type
approaches; in addition, the electron interaction is
specified in the physically clear manner and indepen�
dently of one�electron states (Section 2). The accu�
racy of approximation is determined by the Ginzburg
parameter, which provides insignificance of fluctua�
tions in case of a superconductor (with exception of
some special cases: e.g., in finite systems fluctuations

17 Strictly speaking, the resonant configurations of such kind are
possible for small W in the vicinity of the initial band edge.
However, a size of such configurations is inevitably large (due to
restriction of the barrier height and absence of levels in a shallow
well of a small radius), so they have a negligible probability and
are incompatible with electroneutrality (Section 3).

18 The state ϕs is coupled with its complex conjugated: it is correct
only for a uniform order parameter [20].

have a qualitative importance, destroying a phase tran�
sition). The Gor’kov equation can be also obtained
from the Eliashberg equations in the limit of the local
interaction [14].

Consider the cubic sample of size L, accepting the
periodical boundary conditions for the electron eigen�
functions. In a pure superconductor the latter have a

form of plain waves, so  = L–d and the local
density of states (8) does not depend on r. Then Δ(r) =
const is an exact solution of the Gor’kov equation (4),
which reduces to

(66)

and coincides with (9) in case of the continuous
spectrum. In a small energy interval, the spectrum
can be considered as a set of equidistant levels with a
spacing Ω

(67)

where we accept that the Fermi energy lies in the mid�

dle between two discrete levels.
19

 Substitution to (66)
and summation over s gives

(68)

For small Ω, the argument of the hyperbolic tangent is
large and one can set tanhx = 1 – 2e–2x, so

(69)

where we retained only main terms with ω = ±πT in
the second sum over ω. Subtracting the analogous
equation with Ω = 0, it is easy to obtain

(70)

For T  0, one can replace summation in (68) by
integration and obtain the equation for the critical
value of Ω, at which superconductivity is destroyed

(71)

The last integral is equal ln(π/4γ), where lnγ = C =
0.577 is the Euler constant and comparing with the
result for Tc0

(72)

19Such assumption is commonly accepted [29] for the case of the
even number of electrons N; for add N it is accepted �s = Ωs, but
the level �0 = 0 is considered as “blocked,” i.e., occupied by the
unpaired electron and not participating in the scattering process.
In the latter case, the results are analogous but correspond to
smaller Tc.

ϕs r( ) 2

Δ gT L d– 1
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2 ω2+
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∑
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,= =

1 gT
πνF

ω
������� π ω

Ω
��������.tanh
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∑=

1
gνF

�������
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2
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one can see that

(73)

To find the dependence of Tc on Ω in the vicinity of Ωc,
one can transfer (68) using the Poisson summation
formula [32]

(74)

where the term with s = 0 corresponds to (71). For
s ≠ 0, the integrals are convergent at large |x | and it is
possible to set ω0 = ∞ in them. Due to evenness in s
they can be calculated for s > 0; then the contour is
shifted in the upper half�plain and the main contribu�
tion arises from the pole x = iπ/2. For Ω/T � 1 it is suf�
ficient to retain the terms with s = 0, ±1,

(75)

and subtracting the analogous equation with T = 0

(76)

In the reduced coordinates

(77)

one can obtain the universal dependence y(x). Indeed,
transforming (68) by subtraction of the analogous
equation with Ω = 0, one has

(78)

Ωc 2πTc0.=

1
gνF

������� e iπs– x xtanh
2x

������������ i sΩ
πT
������x

⎩ ⎭
⎨ ⎬
⎧ ⎫

,expd

πω0/Ω–

πω0/Ω

∫
s ∞–=

∞

∑=

1
gνF

�������
4γω0

Ω
����������ln 4e Ω/2T–

,–=

Tc
Ωc

2 4Ωc/ Ωc Ω–( )[ ]ln
����������������������������������������, Ω Ωc.=

y Tc/Tc0, x Ω/Ωc= =

T
Tc0

������ln T π
ω

����� π ω
Ω

��������tanh 1–⎝ ⎠
⎛ ⎞ ,

ω

∑=

where ω0 can be set to infinity. Substituting the Matsub�
ara values πT(2n + 1) for ω, one can present the depen�
dence y(x) in the parametric form

(79)

where t runs from zero to infinity. Numerical calcula�
tion based on (79) gives the “rectangular” dependence
y(x) shown in Fig. 9: this dependence has exponen�
tially small deviation from the horizontal line near y =
1, and exponentially small deviation from the vertical
line near x = 1.

The given consideration retains for a disordered
superconductor if possibility of self�averaging is

accepted.
20

 The obtained results can be used to
describe the dependence of Tc on the distance to the
mobility edge in the localized phase, where the system
is divided into quasi�independent blocks of size ξ. The
role of Ω is played by the quantity

(80)

where ν is the critical exponent of the localization
length. According to Section 5, the assumption of self�
averaging is valid literally for weak disorder and on the
qualitative level for strong disorder in the absence of
resonances. In the latter case, Tc is determined by the
effective density of states which differs from the aver�
age one by a factor of the order of unity, which is a
smooth function of parameters. It preserves the char�
acter of singularities (70) and (76), which determine
the behavior near Ec and E* (Fig. 3) and are responsi�
ble for the most striking features in the dependence
Tc(�F).

7. CONCLUSIONS

The present paper resolves contradiction between
two series of papers [1–5] and [9, 10]. The obtained
results has in some way a compromise character. On
the one hand, the “bulk” superconductivity behaves in
correspondence with the picture by Bulaevskii and
Sadovskii [1–5]. On the other hand, the true transition
temperature Tc of strongly disordered superconductor
does not coincide with the “bulk” one and is deter�
mined by rare peaks of the order parameter on the
atomic scale; in correspondence with [9, 10] it has a
power law dependence on the coupling constant and
does not depend on the cut�off frequency. However, in
contrast to [9, 10], it has no essential dependence on
the position of the Fermi level and does not correlate
with the Anderson transition. By this reason, we do

20 Of course, in this case one should take some realistic statistics
of the Wigner–Dyson kind instead of the equidistant levels, but
it has a small effect on the results [29].

y F t( ), xexp t 1– F t( ),exp= =

F t( ) 2 1
2n 1+
������������ π 2n 1+( )t

2
���������������������tanh 1– ,

n 0=

∞

∑=

Ω E( ) J ξ/a( ) d– J E Ec– /J( )dν
,∼ ∼

Fig. 9. “Rectangular” dependence of Tc on the level spac�
ing Ω in a finite system; it is universal in the reduced coor�
dinates y = Tc/Tc0, x = Ω/Ωc. 
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not see any grounds to say on “fractal superconductiv�
ity” [10] near the localization threshold.

The presented results are obtained in the frame�
work of the mean field theory, which is surely valid in
the delocalized regime. In fluctuational theory, essen�
tial modification of results is expected only for the
localized regime: the modulus of the order parameter
changes slightly, while fluctuations of its phase become
essential. We should stress that the role of fluctuations
is determined by specific values of parameters, charac�
terizing the system: if, for example, the ratio Tc/J is not
too small, then the resonant impurities have rather
large concentration and the Josephson coupling
between the localized superconducting “drops” is suf�
ficiently large for stabilization of the mean�field solu�
tion (this coupling is determined mainly by existence
of the uniform contribution (see (30)), which grows at
small L). Contrary, if Tc/J  0, then the Josephson
coupling between drops is small and fluctuations
essentially suppress Tc. According to the nonlinear
Ginzburg–Landau equations derived in [11] for the
localized regime, decreasing of the temperature stim�
ulates the growing of tails of the localized solutions;
the Josephson coupling between drops becomes
greater and stabilizes the mean�field solution before
the “bulk Tc” is reached. Analogous remarks are valid
in relation with the Coulomb blockade effects [30].

In comparison of the obtained results with experi�
ment, one should have in mind, that the continuous
distribution P(V) in the Anderson model is not very
realistic; it is more adequate to assume the discrete
(and not very dense) set of the V values. As a result, in
most systems the described resonances will be unob�
servable for any concentration and arrangement of
impurities. However, in the minority of systems the
effect of resonances will be strong and stable. The
Anderson model with a several types of periodically
arranged impurities can be considered as the model for
the high�temperature oxide superconductors. The
possibility to interpret the “superconducting explo�
sion” of 1987 as localization of the order parameter
was indicated previously [11]; the above results sug�
gests possibility of such localization not only in the
Cu–O planes but also at the individual atoms. The
adequacy of such a model is confirmed by (a) optimis�
tic estimates of Tc, (b) practical coincidence of the
maximal Tc values with ω0/π, (c) suppressed isotope�
effect in the regime �c � ω0.

APPENDIX

On Solution of the Gor’kov Equation with the Kernel (37)

Let fill in the gaps for our exposition in the main
text.

In the region remote from the resonance, we can

consider  and  as independent of ω: then Z
ω
 is

also constant. Substituting Δ1(r) from (43b) into
�ω

' �ω
''

expressions (44) for X
ω
 and Y

ω
, we have representation

(47) with parameters

(A.1)

Then Z
ω
 has a form

(A.2)

and its combination with (43a) gives a system of equa�
tions for Δ0 and Z

(A.3)

with the coefficients

(A.4)

The terms containing ω0 has an additional smallness

~ω0/J and can be neglected;
21

 the condition of solu�
bility for (A.3) gives the result (48).

In the vicinity of the resonance, one cannot neglect

the ω dependence of the quantities , , and
consequently Z

ω
. Substituting Δ1(r) from (43b) into

(44) for X
ω
 and Y

ω
, one has representation (47) with

parameters

(A.5)

21 We have in mind the traditional superconductors. If ω0 ~ J,
then the “vicinity of the resonance” is extended and in fact
occupies the whole band.
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and for Z
ω

(A.6)

Substitution into expressions (58) and (43) gives a sys�
tem of equations for Δ0 and S

(A.7)

with definitions

(A.8)

The condition of solubility for the system (A.7) gives

(A.9)

Estimations for �0 ~ γ ~ T give

(A.10)

and allow to retain only the leading terms in J/T; as a
result, Eq. (A.9) can be written as

(A.11)

and reduces to a form (59); the last term is essential
only near the intersection point of dashed lines in
Fig. 7, when �0 ~ γ ~ �c and T should be replaced by �c

in the estimates (A.10).
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