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Abstract—Multifractal properties of wave functions in a disordered system can be derived from self-consistent
theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all
scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for
a space dimension d = 2 + e is exact, so the multifractal spectrum is strictly parabolical. The σ-models are
shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow
convergence to the thermodynamic limit is demonstrated. The open question on the relation between multi-
fractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner
due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.
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1. INTRODUCTION

In previous papers [1–5] we have initiated a sys-
tematic analysis of numerical algorithms used in the
Anderson transition studies [6]. Suggesting validity of
self-consistent theory of localization by Vollhardt and
Wölfle [7], we have derived the finite-size scaling
equations for the minimal Lyapunov exponent [1], the
mean conductance [2] and level statistics [4]. Com-
parison with numerical results shows [1–5] that on the
level of raw data they are perfectly compatible with the
self-consistent theory, while the opposite statements
of the original papers are related with ambiguity of
interpretation. It gives a serious support to arguments
[8, 9] that the Vollhardt and Wölfle theory predicts the
exact critical behavior.

The present paper deals with the next algorithm
based on the finite-size scaling for inverse participa-
tion ratios [6], which are defined as

 (1)

where Ψ(r) is a normalized wave function of an elec-
tron in a finite disordered system having a form of the
d-dimensional cube with a side L. In the metallic
state, the wave function Ψ(r) extends along the whole
system and the normalization condition gives |Ψ(r)|2 ~
L–d and Pq ~ L–d(q – 1). In the critical region, the wave
functions acquire multifractal properties, so

 (2)

and the geometrical dimension d is replaced by a set of
fractal dimensions Dq. According to Wegner [10], the
following result takes place for a space dimension d =
2 + e

 (3)
so the spectrum of anomalous dimensions Δq is para-
bolic in the first e-approximation.

The fractal dimensions Dq determine the behavior
of certain correlators; in particular,

 (4)
where

 (5)
Equation (4) is valid in the critical region L ≲ ξ, where
ξ is the correlation length. In the metallic phase, such
behavior persists on the scales |r – r'| ≲ ξ, while the
constant limit is reached for |r – r'| ≳ ξ. In the dielec-
tric region, dependence (4) is valid for |r – r'| ≲ ξ and
changes by exponential decreasing for |r – r'| ≳ ξ. Since
integration of (4) over r and r' gives unity, one can esti-
mate the proportionality constant in the right hand
side and obtain for P2

 (6)

where a is an atomic scale. Three results in (6) match at
ξ ~ L, and a comparison with (2) leads to relation (5).1 The article was translated by the authors.
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It is usually accepted [6] that beyond the critical
point Eq. (2) is replaced by the following relation

(7)

which can be used for investigation of the critical
behavior of ξ. Below we show that self-consistent the-
ory of localization allows to reproduce results (2)–(7)
and obtain all functional relations in the explicit form.
The calculated scaling functions can be compared
with the extensive numerical material. Analogously to
[1–5], it appears that the raw numerical data are per-
fectly compatible with the Vollhardt and Wölfle the-
ory, while the opposite statements of the correspond-
ing authors are related with ambiguity of interpretation
and existence of small parameters of the Ginzburg
number type.

According to certain authors [11, 12], a spatial dis-
persion of the diffusion coefficient D(ω, q) is also
related with multifractal properties. The diffusion
constant DL of a finite system of size L is determined
for a given function D(ω, q) by the relation

 (8)
If the power law dependence for D(ω, q) in ω and q is
accepted, then it is easy to see that a combination

 (9)
provides the correct behavior DL ~ L2 – d at the critical
point [13] for an arbitrary value of the exponent η'.
The hypothesis put forward by Chalker [11] suggests
an equality η' = η, supported in [11, 12] by a detailed
numerical analysis. In our opinion, these arguments
are logically deficient: this fact was stressed in [14], but
no constructive alternative was suggested.

On the other hand, attempts to introduce a spatial
dispersion into the scheme of self-consistent theory of
localization [15, 16] reveal the utmost undesirability of
this modification. In absence of a spatial dispersion,
the theory possesses a lot of merits:

(a) it provides the Wegner relation s = ν(d – 2)
between critical exponents of conductivity (s) and the
correlation length (ν);

(b) it gives the correct value of the upper critical
dimension dc2 = 4, which is a rigorous consequence of
the Bogoliubov theorem [17] on renormalizability of
ϕ4 theory [1, 5];

(c) it gives the correct dependence D(ω, 0) ~ ω(d – 2)/d

at the critical point, which can be obtained by different
methods [18–20] and was confirmed numerically
[21];

(d) it provides a consistent description of finite sys-
tems considered as zero-dimensional [2].

Appearance of a spatial dispersion immediately
destroys all properties (a–d) [2, 5]: it hardly can be
considered as incident, since the Vollhardt and Wölfle
theory is at least a very successful approximation. In

( 1) ( / ),qD q
qP L F L− −

〈 〉 = ξ

2 1~ ( / , ).L LD D D L L−

'/ 2 '( , ) ~ d dD q qη − −ηω ω

fact, absence of an essential spatial dispersion of
D(ω, q) was established by the present author [9] in
the result of a detailed analysis.

This contradiction can be resolved in the compro-
mise manner, since a definition of D(ω, q) is ambigu-
ous and allows the “gauge transformation” [9]. A spa-
tial dispersion is absent in the “natural” gauge used in
[9], but it arises in other gauges allowing the equality
η' = η. Unfortunately, it makes unclear what gauge
corresponds to the observable diffusion coefficient;
there are indications that in this case the equality η' =
η is violated (Section 6).

The self-consistent theory of localization is formu-
lated for ordinary disordered systems (like electrons in
a random potential), which correspond to the Dyson
orthogonal ensemble [22]. Attempts of its generaliza-
tion to systems with magnetic field (the unitary
ensemble) [23] or Coulomb interaction [24] appears to
be ambiguous and do not lead to convincing results.
There is also no clearness on the physical level.
According to numerical experiments for d = 3, mag-
netic field produces a negligible effect both on the crit-
ical behavior [25]2 and multifractal properties [27],
while non-linear σ-models predict radical changes in
each of two cases [28]. Physical experiment confirms
self-consistent theory both in the presence [29] and
absence [30] of interaction (see [1, 2]), indicating pos-
sibility of describing the latter in the spirit of the
Fermi-liquid theory; however, σ-models lead to the
opposite conclusion [31]. In view of these arguments,
the results of the present paper cannot be extended to
other universality classes. The only exclusion is the
inequality for Δq (Section 3), which is not related with
self-consistent theory; it leads to deficiency of σ-mod-
els for the unitary ensemble on the four-loop level and
to the symmetric form of n-point correlators in the
one-loop approximation of different models.

In opinion of the present author, the refined vari-
ant of self-consistent theory [9] is exact. The present
paper eliminates the whole series of objections against
this conception. According to widespread opinion, the
self-consistent theory does not describe multifractal-
ity; this opinion is disproved in Sections 2, 3. Discov-
ered deficiency of σ-models on the four-loop level
(Sections 3, 7) makes not actual discrepancies with
self-consistent theory, which arise on the same level.
Derivation of scaling relations and comparison with
numerical experiments confirms “multifractal finite-
size scaling” [32] and demonstrates agreement of self-
consistent theory not only with high-precision results
for L ≲ 20 [1, 3], but also with large-scale results till
L = 120. Contradiction of the paper [9] with the
Chalker hypothesis is resolved in the compromised
manner (Section 6). An extremely slow convergence of
n-point correlators to the thermodynanic level (Sec-

2 The difference is reported [26] only after doubtful treatment (see
Footnote 12).
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tion 5) explains small deviations of numerical results
from the one-loop Wegner result (3), which is natu-
rally considered as exact in the framework of the self-
consistent theory (Section 3).

2. TWO-POINT CORRELATOR
2.1. Diagrammatic Analysis

Consider the correlator of two local densities of
states

 (10)

(ψs(r) and es are exact eigenfunctions and eigenener-
gies for an electron in a random potential), which is
closely related with correlator (4) and can be expressed
in terms of two-particle Green functions

 (11)

Here

 (12)

and ΦRR is defined analogously. Practically, the dia-
grammatic technique is applied to the quantity (q)
(Fig. 1), which is the Fourier transform of (12) with
the three-momenta designations taken into account

 (13)

The quantity ΦRR contains no diffusion poles and its
contribution is only essential in the zero order over the
random potential. The quantity ΦRA is determined by
the irreducible four-leg vertex URA (Fig. 1a), which

,
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reduces to the “cooperon” (Fig. 1c) in the metallic
phase [34]

 (14)

The full U-vertex differs from (14) by the replacement
of the classical value D0 by the exact diffusion coeffi-
cient D(ω, q) (see Section 6); here U0 = W2ad, W is an
amplitude of the random potential, γ = πU0νF is an
elastic attenuation, determined by the relation γ =

‒Im  in terms of the average Green function3

and νF is the density of states at the Fermi level. In par-
ticular, the one-cooperon contribution to correlator
(10) has a form

 (15)

(where Pk(q) = ) and is easily calculated in
the “pole approximation,” when momenta like q1

entering the diffusion denominators are neglected in
slowly varying functions of type . In this
approximation, one can easily calculate contributions
to ΦRA from the ladder diagrams shown in Fig. 1b,
which have a qualitatively different behavior for even
(2n) and odd (2n + 1) number of cooperons:4

3 Below we omit signs of averaging and accept the energy variable
to be equal E + ω for functions GR and E for functions GA.

4 To retain symmetry of ΦRA (r1, r2, r3, r4) relative to permutation
of r3 and r4, we have added the contributions of diagrams with
the reversed lower G-line.
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Fig. 1. (a) Relation of the function (q) with the irreducible vertex (q), (b) the ladder diagrams, (c) a definition of the
“cooperon.”
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 (16)

Here, U(r) is the reverse Fourier transform of (14),

 (17)

while kn(r) and  are short-ranged functions
defined as

 (18)

and decreasing as exp(–r/l) on the mean free path l,
which has the atomic scale near the Anderson transi-
tion. The function ΦRA(r1, r2, r3, r4) is exponentially
small, if all ri are essentially different, and the long-
range tails arise only in the case of pairwise coinciding
arguments: the case r1 = r2, r3 = r4 corresponds to cor-
relator (10), while the case r1 = r3, r2 = r4 (or equiva-
lently r1 = r4, r2 = r3) corresponds to another correlator

 (19)
According to (16), the long-range tails of correlators
KE + ω, E(r, r') and _E + ω, E(r, r') are determined by even
and odd orders correspondingly.

Using values of functions kn(r) and (r) at zero
(the energy dependence of the density of states ν(e) is
neglected)

 (20)

one has for the essential contributions to (10)
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and to (19)
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The replacement of D0 by D(ω) extends the formula
obtained for the metallic phase to the whole range of
parameters, since it corresponds to the replacement of
the cooperon lines (Fig. 1b) by the U-vertices
(Fig. 1a); the ladder diagrams are sufficient, since all
diagrams has the ladder form in terms of the U blocks.
In correspondence with [9], we neglect the q-depen-
dence of the diffusion coefficient, which is inessential
in the gauge assumed here (Section 6). In a closed
finite system, the diffusion constant has the localiza-
tion behavior D(ω) = –iω , where ξ0D if the correla-
tion length of the corresponding quasi-zero-dimen-
sional system [2], so the quantity m2 in (23) is finite.
Transition to open systems leads to appearance of the
effective damping γ0, which is introduced by a change
–iω → –iω + γ0 simultaneously in –iω and in D(ω);

as a result, the finite diffusion constant γ0  arises in
the static limit and the sign of the real part can be
omitted in (21) and (22).

2.2. Insufficiency of the Pole Approximation

Contributions (21) can be easily summed over n,

 (24)

if  is represented as the double integral (see (20)).
However, this result is practically useless due to insuf-
ficiency of the pole approximation. In order to clarify
a situation, let estimate a value of (21) for r = r'. Using
the Ward identity [7]
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and the relation

we obtain for q = 0
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if Im  = –γ is assumed to be independent of k.5

For small q and the vertex Ukk'(q), independent of
momenta, the following relation takes place [33]:

 (27)

There are serious grounds to expect the analogous
relation in the general case

 (28)

Indeed, the right hand side of (25), being a function of
k and q, can be practically specified as a function of
invariants k2, q2, k ⋅ q and allows an expansion over the
second and the third of them. In the absence of the k
dependence in the left hand side of (25), one can aver-
age over directions of k and remove the odd orders in
k ⋅ q. As a result, the right hand side of (28) contains
only even orders in q. A zero order term is specified by
(26), while the higher orders can be absorbed by a
definition of D(ω, q). The slow dependence on the
modulus of k is removed by estimation at k2 ≈ eF.

The equality r = r' in (11) leads to r2 = r4 in (13), so
Φkk'(q) enters in the form summed over k' and the rad-
ical simplifications are possible due to (28). For exam-
ple, one has for the diagram with two U blocks

 (29)

Analogously, in the case of n blocks

 (30)

and summation over n gives

 (31)

The exactly such relation follows from the Bethe-Sal-
peter equation (see formula (63) in [9]), so the intro-
duced function D(ω, q) can be identified with the dif-
fusion coefficient.

5 The k dependence of  has no qualitative significance: in par-
ticular, it is rigorously absent in the Lloyd model, which is quite
ordinary from the viewpoint of the Anderson transition. In the
general case, neglecting of the k dependence corresponds (in the
coordinate representation) to the replacement of short-range
contributions by the δ-functional ones (see Section 3).
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Substitution of relation (30) in (10), (13) gives for
the nth order contribution

 (32)

where the latter equality is valid for ω → 0 in the vicin-
ity of the critical point, since D(ω, q) turns to zero
simultaneously for all q [9]. Introducing dimension-
less conductance g = νFDLd – 2 [13] and using the rela-
tion g ~ (L/ξ)d – 2 valid in the metallic phase [19], one
has from (21)

 (33)
The contributions for different n become comparable
for r ~ ξ and have the order of  in correspondence
with (32). It is clear that result (33) is valid for r ≳ ξ,
while the r dependence is saturated for r ≲ ξ. The latter
is a consequence of the delicate cancellations in the
Ward identity (25): summation over k' in the infinite
limits removes the pole part of Ukk'(q) due to its
orthogonality to the function ΔGk'(q) [9]; so the pole
approximation is completely inapplicable. For large
|r – r'|, and r ≠ r', summation over k' is effectively
restricted by the range |k'| ≲ |r – r'|–1 and the orthogo-
nality becomes inessential, restoring validity of the
pole approximation.

The whole correlator K(r, 0) is determined by the
two cooperon contribution for r ≳ ξ, while summation
of the series of approximately equal terms is necessary
for r ≲ ξ: the expansion parameter u tends to unity for
|r – r'| → 0 and the integral (24) diverges due to the
logarithmic singularity at u = 1. The specific form of
divergency is determined by the form of saturation of
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for example, the power law behavior K(r, 0) ~ r–2/γ
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(36)

corresponding to the first order contribution (see
(22)), but the diffusion coefficient is defined in the
different gauge allowing a spatial dispersion
(Section 6).

2.3. Situation for d = 2 + e

In the spatial dimension d = 2 + e with e ≪ 1 one
has for the expansion parameter in (21), (22)

 (37)

where g = νFDLd – 2 is a dimensionless conductance
and the condition m ≲ L–1 is accepted, which is valid
in the metallic state and the critical region. We have in
mind that a perturbation theory is constructed for
open systems, where q = 0 is not allowed value for the
momentum q and the diffusion constant is finite in the
static limit [2]. Accepting r satisfying the condition
ln(L/r) ≪ 1 and having in mind that a value of g at the
Anderson transition is gc ~ 1/e, one can see that the
expansion parameter u = ln(L/r)/g is small for the
interval Lexp(–1/e) ≲ r ≤ L both in the metallic and
critical region. The limiting value (29) is not attained
and the two-cooperon expression is valid for correla-
tor (35). This expression is not affected by variation of
the correlation length which runs in the metallic phase
from the minimal value ξmin till infinity, and hence ξ is
not manifested as a significant length scale. Then one
can conclude from (35) that

 (38)

in correspondence with the Wegner result (see (2)–
(5)). We do not expect that a character of the solution
changes at a scale different from ξ, so the restriction
eln(L/r) ≪ 1 is not essential and the two-cooperon
behavior persists in the metallic phase for arbitrary r:

 (39)

In the localized phase one has m = ξ–1 and the
expansion parameter is u = ln(ξ/r)/g, so the two-
cooperon behavior holds for ξexp(–g) ≲ r ≤ L. On the
other hand, for r ≲ ξ we expect the same power law, as
in the critical region. Therefore, the result (39) can be
extended to the localized phase.
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2.4. Relation of Correlators (10) and (4)
In development of the perturbation theory the sys-

tem is assumed to be open, so its conductance g is
finite and an expansion over 1/g is possible. Interpre-
tation of expressions like (10) in open systems suggests
broadening of the δ-functions to a width Γ ≫ Δ, where
Δ = 1/νFLd is a mean level spacing. Then each sum
over s and s' contains Γ/Δ terms, and each δ-function
gives a factor 1/Γ. Suggesting that all terms with s = s'
(and correspondingly s ≠ s') have the same statistical
properties, one has for ω = 0

 (40)

Assuming for estimate that ψE(r) = Ψ(r – R) with the
permanent envelope Ψ(r) and a random origin R, one
can replace averaging over disorder by averaging over
R and obtain for the second term in (40)

 (41)

while the first term can be estimated as

 (42)

if Ψ(r) ~ |r|–α and d/2 < 2α < d. In the first approxima-
tion, the zero order contribution  arises from the
terms with s ≠ s', while the power law behavior corre-
sponding to (4) is determined by the terms with s = s'.
In fact, such decomposition is not rigorous because
variations of R and R' are not independent, so the sec-
ond term in (40) contains a dependence on r – r' (see
Eq. (44) below).

A situation is more transparent in the limit of
closed systems, when Γ/Δ → 0. Then, for ω = 0, the
vicinity of energy E contains (with probability Γ/Δ)
one level with a certain number s0, so only the contri-
bution with s = s' = s0 remains in sum (10) and the sec-
ond term in (40) vanishes. For transition from open to
closed systems one should omit the zero-order contri-
bution , and then correlator (10) can be identified
with (4) apart from the constant factor. Comparison
with (39) gives

 (43)
where A is determined by the normalization condition
(Section 4). Using the properties of the diffusion prop-
agator Π(r) (Section 5), one can easily show that result
(43) corresponds to the physical expectations on cor-
relator (4): the power law behavior |r – r'|–η taking
place for |r – r'| ≲ ξ changes for |r – r'| ≳ ξ by saturation
in the metallic phase and by exponential decreasing in
the localized state. The constant limit in the metallic
phase is determined by the contribution of the term
with q = 0, which is always present in closed systems
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[2]. It disappears in open systems, leading to insignif-
icance of the scale ξ in the metallic phase, which was
discussed above. The terms with s = s' are the same in
correlators (10) and (19), providing a ground for a
hypothesis [34] on the identical behavior of these cor-
relators in the critical region.7

Consider the case of finite frequencies, ω ≫ Δ. For
Γ ~ Δ, the first term is absent in the expression of type
(40) and comparison with (39) gives

 (44)

The power law behavior of the propagator Π(r) per-
sists at scales less than Lω, where

 (45)

while for r ≳ Lω it changes by exponential decreasing
(Section 4); the wave functions corresponding to ener-
gies E and E + ω become statistically independent for
r ≳ Lω [34].

3. MANY-POINT CORRELATORS

Analogously, one can define the n-point correla-
tors

 (46)

and relate them with many-particle Green functions,
e.g., for n = 3

7 In the general case, their behavior is surely different, as clear
from the estimate of type (41).
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 (47)

and the correlator is determined by the diagrams with
three G-lines (Fig. 2). Selection of diagrams is conve-
niently made in the coordinate representation, where
the cooperon vertex (14) has a form

 (48)

and differs from the full four-leg vertex by the replace-
ment of short-range functions like kn(r) by the δ-func-
tions. Analogously, in the analysis of power law tails
one can use the δ-functions instead of the short-range
functions GR(r) and GA(r). According to (48), the
coordinates ri and rj corresponding to G-lines, coming
up from the left to a cooperon vertex, trade places after
passing it (Fig. 2), and the cooperon line gives a factor
U(ri – rj). Long-range contributions to correlator (46)
are determined by diagrams, for which the coordinates
of all G-lines return to the same sequence after passing
all cooperon vertices. The functions U(ri – rj) can
enter only in even powers, since the coordinates ri and
rj should be transposed even number of times to
restore the initial sequence.

Analogously to Section 2.4, correlator (46) is
related to the n-point correlator of wave functions.
Accepting the power law dependence on differences
rij = ri – rj, one can write the most general form of such
dependence
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Fig. 2. In the n = 3 case, the contributions symmetrical over all rij are determined by diagrams (a–c) and the diagrams obtained from
them by reflections respective the horizontal and vertical axes. (d) The diagrams analogous to (a) exist for arbitrary n.
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 (49)

where permutations provide a symmetry of the expres-
sion over all rij. Without loss of generality, one can
accept

 (50)

Using (49) and the “algebra of multifractality” formu-
lated in [34], one can derive inequalities for Δn. If all
rij ~ L, then correlator (46) allows decomposition [34]8

 (51)

so κn = 0. If all rij = 0, then divergencies in (49) are cut-
off on the scale a, and comparing with relation

 (52)

following from (1), (2), one has

 (53)

Using inequality (50) and taking into account that
there are n(n – 1)/2 terms in the sum, one has Δn ≤
αnn(n – 1)/2 which reduces to

 (54)

since the exponent αn is n-independent and coincides
with η = Δ2. Indeed, if r12 ≪ L and the rest rij ~ L, then
(49) gives 9

 (55)

while it is proportional to  according to (4). In the
main e approximation (see (3)), the sign of equality
takes place in (54), and correlator (49) is determined
by the most symmetric configuration

8 Since it is not quite evident, we accept the following procedure.
Let introduce the scale Lω related with a frequency and defined
in (45); then the functions Π(rij) are exponentially small for rij ≳
Lω (Section 4) and only the diagrams without cooperon lines
survive among diagrams like those in Fig. 2; these diagrams cor-
respond to decomposition (51). In case Lω ≪ L, the latter
decomposition is valid for rij ~ L and remains valid approxi-
mately, if the scale Lω is increased till L.

9 The right hand side of (49) may contain less singular terms,
determined by exponents , , …,  whose sum is less than
Δn. If it occurs that  > αn, then  = η and αn < η. Hence,
the inequality αn ≤ η holds in the general case, which is suffi-
cient for validity of (54).
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(56)

The contribution O(e4) in Eq. (3), corresponding to
the orthogonal ensemble, has a structure –an(n –
1)(n2 – n + 1) with a > 0 [10, 28], and the following
inequality follows from (54) for n > 1

 (57)
which is satisfied for n = 2, 3, 4, ... .

Inequality (54) is not related with self-consistent
theory and has a general character. It reduces to an
equality for the parabolic spectrum Δq = βq(q – 1)
with arbitrary β, leading to the symmetric form (56)
with η = 2β for the n-point correlator. In particular, it
is actual in the first σ-approximation for the unitary
ensemble, where [10, 28]

 (58)
and in the regime of the quantum Hall effect (see
below). Substitution of (58) into (54) gives the
inequality for n > 1

 (59)
which is violated for n = 3, 4, ... . Hence, the results
obtained in the σ-models reveal deficiency on the
four-loop level. A possible reason of that is discussed
in Section 7.

Expression (56) allows a diagrammatic interpreta-
tion. For small e one can neglect non-symmetrical
terms, though a mechanism of their compensation is
not quite clear. In case n = 3, the lowest order sym-
metrical contribution arises from the diagrams in
Figs. 2a–2c:

 (60)

The diagrams analogous to that of Fig. 2a exist for
arbitrary n, as illustrated in Fig. 2d for n = 4: the first
(n – 1) cooperons provide a cyclic permutation of r1,
r2, …, rn, which should be repeated n times, in order to
restore the initial configuration. Adding the zero-
order term, one has

 (61)

In the limit of closed systems the term  disappears
(Section 2.4), and Eq. (61) gives the main symmetrical
contribution in the metallic region for rij ≳ ξ, which
can be extended to arbitrary rij analogously to
Section 2.3.
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Formally, expression (61) is obtained for d =2 + e
with small e, but in fact its validity is related with two
qualitative moments:

(i) insignificance of the correlation length e in the
metallic phase as a characteristic length scale;

(ii) realization of the maximally symmetric form
(56) for the n-point correlator.

These properties can be approximate and valid only
for small e. However, their qualitative character allows
to assume that they persist in the general case, as sup-
ported by a diagrammatic interpretation of results. In
such a case, the multifractal spectrum is determined
by the relation Δn = n(n – 1) and appears to be strictly
parabolical. Below we use Eq. (61) in the 3D case,
considering it as extrapolation from small e to e ~ 1,
but having in mind that it can be exact.

The simplest arguments do not allow to reject this
hypothesis. A reference to the e-expansion is
unfounded, since σ-models are deficient on the four-
loop level (Section 7). Numerical data are not reliable
due to extremely slow convergence to the thermody-
namic limit (Section 5). On the other hand, the fol-
lowing arguments can be given in favor of the hypoth-
esis.

(a) The result η = 2e looks plausible, since the con-
dition η > d is fulfilled for d > 4; then it follows from
(56) that the normalization integral is determined by
the atomic scale for all actual correlators. It agrees
with estimates by the optimal f luctuation method and
instanton calculations [35], which predict localization
of wave functions for d > 4 at the atomic scale even in
the critical region.

(b) A surprising accuracy of the Wegner one-loop
result (3) in application to the d = 3 and 4 cases was
reported in a lot of numerical experiments [27, 32, 36,
37]. For example, a position of the maximum for the
singular spectrum f(α) (which is α0 = d + e in the one-
loop approximation) was estimated as α0 = 4.03 ± 0.05
[36], α0 = 4.048 ± 0.003 [32] for d = 3 and α0 = 6.5 ±
0.2 [36] for d = 4. A parabolic form of the spectrum is
confirmed on the level of 10% [27, 32, 37], which
should be considered as satisfactory (Section 5).

(c) In the regime of the integer quantum Hall
effect, the spectrum is parabolic on the level of 10–3

[38], and there are theoretical arguments in favor of
strict parabolicity [39–41] (confirming the property
(ii)) based on the relation with the conformal field
theory.

(d) Validity of the Vollhardt and Wölfle theory is
directly related with the property (i). Indeed, it is
known from finite-size scaling that g = gc +
const(L/ξ)1/ν in the critical region [2, 6], while g ~

(L/ξ)d – 2 in the metallic phase [19];10 it gives the rela-
tion ν–1 = d – 2 [7], if ξ is not a significant length scale.
For d > 4, modification of finite-size scaling [2] leads
to ν = 1/2 [7].

(e) Application of the “algebra of multifractality”
to correlators of the more general form than (49) leads
to the statement on strict parabolicity of the multifrac-
tal spectrum [42]. Therefore, the symmetric form (56)
is exact, while deficiency of σ-models takes place not
only for unitary, but also for the orthogonal ensemble.

4. SCALING FOR INVERSE PARTICIPATION 
RATIOS

We have established that the critical behavior of
correlator (56) is reproduced by the diagrammatic
contribution (61). The latter has a wider range of
applicability and allows to extend the results beyond
the critical region. In the limit of closed systems, one
has from (61) analogously to Section 2.4

 (62)

where the parameter A is determined by the normal-
ization condition, since integration of the left hand
side over r1, …, rn gives unity:

 (63)

Integration is easily performed in case n = 2, giving A
as a regular function of z = L/ξ0D,

 (64)

where  = πKd(1 – d/2)/2sin(πd/2) and s = (s1; …, sd)
is a vector with integer components si = 0, ±1, ±2 ….
According to [2], the quantity z is a function of the
ratio L/ξ determined by the equation

 (65)
where cd = πKd/|2sin(πd/2)| and H(z) is a function
introduced in [2] with the asymptotics 1/z2 for z ≪ 1
and –cdzd – 2 for z ≫ 1. Setting r = r' in (43) and substi-
tuting to (1), one has for P2

 (66)

10According to one-parameter scaling theory [13], g = F(L/ξ)
where the function F(x) has a behavior xd – 2 in the metallic
phase, in order to ensure the relation g ∝ Ld – 2. Due to the
dependence ξ ~ τ–ν (τ is a distance to the transition), one can
consider g as a function of the argument τL1/ν, which allows the
regular expansion in τ due to the absence of phase transitions in
finite systems; the first order in τ is sufficient in the critical
region.
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in accordance with (7). Using (64), (65), we have

 (67)

in agreement with (6).

In case of arbitrary n, one can obtain from (63) that
A(z) ~ z–2n(n – 1) in the metallic region and A(z) ~
z‒d(n ‒ 1) + n(n – 1)e in the localized one. The first result is
a consequence of the fact that propagator (23) in the
region m ≪ L–1 is dominated by the term with q = 0
and practically constant. To obtain the second result,

one changes from variables ri to variables r1 and  =
ri – r1 (i ≥ 2) and exploits the r1-independence of the
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Then using (65) one has

 (68)

Setting rij = 0 in (62) one gets in analogy with (66)

 (69)

and

 (70)

where the constant is chosen from the condition
Fn(0) = 0 and

 (71)

Evaluation of Fn(x) for arbitrary x can be made
rewriting (63) in a form of the multiple sum over
momenta. Unfortunately, such expression needs
tedious numerical calculations for large n and does
not provide analytic continuation to non-integer n.
To avoid these problems, we note that the result
A ~ z‒2n(n ‒ 1) for the metallic phase remains valid in
the critical region by the order of magnitude; there-
fore, in these regions Fn(x) differs from F2(x) by a fac-
tor n(n ‒ 1)/2, while in the deep of the localized
phase Fn(x) = (n – 1)(Dn/D2)F2(x). The simplest
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Fig. 4. Numerical data by Brndiar and Markos for n = 5 extracted from Fig. 2 in [43], and their comparison with the theoretical
scaling dependence. The empirical values D2 = 1.28 and D5 = 0.96 [43] were used. A difference between 〈lnPn〉 and ln〈Pn〉 was
neglected.
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interpolation form ensuring such properties is as fol-
lows

 (72)

i.e., two branches of Fn(x) have the same behavior as two
branches of F2(x) and differ only by a scale transforma-
tion. The coefficients C+ and C– provide the correct
asymptotic behavior (71) for large x, and the parameter α
ensures symmetry of two branches for small x:

 (73)

+

−

α⎧= ⎨
⎩

2

2

( ) (upper branch),
( )

( ) (lower branch),n
C F x

F x
C F x

2
1/

( 1) ( 1), ,
2

.

nD n n nC C
D

C
C

+ −

−

+

− −= =

⎛ ⎞α = ⎜ ⎟
⎝ ⎠

e

If the function F2(x) is calculated (Fig. 3), one can
compare (72) with results by Brndiar and Markos for
n = 5 [43] in three dimensions (Fig. 4a). Due to the
presence of large parameter n(n – 1) = 20, all numer-
ical data lie in the critical region x ≲ 1, where the
dependence Fn(x) is practically linear in accordance
with ν = 1 in the Vollhardt and Wölfle theory for d = 3.
Linearity of dependencies in Fig. 4a is also evident,
and their matching with the theoretical scaling curve
offers no problem (Fig. 4b).11

The opposite situation takes place for numerical
data by Rodriguez et al. [32] for n = 1/2 (Fig. 5a). In
this paper the relation was accepted

 (74)

for the whole range of parameters, implying that  =
Δn at the critical point; then a comparison with (69)
and (74) gives

 (75)

In addition, roughening was made at the length scale l,
which should be used instead of a in (75). If λ = l/L is
fixed, then (75) contains only a dependence on L/ξ,
which is determined by the function Fn(x). Numerical
data for n = 1/2, λ = 0.1 [32] are shown in Fig. 5a: the
stationary limit is reached for a value Wc = 16.6, which
gives the estimate of the critical point. Accepting

(W, L) – (Wc, L) as deviation from the critical
behavior, one can match all numerical data with the

11Details of the scaling procedure were discussed in Section 3
of [5].
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Estimations of η and D2 = d – η for the 3D systems of dif-
ferent size L

In respect of the last result, see Footnote 4 in [34].

L η D2 Paper

10 1.4 ± 0.1 1.6 ± 0.1  [47]
16 1.3 ± 0.3 1.7 ± 0.3  [48]
20 1.67 ± 0.02 1.33 ± 0.02  [49]
40 1.3 ± 0.2 1.7 ± 0.2  [12]
40 1.5 ± 0.3 1.5 ± 0.3  [12]
47 1.32 1.68  [50]
48 1.48 ± 0.11 1.52 ± 0.11  [27]
60 1.38 ± 0.18 1.62 ± 0.18  [37]
80 1.70 ± 0.05 1.30 ± 0.05  [36]
120 1.76 ± 0.03 1.24 ± 0.03  [32]
240 1.76 ± 0.07 1.24 ± 0.07  [51]

Fig. 5. Numerical data by Rodriguez et al. for n = 1/2 extracted from Fig. 6c of [32], and their comparison with the theoretical
scaling dependence (72). Figure 5b contains points corresponding to L = 20, 40, 60, ….

(b)(a)
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theoretical scaling curve by a change of scale along the
horizontal axis (Fig. 5b). Due to existence of the small
parameter n(n – 1)/ln(1/λ) = 0.11, the main body of

data corresponds to large values of x = L/ξ, so the
lower branch12 is determined by its logarithmic asymp-
totics, while the upper branch remains in the linear
regime due to a small value of α. It explains why
dependencies for W > Wc are practically linear (see
inset in Fig. 5b), while a tendency to saturation is evi-
dent for W < Wc. Small deviations in Fig. 5b are prob-
ably related with inaccuracy of the interpolation form
(72). The evident linearity of dependencies at small L
corresponds to a value ν = 1 of the Vollhardt and Wöl-
fle theory, while a statement of [32] on the result ν =
1.590 obtained with “unprecedented precision” looks
rather strange.13

For frequencies ω ≫ Δ, the following equations are
valid for g and z = L/ξ0D [3]

 (76)

where p = (–iω)/Δ. At the critical point one has ξ = ∞
and z ~ p1/d, so ξ0D coincides with the scale Lω intro-
duced in (45). Therefore, m–1 ~ Lω and the propagator
Π(r) falls exponentially on the scale Lω ≪ L providing
statistical independence of |ψE(r)|2 and |ψE + ω(r)|2 for
r ≳ Lω and fulfilment of the normalization condition
in (44) apart to small deviations. At the critical point,
Eqs. (76) give g ~ (ω/Δ)(d – 2)/d in correspondence with
[18–20]; substituting to (44) and setting r = r', one has
for small frequencies

 (77)

Numerical verification of such scaling was carried out
in papers [12, 46] and was interpreted as confirmation
of Chalker’s hypothesis [11] on a spatial dispersion of
D(ω, q). We see that this result can be obtained with-
out any reference to the q dependence.

5. CONVERGENCE TO THE 
THERMODYNAMIC LIMIT

According to (61), all actual correlators are deter-
mined by the diffusion propagator Π(r) defined in
(23), which should be estimated for closed systems
(Section 2.4). The latter contain q = 0 as an allowed

12Due to the negative value of the factor (n – 1) the upper and
lower branch trade places, and to restore their natural disposi-
tion we consider the quantity – . A definition of  in [32]
was accepted with the opposite sign, and Fig. 5a directly corre-
sponds to Fig. 6c in [32].

13The paper [32] exploits the treatment procedure developed in
[44], which was already criticized [45]. It involves many-param-
eter nonlinear fitting, which leads to the huge number of the χ2

minima and allows to obtain any desired value of ν in a rather
wide interval. A “desired” value ν = 1.590 was chosen from the
correspondence with preceding papers (occurrence of such val-
ues was discussed in [1]), while its “unprecedented precision”
corresponds to f luctuations in the single χ2 minimum and has
no relation to actuality. Analogous arguments are valid in
respect to accuracy of α0 (Section 3) and D2 (Section 5).
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Fig. 6. Behavior of the diffusion propagator Π(r) with dif-
ferent z0 for L = 20 (a), 100 (b), and ∞ (c). The origin at
the vertical axis is chosen arbitrary.
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value, and one can use the periodical boundary condi-
tions, accepting q = 2πs/L, where s is a vector with
integer components si. For r ≠ 0, the sum over q is con-
vergent and no cut-off is necessary at large momenta.
Then one can obtain14

 (78)

where Π0(r) is a continual version of (23)

 (79)

(Kμ(x) is the Mac-Donald function) with the asymp-
totic behavior for d > 2:

 (80)

To provide a finite value for r = 0 we accept the spher-
ical cut-off |q| < Λ, so

 (81)

and the growth at r → 0 in (80) saturates for r ≲ Λ–1.
According to (78), Π(r) is a sum of spherically sum-
metric functions originated in the centers of cubical
blocks with side L. This fact, along with the cut-off
|q| < Λ, leads to distortion of dependencies (80) spe-
cific for infinite systems: it is manifested in anisotropy
over directions of r and in oscillations induced by the
cut-off. As a result, the exponent in dependence
Π(r) ∝ |r|–α is determined in a finite system with
unavoidable restricted accuracy.

According to [2], the relation mL = z0 takes place at
the critical point, where z0 is a root of the function
H(z) (see (65)). The parameter z0 is not universal, but
depends on the details of cut-off, and hence on the spe-
cific model (z0 ≈ 2 for a spherical cut-off). Figure 6a
illustrates the results for Π(r) in the 3D system of size
L = 20 for Λ = π and different z0. One can see that sat-
isfactory power law dependencies Π(r) ~ |r|–α with α =
0.27–1.54 take place for z0 = 1–4, and their quality
does not allow to distinguish a theoretical value α = 1.
If L is increased to 100 (Fig. 6b) the range of α
becomes somewhat narrower for the same conditions,
but remains rather wide (0.36–1.46). Surprisingly, the
picture does not change essentially even in the ther-
modynamic limit L → ∞ (Fig. 6c), if a value of |r| is a

14It follows from the α-representation and the Poisson summa-
tion formula (see Appendix in [2]).
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finite fraction of L. Indeed, setting r = yL, mL = z0,
one has from (78) (the integration limits are shown for
a modulus of q)

 (82)

so that ΛL → ∞ for large L, and the cut-off is removed
effectively; then L enters only in the common factor
and does not affect the y dependencies. The theoreti-
cal value α = 1 should appear in the limit |r|/L → 0
independently of z0, but in fact this limit is unattain-
able even for the maximal sizes L ~ 100 reached in the
present time [51, 52]. One can see from Fig. 6c that for
|r| comparable with L the exponent α is determined by
the z0 value specific for a given model and has the scat-
tering 0.55–1.43 for z0 = 1–4. The satisfactory power
law dependencies are observed for |r| > 0.05L, i.e., for
|r| > 5 at L = 100, while the scales |r| ≲ 5 always fall out
a scaling picture due to influence of the cut-off.
According to (61), Π(r) determines a behavior of the
n-point correlators, and it does not look improbable if
numerical estimations of fractal dimensions may by
tens of percents deviate from the true ones. In partic-
ular, it is hardly possible to make the statements of
principle, relying on deviations in the third digit [38].

According to the relation η = 2α (see (58), one
can expect the scattering η = 1.1–2.8. Table gives
estimations of η and D2 = d – η obtained for d = 3 by
different authors. One can see their large scattering
and a systematic drift with increasing of L. The last
estimate η = 1.76 ± 0.07 has only the 10% deviation
from the value η = 2 following from the first e-approx-
imation, which has a chance to be exact according to
above arguments. The observed deviations from the
parabolical spectrum are also on the level of 10% [27,
32, 37].

6. ON A SPATIAL DISPERSION 
OF THE DIFFUSION COEFFICIENT

It is clear from the above discussion that all the pic-
ture related with multifractality of wave functions can
be obtained without any reference to the q-depen-
dence of the diffusion coefficient D(ω, q). At first
glance, it indicates a complete failure of Chalker’s
hypothesis [11]. In fact, a situation is more compli-
cated due to ambiguity of the D(ω, q) definition.

The arguments of [11, 12] are based on the relation

 (83)

for the Fourier transform of correlator (19) and an
assumption on the similar behavior of correlators
_(r, r') and K(r, r') in the critical region [34]; then
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starting from K(r, 0) ~ r–η one has _(q) ~ K(q) ~ q–d + η

and D(ω, q) ~ qd – 2 – η. In fact, the correct relation has
a form (see below)

 (84)

and reduces to (83) under assumption of the real diffu-
sion constant and irrelevance of the regular part
ϕreg(q). The identical behavior of _(r, r') and K(r, r')
can be ensured in the limit of closed systems (Section 2.4)
when D(ω, q) ∝ (–iω) and the pole term in (84) gives
no contribution in the main order of ω. In the general
case, complex-valuedness of the diffusion coefficient
does not allow to draw reliable conclusions relative
D(ω, q) from the given behavior of _(q).

According to [9], the use of the Kubo formulas
allows to relate the Fourier transform of (12) for r1 =
r3, r2 = r4 with the observable diffusion coefficient

 (85)

Substitution of (85) into the expression for _(r, r')
analogous to (11) gives Eq. (84) where the regular part
is somewhat different from (85) due to a contribution
of ΦRR. Decomposition into the pole and regular parts
is not unique and allows the “gauge transformation”

 (86)

where C(q) = O(q2) for small q. Another representa-
tion for ϕ(q) follows from the spectral properties of the
quantum collision operator [9]: if λs(q) are its eigenval-
ues, then

 (87)

where (q) = –2πiνF + O(q2), As(q)2 = O(q2). The
eigenvalue with s = 0 has a behavior λ0(q) ~ q2 for small
q and one can accept by definition

 (88)

Then expression (87) coincides with (85) where the
regular part behaves as q2 for small q and can be
excluded by the gauge transformation. The gauge (88)
will be referred as “natural”; it was exploited in [9] and
found to be free of an essential spatial dispersion.
Another distinguished gauge is defined by the condi-
tion ϕreg(q) ≡ 0; it is actual in the localized phase,
where D(ω, q) = ‒iωd(q) and the following relation
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can be obtained from the Berezinskii–Gor’kov crite-
rion [9]. The term with s = s' in correlator (19) gives
contribution δ(ω) in the localized phase, transforming
to the singularity 1/ω in the quantity ϕ(q), which can
be identified with the diffusion pole in (85). It is of
principle importance to gather all contributions 1/ω
which may be contained in ϕreg(q) and to include them
in the pole term. They are certainly present in ϕreg(q) for
gauge (88), since there are terms with λs(q) ~ ω in the
sum of (87) [9]. Such contributions are surely included,
if the gauge with ϕreg(q) ≡ 0 is chosen, and just this
gauge is implied in (89). Comparison of (89) with (4)
shows that !(r) ~ r–η for r ≲ ξ and d(q) ~ qd – 2 – η for
q ≳ ξ–1 in correspondence with the Chalker hypothe-
sis,15 while d(q) = const = ξ2 for q ≲ ξ–1 and !(r) ~
exp(–r/ξ) for r ≳ ξ. If the gauge with d(q) = const is
used, then the contribution q–d + η/ω is contained
in ϕreg(q).

The “natural” gauge (88) was used in the analysis
of [9] and just that very definition of D(ω, q) is implied
in the vertex URA. If the pole approximation is used in
Eq. (12) of [9], then one can set k' = –k in the function
F(k, k', q) and obtain F(k, –k, q) = 2U0γ from Eq. (65)

of this paper, if Im  = –γ is accepted to be k-inde-
pendent and U0 is defined by the relation γ = πU0νF.
Then the pole term of the vertex URA can be obtained
from the cooperon contribution (14) by substitution of
D(ω, q) for D0 and neglecting the q dependence. The
precisely such form of the vertex was used in the above
considerations, and its validity is confirmed by suc-
cessful reproducing of multifractal properties. It gives
an essential support to the conclusions of [9].

The paper [9] contains inaccuracy consisting in a
wrong interpretation of the “regularity” of ϕreg(q). It
was suggested that the Anderson transition is com-
pletely determined by diffusion poles, while the func-
tion ϕreg(q) does not feel the transition and contains no
information on the correlation length ξ. Then the
quantity C(q) in (86) relating two such regular func-
tions is also ξ-independent, and absence of the anom-
alous dispersion (related with the scale ξ) in one gauge

15The results for D(ω, q) in the localized phase and the critical
region are matched at ξ ~ Lω; thus at the critical point one has

D(ω, q) ~ ω  ~ ω(d – 2)/d for qLω ≲ 1 and D(ω, q) ~

ω (qLω)d – 2 – η ~ ωη/dqd – 2 – η for qLω ≳ 1.
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leads to its absence in another gauge. In fact, as we see,
information on ξ is unavoidably present either in D(ω,
q), or in ϕreg(q).

The latter leads to the disappointing conclusion,
that nothing can be said on the gauge corresponding to
the observable diffusion constant, so the exponent η'
in (9) is in general different from η. The most detailed
verification of the relation η' = η was carried out in the
paper [12]. In fact, a value η' = 1.20 ± 0.15 was found
for the exponent η' and two estimates (η = 1.3 ± 0.2
and 1.5 ± 0.3) were obtained for the exponent η:
according to the authors, it was sufficient to establish
the equality η' = η. Lately, the estimate for η has
drifted to 1.76 (see Table), while no fresh data for η' is
known to us. One can see from Fig. 7 that the raw data
of [12] for the autocorrelation dependence t–(d – η')/d are
perfectly compatible with a value η' = 1 corresponding
to absence of the spatial dispersion. The physical
experiment on spreading of the wave packet [53] is also
well-described by self-consistent theory of localiza-
tion.

7. ON DEFICIENCY OF σ-MODELS

In Section 3 we have established deficiency of the
σ-model approach beyond the first σ-approximation.
This situation is not unexpected: derivation of σ-mod-
els is justified only for small e, and the question on
their exact correspondence with the initial disordered
systems always remained open. In particular, strong
doubts arouse in relation with the upper critical

dimension [5]. Here we present arguments, why defi-
ciency of σ-models for the orthogonal ensemble arises
just on the four-loop level.

Following arguments of Section 3, we can assume,
that the two-cooperon form of correlator K(r, r') is
exact. Then absence of the spatial dispersion of D(ω, q)
corresponds to the exact equality η = 2e, while viola-
tion of this equality corresponds to appearance of the
spatial dispersion.

Wegner’s result (3) is obtained in the “minimal”
σ-model, where the lowest (second) powers of gradi-
ents are retained: it corresponds to neglecting a spatial
dispersion of D(ω, q). In the first three orders in e, the
equality η = 2e takes place and the approximation is
self-consistent. This equality is violated on the four-
loop level and signals on the lack of self-consistency.
The terms with higher gradients should be taken into
account, which leads to instability of the renormaliza-
tion group due to the “gradient catastrophe” [54]. To
remove instability, additional counter-terms should be
added; it leads to essential modification of the σ-
model Lagrangian and makes unclear a fate of the
four-loop contribution. It should be stressed that
according to the analysis of the paper [9] the spatial
dispersion is determined by the atomic scale. It is ines-
sential in the practical sense but its existence is a mat-
ter of principle due to the infinite-component nature
of the order parameter.

There is another evidence of the σ-model defi-
ciency. If the Vollhardt and Wölfle theory is exact,
then the formalism of dimensional reqularization is
initially incompatible with the physical essence of the
problem [2]. The enforced application of this formal-
ism should lead to unsolvable problems, and the
“high-gradient catastrophe” is a possible manifesta-
tion of them. This catastrophe is probably eliminated
in other regularization schemes (see discussion of the
paper [55] in [56]), but a change of the scheme surely
modifies many-loop contributions.

We should stress that discrepancy between σ-mod-
els and the self-consistent theory of localization arises
just on the four-loop level. There is a chance for elim-
ination of this discrepancy in the result of indicated
modifications of σ-models.

8. CONCLUSION

We have shown above that multifractal properties
of wave functions can be obtained from self-consistent
theory of localization by Vollhardt and Wölfle, in spite
of the opposite statements widespread in literature.
The diagrammatic interpretation of results allows to
derive all scaling relations used in numerical experi-
ments. Comparison with the latter confirms the ten-
dency revealed in preceding papers [1–5]: the raw
numerical data are perfectly compatible with the Vol-

Fig. 7. The raw data by Brandes et al. [12] on spreading
of the wave packet; the autocorrelation function C(t) ~
t–(d – η')/d describes the change of the amplitude in the
packet center as a function of time. Dependence t–2/3 cor-
responds to the absence of a spatial dispersion of the diffu-
sion coefficient, while dependence t–0.6 is the result indi-
cated in [12].

t−2/3

10−4 10−3 10−2
10−2

10−1

100
C(t)

10−1 101100

t/tH

t−0.6



900

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 121  No. 5  2015

SUSLOV

lhardt and Wölfle theory, while the opposite state-
ments of the original papers are related with ambiguity
of interpretation and existence of small parameters of
the Ginzburg number type.

Analysis of the first e-approximation of the 2 + e
theory reveals existence of two qualitative properties:
(i) irrelevance of the correlation length ξ in the metal-
lic phase as a characteristic length scale and (ii) reali-
zation of the maximally symmetric form (56) for the
n-point correlator of wave functions. Due to a qualita-
tive character of these properties they have a chance to
be exact; then the multifractal spectrum is strictly par-
abolic and determined by the one-loop Wegner result.
A surprising accuracy of this result in application to
the d = 3 and 4 cases was repeatedly reported in litera-
ture, while the observed small deviations can be
explained by the extremely slow convergence to the
thermodynamic limit discovered in Section 5. The
four-loop contribution to the anomalous dimensions
is surely deficient and may disappear in result of a
modification of the σ-model Lagrangian, which is
necessary for taking into account the spatial dispersion
of D(ω, q) and elimination the gradient catastrophe.
Simultaneously, it may lead to elimination of other
discrepancies between σ-models and the self-consis-
tent theory, which are present on the four-loop level.
As noted in Section 3, validity of the self-consistent
theory is directly connected with the property (i).

As for the relation of multifractality with a spatial
dispersion of the diffusion coefficient D(ω, q), this
question is resolved in the compromise manner. A
definition of D(ω, q) is ambiguous and allows the
“gauge transformation.” A spatial dispersion is absent
in the “natural” gauge (88), while the Chalker hypoth-
esis [11] takes place in the gauge with ϕreg(q) ≡ 0. The
raw data of paper [12] on spreading of the wave packet
and the physical experiment [53] indicate the absence
of a spatial dispersion for the observable diffusion con-
stant.
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