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1 1. INTRODUCTION

The present paper continues the series of publica�
tions [1–3] devoted to a theoretical analysis of numer�
ical algorithms used for investigation of the Anderson
transition. These studies are motivated by contradic�
tion of numerical data (see a review article [4]) with
self�consistent theory by Vollhardt and Wölfle [5, 6],
which reproduces the main body of theoretical results
and according to certain arguments [7, 8] gives the
correct critical behavior. In particular, the numerical
results are incompatible with existence of the upper
critical dimension dc2 = 4, which is a rigorous conse�
quence of the Bogoliubov theorem [9] on renormaliz�
ability of ϕ4 theory [1]. Since numerical modelling is
carried out independently by different groups [4, 10–
17], the presence of trivial mistakes is surely excluded;
however, all numerical algorithms are empirical and
not based on a serious theoretical ground.

The object for the present investigation is the scal�
ing for level statistics [10], which currently became
one of the most popular algorithms [11–15]. Its com�
parative simplicity is related with the fact that it deals
only with the spectrum of the matrix Hamiltonians
and does not require a calculation of eigenfunctions or
conductivity.

The distribution function P(ω) for a spacing ω
between the nearest levels is conveniently treated in
terms of the variable

(1)

where Δ =  is the mean level spacing in a finite sys�
tem having a form of the d�dimensional cube of size L;
νF is the density of states at the energy of interest (like
the Fermi level). According to [10], there are three

1 The article was translated by the authors. 
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actual distributions: Wigner�Dyson (PW(s)), Poisson
(PP(s)) and critical (Pc(s)) (Fig. 1):

(2)

(3)

(4)

which are realized correspondingly in the metallic
state, the localization phase and the critical region.
If the system is in the critical point, then its level dis�
tribution coincides with Pc(s) independently of size L.
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Fig. 1. Distribution P(s) of the nearest level spacing for
Wigner�Dyson, Poisson and critical statistics. Distributions
PW(s) and PP(s) intersects in points s = 0.473 and s = 2.002.
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With a small deviation from the critical point, distribu�
tion P(s) changes slowly with L and tends to PW(s) or
PP(s) in the large L limit. For a quantitative control of
such evolution one can consider the integral over the
large s region,

(5)

and introduce the scaling parameter

(6)

which changes from zero to unity with a crossover from
a metal to dielectric. If the scaling relation is postulated,

(7)
then the critical behavior of the correlation length ξ
can be extracted from the evolution of α under the
change of L [10]. Analogously, one can consider the
integral over the small s region,

(8)

and define the scaling parameter (s0) analogously to
(6), which formally coincides with α(s0) due to rela�

tion (s0) = 1 – I(s0). Practically, definition (5) is tra�
ditionally used with the distinguished value s0 = 2.002,
corresponding to the common intersection point of
three distributions (Fig. 1), while definition (8)
exploits a value s0 = 0.473 corresponding to the second
intersection point of PW(s) and PP(s).

Another variant of the scaling parameter is coeffi�
cient A in the dependence

(9)
which tends to a constant limit for large s; the scaling
relation of type (7) can be postulated for it. The more
complicated versions of scaling parameters were used
in the cases d = 2 [13] and d = 4 [14] (see Secs. 7, 8).
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The main questions are connected with scaling rela�
tions of type (7), which cannot be justified for arbitrary
quantities, are certainly invalid in high dimensions and
can be essentially distorted by corrections to scaling. It
is shown below, that self�consistent theory of localiza�
tion [5, 6] allows to establish the relations of type (7) for
all introduced quantities, and the obtained scaling func�
tions can be compared with the extensive numerical
material [10–15]. Analogously to [1–3] it appears, that
raw numerical data are perfectly compatible with the
Vollhardt and Wölfle theory, while the opposite state�
ments of the corresponding researchers are related with
ambiguity of interpretation and existence of small
parameters of the Ginzburg number type.

2. QUASI�GAUSSIAN CONCEPTION

A calculation of the distribution function P(s) is
practically impossible for realistic models, and a theo�
retical analysis of the algorithm looks rather question�
able. However, such analysis becomes possible, if some
roughening scheme is accepted. An example of such a
roughening is the quasi�Gaussian conception sug�
gested by Altshuler et al. [18].

Let N be the number of levels in the interval E near
the energy �F (Fig. 2); below �F = 0 is accepted. If fluc�
tuations of N are small, one can expect a validity of the
Gaussian distribution for them,

(10)

where σ2 depends on . The probability of the
event that there are no levels in the interval E is given
by Eq. (10) with N = 0. In terms of the introduced
quantities, it means that ω = sΔ can take any value
greater than E; it corresponds to the integral (5) with
s0 = E/Δ. Taking into account a dependence of σ2 on

 = E/Δ = s0, one has

(11)

Since integration of P(s) does not change the form of
the exponential in Eqs. (2)–(4), one can reproduce it
by substitution

(12)

On the other hand, a direct calculation of the mean
square fluctuation

(13)

gives

(14)

where the first expression is the result by Dyson [19],
the second one corresponds to the Poisson distribution

P N( ) N N〈 〉–( )2

2σ2
����������������������–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp∼

N〈 〉

N〈 〉

I s0( )
s0

2

2σ2 s0( )
���������������–

⎝ ⎠
⎜ ⎟
⎛ ⎞

.exp∼

σW
2 s( ) 2/π, σP

2 s( ) s/2, σc
2 s( ) κs.= = =

σ0
2 N2〈 〉 N〈 〉 2–=

σ0
2( )W 2/π2( ) s, s0

2( )Pln s,= =

σ0
2( )c κ0s,=

N

εF + E/2

εF = 0

εF − E/2

Fig. 2. N is the number of levels in the interval E.
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[20], and the third was suggested in [18] using the sim�
ple scaling arguments [21] and confirmed numerically
in [11]. According to [11, 14]

(15)

i.e., κ and κ0 are close but not identical. A comparison

of (12) and (14) shows that σ2 and  coincide in the

order of magnitude aside from the Wigner–Dyson
case, where they differ by a logarithmic factor. The lat�
ter is not surprising. Abundance of the Gaussian distri�
bution is a consequence of the central limit theorem,
whose derivation shows [22], that the Gaussian form is
valid near the maximum of distribution, while its tails
remain not universal. The given reasoning is valid in
the certain interval of the s values, which are suffi�
ciently large for realization of the exponential behav�
ior in (2)–(4), but sufficiently small for a crude validity
of the Gaussian distribution (10) in the vicinity of
N = 0. With any reasonable restrictions for s, one has
lns ~ 1 and the order�of�magnitude coincidence of σ2

and  is indeed valid. The two latter quantities vary in

wide limits and their difference in a slow function is of
a little consequence, so this function can be replaced
by a constant in the accepted roughening scheme. As a
result, an evolution of distribution P(s) is mainly

determined by the quantity , which allows a theo�

retical description (Sec. 3).

Substitution of (11) into (6) shows that for large s0

one can neglect IW(s0), so

(16)
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and α(s0) differs from zero only for  – σ2 �  and

practically disappears in the Wigner�Dyson range σ2 ~

. A comparison of (11) and (9) shows that

(17)

so parameters α(s0) and A are determined by the single

combination σ2/ ; the same is true for the more
complicated scaling parameters (Secs. 7, 8).

3. DIAGRAMMATIC APPROACH

A calculation of  in the framework of the dia�
grammatic technique was considered by Altshuler and
Shklovskii [23]. Having in mind the subsequent gener�
alizations, we discuss in details the selection principle
of diagrams.

The number of levels N in the interval E is
expressed through the exact density of states ν(�) in a
finite system

(18)

while its mean square fluctuation

(19)

is determined by the correlator

(20)

It is instructive to consider the quantity R(ω) which
determines the probability to find two arbitrary levels
at the distance ω (and not the nearest, as in the case of
P(ω)); it is trivially connected with K(�1, �2)

(21)
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Fig. 3. Relation of function (q) with the full vertex (q) and the irreducible vertex (q).Φkk '
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(where  ≡ νF is assumed to be independent of �)
and expressed through the two�particle Green func�
tions

(22)

Here  is a Fourier transform of the quantity

(23)

with the tree�momenta designations shown in Fig. 3,

and (q) is determined analogously. In terms of the

vertex functions (q) and (q) (Fig. 3), one has

(24)
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k q,
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where Pk(q) =  and (q) is omitted,
since it gives no contribution due to the absence of the
diffusion poles (see below). The crucial point is the pres�
ence of the factor Δ = 1/νFLd before the sum over

momenta in Eq. (24). If vertex (q) is regular, then the
usual rule for the change of summation by integration

gives a finite expression multiplied by Δ, which disap�
pears in the thermodynamic limit. In fact, vertex

(q) contains the singular contributions related
with the diffusion poles, the so called “diffusons” and
“cooperons” (Figs. 4a, 4b), which give singularities
1/ω for certain values of momenta. Fixation of the
momentum at one value (instead of summing) gives
factor L–d ∝ Δ; if fixation of (n – 1) momenta allows to
nullify the momentum parts in n diffuson denomina�
tors, then contribution Δn/ωn = 1/sn appears in
Eq. (24), which remains finite in terms of variable s
when the thermodynamic limit is taken. The simplest
diagram in possession of such a property is the two�

cooperon one
2
 (Fig. 4c)

(25)

(D0 is a classical diffusion constant). Since only the
vertex with k = k' enters in Eq. (24), then fixation of
momentum k1 at value –k nullifies the momentum
parts of two diffusion denominators and gives contri�

2 It was considered firstly by Bulaevskii and Sadovskii [24] and
then extensively used in [23].
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Fig. 4. Definitions of the “diffuson” (a), the “cooperon” (b), and the cooperon ladder (c).
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Fig. 5. Comparison of the exact Efetov result (solid curve)
and a contribution of the cooperon ladder (dashed curve).
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bution 1/s2 into R(s); the same contribution is given by
the diagram obtained from the two�cooperon one by

reversing the lower G�line,
3
 so

(26)

which is a beginning of expansion over 1/s. Contribu�
tions 1/s2n arise, in particular, from the ladder dia�
grams containing 2n cooperons (Fig. 4c). A summa�
tion of all such contributions should reproduce the
Efetov result [25] (x = πs):

(27)

which corresponds to the Wigner–Dyson statistics. It
is interesting that a summation of the cooperon ladder
(Fig. 4c) gives the result

(28)

which reasonably approximates (27) (Fig. 5). In its
improvement, the main difficulty is related with repro�
ducing the weak oscillations, which are practically
invisible in Fig. 5; the latter have the nonperturbative
character and can be obtained only if the factorial diver�
gency of the perturbation series is taken into account
and the proper summation procedure is used [26, 27].

The analogue of the result (26) for the correlator
K(�1, �2) has a form [23]

(29)

where  and attenuation γ is added, related

with inelastic processes or the openness of the system.
4

Substitution of (29) into (19) leads to expression
5
 [23]

3 Factor 2 related with a possibility to reverse the lower G�line is
taken into account below in summing the cooperon ladder.

4  If imaginary increments ±i0 in the definitions of GR and GA are
changed by ±iγ/2, then replacement –iω  –iω + γ occurs in
all diffusion denominators [2].

5 At first glance, the result (30) looks strange: expression (29) is
localized at  � γ and should give contribution 1/γ when inte�
grated over ω, transforming to E/γ after the second integration
in (19). In fact, the integral over ω in the infinite limits is zero
and becomes finite only due to a restriction of the integration
domain; it leads to contributions 1/�1 and 1/(E – �1), trans�
forming to logarithms after integration over �1.
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,=
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(30)

which coincides with Dyson’s result (14) at γ ~ Δ. The
latter fact has a following explanation. If a sufficiently
large attenuation γ is artificially introduced, then the
two�cooperon contribution (29) is the main term of
the expansion in Δ/γ, and Eq. (30) is substantiated.
Dyson’s result (14) refers to the closed systems and
implies γ = 0. However, the condition of validity for
(29) allows to diminish Δ only till a value of the order
of γ; fortunately, the dependence on Δ is practically

absent for γ � Δ
6 and result (30) is matched with

Dyson’s one. Below we use the same reasoning in the
more complicated case (Sec. 4).

If a contribution to sum (25) is not restricted by the
term k1 = –k, but values of k1 close to –k are taken into
account, then the following result is obtained instead
of (29) [23]:

(31)

The restriction by the term q = 0 is justified for E �
D0/L2, while in the opposite case one can come from
summation to integration and obtain for E � γ [23]:

(32)

where LE =  is the diffusion length over the

time 1/E and Kd = [2d – 1πd/2Γ(d/2)]–1 is the surface of
the unit d�dimensional sphere, divided by (2π)d.

4. APPLICATION OF SELF�CONSISTENT 
THEORY

The next step was made by Kuchinskii and
Sadovskii [28]. Results (30), (32) are valid in the deep
of the metallic phase, and one can try to extend the
region of their applicability, replacing D0 in (31) by the
exact diffusion coefficient D(ω, q) [28] in the spirit of
self�consistent theory of localization [5, 6]. Such
approach can be motivated by the following reasoning.
The irreducible vertex URA (Fig. 3) contains the diffu�

sion pole.
7
 

(33)

6 It is clear from the fact that a value of R(s) at s = 0 can be
obtained from Eq. (26) at s ~ 1.

7 The possibility to neglect the spatial dispersion of D(ω, q) is jus�
tified in [8].
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with the observable diffusion coefficient D(ω). Instead
of the two�cooperon diagram (Fig. 4c), one can con�
sider the diagram with two blocks U (Fig. 3), which
dominates in the metallic phase and under certain
conditions (see below) preserves domination in the

general case.
8
 In the vicinity of the pole, one can put

k' = –k in the function F(k, k', q) and its role reduces
to the additional factor kσ after integration over k, q
in (24):

(34)

Factor kσ is a slow function of a distance to the transi�
tion, which we replace by a constant in correspon�
dence with the accepted roughening scheme (Sec. 2).

According to [2], in a closed finite system the dif�
fusion coefficient has a localization character

(35)

where ξ0D is the correlation length of a finite system
considered as quasi�zero�dimensional. Inelastic
damping γ can be introduced by replacement –iω 
–iω + γ, which is made simultaneously in the term
⎯iω and in D(ω) [2]. Then

(36)

where function F(x) is defined as

(37)

and has the asymptotic behavior

(38)

Here s = (s1, …, sd) is a vector with integer components
si = 0, ±1, ±2, … and  = πKd(1 – d/2)/2sin(πd/2).
Substitution of (36) into (19) gives

(39)

instead of (30). We need an approximation providing a
correct description in the region ω ~ γ, which plays an
essential role in the integration over �1, �2 (see Foot�
note 5), and where (36) is the main term of the expan�
sion in Δ/γ. An example of the ladder diagrams
(Fig. 4c) shows that there exist contributions

8 The diagrams with odd number of blocks U are suppressed by
parameter E/γe, where the elastic damping γe has the order of
the bandwidth in the critical region. In terms of the U�blocks, all
diagrams are of the ladder type, and in this sense the cooperon
ladder (Fig. 4c) corresponds to a summation of the most singu�
lar contributions. The diagram with two U�blocks is the first
term of this sequence, while the higher order diagrams are dis�
cussed below.
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with all n, so the minimal γ providing a validity of (36)
is determined by the condition

(41)

and the inelastic damping cannot be diminished below
this quantity. Since a dependence on γ is practically
absent for γ � γmin (see below), a value of 
(36) at γ = 0 can be estimated setting γ ~ γmin. In pro�
ceeding to (39) one should take account of the ω
dependence for ξ0D (Sec. 5), which effectively adds
contribution ~E2 to the quantity γ2 in the course of
integration (19); hence, one should set

(42)

where k1 and k2 are slowly varying functions and can be
approximated by constants. As a result, we have

(43)

In moving to the deep of the localized phase, function

F(ξ0D/L) grows to infinity and  tends to a constant,

which accepts the Poisson value  = s for the choice

k2 = kσs/π2; so

(44)

Since ξ0D/L is a function of ξ/L [2], the scaling rela�

tion of type (7) is established for the quantity / .

Let discuss the sense of relation (42) and a depen�
dence on γ in the region γ � γmin. A physical interpre�
tation of the result (32) is as follows: the system is
divided into quasi�independent blocks of size LE [23]

and the nontrivial properties of  are formed at the
scale LE, while for the larger scales there is addition of
variances as for independent random quantities. The
openness of each block provides the diffusion attenua�

tion γD = D/  = E of its eigenstates, with inelastic
damping γ added to it; they are combined by the law of
squares, since technically it involves an estimate of
Re(–iω + γ) ~ (ω2 + γ2)1/2 at ω ~ E (Sec. 5). Inelastic
damping γ is inessential in the background of γD under
condition γ � E. It will be clear below (Sec. 5), that
γmin ~ E in the critical region and γmin � E in the metal�
lic one, so a dependence on γ is absent in both regions
for γ � γmin. In the localized regime, the scale LE

reduces to ξ and the condition E � Δξ is fulfilled,
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where Δξ is the level spacing for a block of size ξ.
Under such condition, one can easily estimate the
probability pn for existence of n levels in the interval E

for such a block: 

so  ≈ E/Δξ,  ≈ E/Δξ and  is close to the
Poisson value independently of the actual level statis�
tics. Attenuation γ can be considered as a result of the
random process, which provides the scattering of each
level near its average value; then independence of sta�
tistics means independence of γ. We see that a weak
dependence on γ under condition γ � γmin takes place
in all cases.

5. SCALING FOR DYNAMICAL 
CONDUCTIVITY AND DEPENDENCE ON ω

In the previous section, we assumed implicitly that
the quantity ω is sufficiently small. This assumption is
not valid in the general case, and the ω dependence
needs an additional study.

In a closed finite system, the diffusion coefficient has
a localization behavior (35). In the passage to open sys�
tems, one should make a replacement –iω  –iω + γ,

and the diffusion coefficient accepts a finite value γ
in the static limit, leading to a finite conductance gL.
The scaling relations for gL and ξ0D were derived in [2]
and have a form

(45)

where cd = πKd/  and functions H(z),
HT(z) have the asymptotic behavior

(46)

Attenuation γ0, arising due to the openness of the sys�
tem, is determined by relation

(47)

so the ratio γ0/Δ is equal to unity in the metallic phase,
a somewhat less in the critical region and exponen�
tially small in the localized state. Inelastic damping γ,
which we introduce for validity of formulas, is typically
much greater and γ0 is inessential in its background.
The above relations are valid in the limit of infinitesi�
mal frequency and need reconsideration for finite γ.
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The self�consistent equation of the Vollhardt and
Wölfle theory can be written in the form [1]

, (48)

where � is the energy of the bandwidth order, W is the
random potential amplitude, Λ is ultraviolet cut�off,
Dmin is a characteristic scale of the diffusion constant,
corresponding to the Mott minimal conductivity σmin,
and the limits of integration are indicated for the mod�
ulus of q.

For finite L, Eq. (48) accepts the following form in
the closed and open systems [2] 

(49)

(50)

where m–1 = ξ0D. Symbols (c) and (o) mark the allowed
values of the momentum, corresponding to the closed
and open systems: the main point is existence of the
term with q = 0 in the former case and its absence in
the latter [2]. The first equation determines ξ0D, while
the difference of equations defines the diffusion coef�
ficient DL(ω). Introducing the dimensionless conduc�
tance gL(ω) = hνFDL(ω)Ld – 2 and producing transfor�
mations described in [2], one obtains

(51)

where inelastic attenuation γ is added. Now the quan�
tity ξ0D depends on ω and its modulus (at γ = 0) is usu�
ally denoted as Lω; excluding p, we have the scaling for
dynamical conductivity

discussed by Shapiro and Abrahams [29, 30]. Equa�
tions (51) transfer into (45) under condition

 � Δ, while the opposite case is actual.

For  � 1, the large z region is of the main interest
where the second asymptotics (46) is valid for H(z),
while HT(z) is exponentially small:

(52)

The localized regime takes place for z � , where
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and ξ0D does not depend on frequency, so proceeding
from (36) to (39) in Sec. 4 is substantiated; the quanti�
ties ξ0D(0) and gL(0) are determined by Eqs. (52) with

p = 1. If z � , the metallic regime is realized,
where

(54)

and the diffusion constant D is frequency�independent;
hence, the calculation by Altshuler and Shklovskii is
adequate and Eq. (32) is valid with the replacement of

D0 by D. In the critical region (z ~ ) both quanti�
ties are ω�dependent,

(55)

so neither (39) nor (32) is correct.
Substituting relations (53)–(55) into (36) and

using the second asymptotics (38) for F(x), one can
write all three results in the unique form:

(56)

where the exponent β accepts values 0, 1, d/2 in the
localized phase, critical region and metallic state corre�
spondingly. Equation (56) can be considered as the
interpolation formula for the whole range of parame�
ters, if β is understood as a slowly varying function. Sub�
stituting Eq. (56) into (19) and integrating, one has

(57)

For E � γ, the right hand side of (57) is determined by
the term Re(γ + iE)β ~ (γ2 + E2)β/2 and the same result

by the order of magnitude follows from the expression
9
 

(58)

It is easy to see that one can use Eq. (36) with ξ0D inde�
pendent of ω, if combination –iω + γ in (52) is
replaced by a quantity of the order (γ2 + E2)1/2; since
γ ~ γmin, it justifies representation (42) for the effective
attenuation.

9 Condition E � γ is violated in the localized phase, but in this
case there is no dependence on the quantity p and the character
of approximation for it has no significance.
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As a result, the second equation (52) accepts the
form

(59)

and together with (44) determines  as a function of
L/ξ. In the critical region, one has u ~ 1 and γmin

appears to be of the order of E.

6. THREE�DIMENSIONAL CASE

6.1. Scaling for 

For large s, we can use the second asymptotics (38)
for F(1/z), make a replacement u  k1u and exclude
z, reducing (44), (59) to the form

(60)

We have changed the common scale of ξ, in order to
have the unit coefficient in the left hand side of the
second equation, and introduced the parameter B =

π2cd /kσ . Equations (60) are valid for dimensions
2 < d < 4 and in the parametric form determine the
scaling

(61)

so the quantities L/ξ and s enter only in the certain
combination. Exactly such scaling was discovered in
numerical experiments [11].

We can make the proper choice of parameters k1

and kσ, in order to reproduce the correct results in the
metallic phase and at the critical point. Noticing that
the scale LE coincide with ξ0D for p = s, we have ξ0D =

 from Eq. (59) in the small z region; then
Eq. (44) gives

(62)

which should be identified with the Altshuler and
Shklovskii result (32): it gives a relation between k1

and kσ. The critical point uc is determined by condi�
tion Buc = (1 + uc)

1/2 following from ξ = ∞, and the

first equation (60) should give /  = κ0 for u = uc.
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Considering all parameters as functions of k1, we have
a sequence of relations

(63)

where

(64)

and the change of k1 allows to adjust the correct κ0

value. The actual choice of parameters for d = 3 corre�
sponds to κ0 = 0.28 [11]:

(65)

The calculated dependence y = Fσ(x) is presented in
Fig. 6a and compared with the numerical results [11]
in Fig. 6b.

6.2. Scaling for σ2 and A

We have established in Sec. 2 that σ2 and  coin�
cide in the order of magnitude. The scaling equations
(60) are the same for them, and they differ only by the
choice of parameters. The Poisson value for σ2 is s/2
(see (12)) and reproduced by the choice k2 = 2kσs/π2,
so parameter B is two times less in comparison with
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(63). Accepting for σ2 the same behavior in the metal�

lic phase as for , we have instead of (63):

(66)

Parameter k1 is chosen from the critical value Ac =
1/2κ = 1.9 [12] of the scaling variable A (see (17)),
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which determines the values of other parameters:

(67)

Due to relation (17), parameter A is reversal to σ2/
and its scaling is trivially obtained from Eqs. (60).
Comparison with the Zharekeshev and Kramer data
[12] is given in Fig. 7.

6.3. Scaling for α(s0)

The scaling parameter α(s0) is also determined by

combination σ2/ , as clear from equation (16). The
latter is valid for s0 � 1 and its extrapolation to values
s0 ~ 1 cannot be reliable; so instead of s0 some effective
value seff should be used.

Next, one should have in mind that for finite s the

quantity σ2/  does not tend to zero in the metallic
phase. This point can be taken into account, if the fol�
lowing interpolation formula is accepted for the func�
tion F(x) in (37)

which provides the correct limits (38); its substitution
into (44) and (59) leads to the change in the second
equation (60):

(60')

where u0 ~ 1/s. Then u  u0 in the metallic phase for

L  ∞, and σ2/  tends to a finite value. If parame�

ters for σ2 are chosen in correspondence with Sec. 6.2,
then the proper choice of seff and u0 allows to provide
the correct values of α at the critical point and in the
metallic region.
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Scaling of parameter α(s0) was studied for s0 = 2 in
the paper [10] and for s0 = 0.473 in the papers [11].
These results agree with the theoretical dependence, if
the choice seff = 2.22, u0 = 8.67 is made in the first case
(note that seff is close to s0) and seff = 2.99, u0 = 10.2 in
the second case (Fig. 8). A small shift along the hori�
zontal axis in Fig. 8a corresponds to addition of the
positive value L0 to the length L, in agreement with
corrections to scaling (Sec. 6.4). It should be noted,
that finiteness of u0 practically does not affect the
results beyond the metallic region.

6.4. Critical Behavior and Corrections to Scaling

The simplest way to extract the critical behavior from
scaling relations of type (7) is based on the possibility to
rewrite them in the form (τ is a distance to the transition)

(68)

and expand regularly over τ, which is possible due to the
absence of phase transitions in finite systems. Then the
derivative over τ behaves as L1/ν and immediately deter�
mines the critical exponent ν of the correlation length ξ.

Such procedure is certainly correct, if relation (7) is
exact. In fact, it is not exact due to existence of scaling
corrections. To analyze the latter, consider a decom�
position of the sum over q in (49) suggested in [2]:
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Fig. 8. A theoretical dependence of α(s0) on L/ξ and its comparison with numerical data of papers [10] (a) and [11] (b). Values
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where we separated the term with q = 0, and rearrange
the rest sum by subtraction and addition of the same
sum with m = 0. Setting q = 2πs/L in the second term
I2(m), we can represent it in the form

(70)

where the first term corresponds to the limit L  ∞
(H0(z) is a certain function), and the second gives a
correction, related with finiteness of Λ. The third term
in (69) can be estimated by the change of summation
by integration with restriction  � 1/L

(71)

Then, setting τ = �2/W2 – b0Λd – 2, one has deviation
of the quantity y = ξ0D/L from its critical value:

(72)

Differentiating over τ and resolving for  in the
iterative manner, one has

(73)

In three dimensions, the main correction to scaling
reduces to a constant, and for small τ we obtain

(74)
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neglecting the terms disappearing at L  ∞. All scal�
ing parameters are functions of ξ0D/L and their devia�
tions from critical values behave analogously.

Result (74) was obtained in [1] for other scaling
parameter, while its universality was motivated by con�
siderations based on the Wilson renormalization
group. Since the results for L, lesser than some value
Lmin, always fall out of the scaling picture and are
rightfully neglected by researches, dependence L + L0
with L0 > 0 can be interpreted as L1/ν with ν > 1: such
ambiguity of treatment was demonstrated in [1, 3] on
a lot of examples. The results for level statistics are
illustrated in Fig. 9.

7. TWO�DIMENSIONAL CASE

In two dimensions, the power�law function in the
second equation (51) is replaced by a logarithmic one
[2],

(75)

where asymptotics H(z) = –c2lnz is sufficient for large
p. Setting as previously p = [k1s2 + k2F(1/z)]1/2,
accepting k2 = 2kσs/π2 in correspondence with the
Poisson condition for σ2 (Sec. 6.2) and excluding z,
one comes to the following equation

(76)
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Fig. 9. Fitting by dependence (L + L0) (dashed curve) for numerical data, based on the level statistics: (a) Data by Zharekeshev
and Kramer [12]. The points correspond to the average derivatives of the scaling parameter A (arbitrary units), determined from
Fig. 4 of [12] in the interval 16 < W < 17. A statistical error related with each point can be estimated very conservatively (see
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instead of the second equation (60). Here u0 ~ 1/s
takes into account the finiteness of s in accordance
with Sec. 6.3,

(77)

and the relation between kσ and k1 is used, obtained
from the correspondence with (32). Parameter k1

remains free and can be used as a fitting one. For large
s, the scaling relation (61) remains valid.

In two dimensions, the more complicated scaling
parameter was used [13],

(78)

where the normalization factor � is fixed by the con�
dition that γ(s0) = 1 for I(s) = IW(s). The second equal�
ity in (78) follows from the first one due to relation

I(s) = 1 – (s) and the normalization of I(s):

(79)

For large s0, the second integral in Eq. 78 can be esti�

mated setting I(s) ~ exp{–s /σ2} (see (11)) and
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accepting /σ2 to be practically constant,

(80)

so γ(s0) is determined by the quantity σ2/ .

In paper [13], the following dependence was
empirically established for large L/ξ:

(81)

Such dependence does not take place in the present
theory: it is clear from (76), (60) that γ(s0) ~ 1/u, u ~
(L/ξ)2 and behavior (ξ/L)2 is realized instead of (81).
However, such law is valid practically for exponentially
large values of L/ξ, while the numerical data are satis�
factorily fitted for k1 = 0.002 (Fig. 10) (a small value of
k1 is not surprising, since it was small in the 3D case).
The reason for it is as follows: for small k1, the large
values of u and x = L/ξs1/2 are actual, so the left and
right hand sides of (76) change slowly and can be lin�
earized near some points uc and xc. A freedom in
choice of the common scale of ξ allows to compensate
the zero term of the linear dependence and provide
proportionality u ~ L/ξ in the rather wide region of
parameters. Thereby, dependence (81) exists really as
an intermediate asymptotics.

8. HIGHER DIMENSIONS

8.1. Dimensions d > 4 

For d > 4, one has for the quantity I2(m) in (69)

(82)

and the following equation is valid

(83)

instead of the second equation (52). It is convenient to
introduce variables

(84)

and rewrite (83) in the form

(85)

Setting as above p2 = k1s
2 + k2F(1/z) and choosing k2 =

2kσs/π2 from the Poisson value for the quantity σ2

(Sec. 6.2), we have

(86)

σP
2

γ s0( ) 1 σ2
/σP

2 s0
σP

2 σ2–

σ2
��������������–

⎩ ⎭
⎨ ⎬
⎧ ⎫

,exp–=

σP
2

γ s0( ) 1 σ2
/σP

2– ξ/L.∼ ∼

I2 m( ) cdm2Λd 4–
, cd– Kd/ d 4–( )= =

cd
L
ξ
���⎝ ⎠

⎛ ⎞
2 L

a
���⎝ ⎠

⎛ ⎞
d 4–

± p

z2
��� cdz2 L

a
���⎝ ⎠

⎛ ⎞
d 4–

–=

y L
ξ0D

������ L
a
���⎝ ⎠

⎛ ⎞
d 4–( )/4

, x L
ξ
��� L

a
���⎝ ⎠

⎛ ⎞
d 4–( )/4

,= =

cdx2± p

y2
��� cdy2

.–=

cdx2±
sk1

1/2 1 u+( )1/2

y2
��������������������������� cdy2

,–=

u
2kσ

π2k1s
����������F

ξ0D

L
������⎝ ⎠

⎛ ⎞ ,=

4
ln(L/ξ)

−4
−4

0

−1

lnγ

−2

−3

−2 0 2

Fig. 10. Numerical data of the paper [13] for γ(s0) as a
function of L/ξ (points) in the 2D case and its comparison
with the theoretical dependence for k1 = 0.002 and u0 = 44
(thick solid line); value s0 = 1.25 was used in the both cases.
The thin solid line corresponds to the law (81).
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where function F(x) is determined by expression (37)
as previously, but has a different behavior in the actual
region of small x,

(87)

Using (87) and excluding y, we have instead of (60)

(88)

where B = π2 /2kσ. In the metallic phase, Eqs. (88)
give

(89)

which should be identified with the result for the Alt�
shuler and Shklovskii regime

(90)

which follows from (31), but does not coincide with
(32). For a choice of parameters, the relations are valid

(91)

etc., coinciding with (66) for d = 4.
Equations (88) define in the parametric form the

following scaling relation

(92)

which is different from (61) and contains the atomic
scale a. The dependence on x ∝ Ld/4 instead of L
reduces to the change of the common scale in the log�
arithmic coordinates, so a construction of scaling
curves can be produced in exactly the same manner as
in three dimensions; however, their interpretation
should be different and correspond to (92).

Let emphasize, that in higher dimensions the gen�
eral form of the scaling dependence is

since the atomic scale a cannot be excluded from
results due to nonrenormalizability of theory [26]. At
the critical point, the argument L/ξ turns to zero, but
a dependence on L/a preserves in the general case: so
the scaling parameters of the standard algorithms are
usually not stationary at the critical point [1, 2].

Absence of such a dependence for the quantity σ2/
(evident from (92)) is a nontrivial result of the theory,
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which agrees with the existence of the stationary distri�
bution of levels established in numerical experiments
[14]. It should be noted, that existence of the “spectral
rigidity” κ0 was related in [18] with constancy of the
conductance gL in the critical point. In higher dimen�
sions, the spectral rigidity still exists, though gL is
already not constant [2].

8.2. Four�Dimensional Case

In four dimensions, we have for the quantity I2(m)
in (69)

(93)

and come to the following equation instead of (83)

(94)

which in variables

(95)

coincides with (83). Analogously, equation (86) is
obtained with a different behavior of function F(1/z)
at large z

(96)

where we make use of the estimate L ~ ξ0D � a valid in
the critical region. As a result, equation (88) is
obtained with a different definition of x and the scaling
relation holds

(97)

instead of (92). The usual scaling constructions are

possible, if the quantity σ2/ , is considered as a func�

tion of the “modified length” μ(L) = L[ln(L/a)]–1/4.

In the metallic phase, equations (88) give

(98)

while in the Altshuler and Shklovskii regime

(99)

so the previous relations (91) are valid for a choice of
parameters. The actual choice corresponds to value
Ac = 1/2κ = 1.4 [14]:

(100)
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The main correction to scaling is determined by the
term O(m4/Λ2) in (93), whose presence in the second
equation (88) gives for s = 1

(101)

where we have linearized the right hand side of (88)
near the critical point. Differentiating over τ and
resolving for  in the iterative manner, one obtains for
small τ

(102)

where

(103)

In four dimensions, another scaling parameter was
used [14]

(104)

It can be estimated setting I(s) ~ exp(–sA) with almost
constant A and taking the normalization (79) of I(s)
into account:

(105)

Such estimate is rather crude, since the integral is deter�
mined by the region s ~ 1, where A is certainly not con�
stant. It is more adequately to consider J0 as a regular

function of σ2/ , so deviations of these quantities
from the critical values are proportional to each other

(106)
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The calculated dependence of y = σ2/  on x is pre�

sented in Fig. 11. If a finiteness of s is taken into account,
the quantity y accepts a finite value in the metallic phase,
and two branches of the dependence become approxi�
mately symmetric. From this point of view, the behavior
of the upper branch is more representative.

For the upper branch, one can distinguish three
characteristic intervals in Fig. 11: (1) region x < 0.2
where y – yc ~ x2, corresponding to the critical behav�
ior, (2) region 0.2 < x < 1 where the dependence is
practically linear, and (3) region of saturation x > 1.
The first region corresponds to rather small values of
y – yc, which are practically unattainable for numeri�

cal experiments due to their restricted accuracy.
10

 As a
result, the observed dependencies (Fig. 12) are close to
the linear law y – yc = c1 + c2x, and a small c1 value

allows to interpret them as L1/ν with ν ≈ 1 [14]. The
ratio of c1 and c2 is different from that in the theoretical
dependence (Fig. 11), which can be explained by cor�
rections to scaling. The main correction is given by the
second term in the square brackets of Eq. (102), which
is a slowly varying (almost constant) function, becom�
ing essential for L/a ≈ 3. Approximately the same uni�
form shift is necessary, in order to provide the correct
ratio of c1 and c2 (Fig. 12).

10  The narrow critical region is usually related with existence of
small parameters of the Ginzburg number type.
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Fig. 11. Calculated dependence of y = σ2/  on x for

d = 4. The linear portion in the interval 0.2 < x < 1 is clearly
seen.
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Fig. 12. Numerical data for J0 taken from Fig. 4 of the paper
[14] as a function of the modified length μ(L) = L(lnL)–1/4

and their fitting by the linear dependence; the numbers at
the horizontal axis marks the corresponding values of L. The
dotted line is a theoretical dependence rescaled in corre�
spondence with the slope of the linear dependence for W =
36; to reach an agreement, the uniform shift is necessary
having the order of quantity J0 – J0c at L = 4. 
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9. CONCLUSION

Accepting validity of self�consistent theory of local�
ization by Vollhardt and Wölfle, we have derived the
relations of finite�size scaling for different parameters
characterizing the level statistics. A comparison with
the extensive numerical material shows that on the level
of raw data, the results of numerical experiments are
perfectly compatible with self�consistent theory, while
the opposite statements of the original papers are
related with ambiguity of interpretation and existence
of small parameters of the Ginzburg number type.

Small deviations, which are present in some fig�
ures, can be related with different reasons:

(a) A construction of scaling curves is related with a
certain ambiguity (see the discussion in [1]). The whole
scaling curve never appears in one experiment but is
“measured by pieces.” It is easy to see (Figs. 6–8, 10),
that the quality of fitting can be essentially improved, if
not the whole curve is treated but its separate parts.

(b) Existence of scaling corrections (Secs. 6.4, 8.2)
leads to systematic distortions of the empirical scaling
curves.

(c) The exploited above parameters k1, k2, kσ are in
fact the slowly varying functions and their replacement
by constants is unavoidable approximation related with
the absence of information on these functions.

(d) In some cases, results obtained for s0 � 1 are
extrapolated into the region s0 ~ 1.

Thereby, reasons (a, b) have a general character,
while (c, d) are specific for the present paper.

In whole, we think it is possible to say on the real�
ization of the “minimal program,” consisting in elim�
ination of improbably large (and violating general
principles) discrepancies between the self�consistent
theory and numerical experiments. As for the “maxi�
mal program,” i.e. testing of the statement that the
Vollhardt and Wölfle theory gives the exact critical
behavior [7, 8], it needs a more detailed analysis of the
existing small deviations and verification of their sig�
nificance or insignificance. Such analysis is desirable
for the initial raw data, and not for empirical scaling
dependencies. It should be noted that in [1–3] and the
present paper we have successfully described about 20
dependencies, relating to different quantities and
space dimensions from 2 till 5.
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