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Abstract

It is argued that the Thouless number g(L) is not the only param-
eter relevant in scale transformations, and that the second parameter
connected with off-diagonal disorder should be introduced. A two-
parameter scaling theory is suggested that explains a phenomenon of
the upper critical dimension from the viewpoint of scaling ideas.
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The one-parameter scaling hypothesis [1] provides the basis for the con-
temporary theory of localization. Its justification is still actual [2] and may
require more accurate definitions of the scaling variables as well as lead to a
restriction of the range of applicability. Here we discuss modifications of the
scaling hypothesis which are inevitable in high dimensions.

The scaling consideration is usually applied only for space dimensions d
being in the interval between dc1 and dc2, the lower and the upper critical
dimensions [3]. There are no doubts that dc1 = 2 [1], whereas the value of
dc2 was disputable for many years [4, 5, 6]. Recently it was established in
the author’s series of papers [7] that dc2 = 4 for the problem of the density
of states (defined by the average Green function 〈G〉). The value dc2 =
4 is distinguished from the viewpoint of renormalizability: the theory is
nonrenormalizable for dimensions d > 4 and the cutoff is necessary on the
atomic scale for high momenta. Since the atomic scale cannot be left out of
consideration, no scale-invariance is possible. The same argument can also
be applied to the problem of conductivity defined by the correlator 〈GRGA〉.
This is confirmed by author’s ”symmetry theory” [8], that reproduces on a
rigorous level the results of Vollhardt and Wölfle [9] and gives the values of
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critical exponents (claimed to be exact in Ref. 5), which are consistent with
the one-parameter scaling theory only for d < 4.

On the other hand, the recent assertions that dc2 = ∞ [6] have some
grounds: there is no place for the upper critical dimension in the one-parameter

scaling theory. Overall, there are certain drawbacks in the existing physical
picture of localization. Another question to be cleared out is related to the
mechanism responsible for violation of the Wegner relation s = (d − 2)ν
for d > 4 [8, 9, 5]. The present paper is aimed to fill these gaps in our
knowledge.

The scaling theory [1] is based on Thouless’s scaling considerations [10].
A disordered system, that is described by the Anderson model with the over-
lap integrals J between the nearest neighbours and with the spread W of cite
levels, is divided into blocks of size L. In the absence of interaction between
the blocks, each of them has a random system of energy levels with a char-
acteristic spacing ∆(L) ∼ J (a0/L)d, where a0 is the lattice constant. When
the interaction between the blocks is ”switched on”, the states of neighbour-
ing blocks become coupled and the corresponding matrix elements become
nonzero. This gybridization is the most essential for the states nearest in
energy, and should be taken into account first of all. If the level nearest to
the considered energy E is selected in each block, we obtain an effective An-
derson model with the spread of levels W (L) ∼ ∆(L) and overlap integrals
J(L) determined by corresponding matrix elements. This model describes
the system on the scale larger than L, and is characterized by the Thouless
parameter

g(L) =
J(L)

W (L)
, (1)

which is also equal to the dimensionless conductance of the block [1]. Repe-
tition of the same consideration for the effective Anderson model constitutes
the principal algorithm for evaluation of g(bL) with integer b when value
g(L) is known: g(bL) = F (b, g(L)). Taking the limit b → 1 in this relation,
results in the Gell-Mann and Low equation [1]

d ln g

d lnL
= β(g) . (2)

For d > 2, there exists a phase transition point gc, defined by the condi-
tion β(gc) = 0, and, in a vicinity of the transition, the conductivity σ and
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localization length ξ have the following behavior

σ ∼ (g0 − gc)
s , ξ ∼ (gc − g0)

−ν . (3)

Here g0 is the value of g(L) on the scale L ∼ a0, and the critical exponents
are given by 1/ν = gcβ

′(gc) and s = (d − 2)ν. [1]
The above consideration relies heavily on the assumption that g(L) is the

only relevant parameter in the scale transformations. We shall show that, in
general, it is not the case. In order to see it, let us assume that the typical
wave function of localized states has the form

|Ψ(r)| ∼

{

r−ζ , r ≪ ξ
exp(−r/ξ) , r ≫ ξ

, (4)

where the exponent ζ goes to infinity for large d. There are some reasons for
such an assumption: (i) the optimal fluctuation method [11] results in Eq. (4)
with ζ = d−2 in the range of deep localization, and (ii) an analogous behavior
for the critical region can be guessed from the d-dependence of the exponent
η of density correlator [12]. A large value of ζ means that the eigenfunctions
of separate blocks in Thouless’s construction are well localized on the scale
L ≪ ξ (Fig. 1). Consequently, strong off-diagonal disorder appears: f.e.
the overlap integral between the states 1 and 2 is much smaller than one
between states 3 and 4. With the increase of ζ we approach the well-known
situation of topological disorder in the system of impurities with exponential
overlap (Ref. 13). So a catastrophe, viz. localization due to the pure off-
diagonal disorder, becomes possible. It can even occur for W (L) = 0, when
the Thouless parameter is infinite and cannot play any role. Therefore, it is
reasonable to suggest that gybridization of the block states is determined by
some other parameter connected with the off-diagonal disorder.

Let us suppose that a disordered system is characterized by two param-
eters

g(L) =
J(L)

W (L)
, ϕ(L) =

δJ(L)

J(L)
, (5)

where δJ(L) is the fluctuation of overlap integrals. The boundary AB (Fig. 2)
between localized and extended states should then be situated at g ∼ 1 for
ϕ = 0 and go to infinity at some critical point ϕc, in accordance with the
possibility of localization due to the pure off-diagonal disorder. In the course
of scale transformations, one point of the (g, ϕ)-plane turns into another
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Figure 1:

Figure 2: Flow diagram in the (g, ϕ) plane: () in the case of existence of the
fixed point F on the critical surface AB, (b) in the case of its absence.
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point of this plane, and one point of line AB turns into another point of this
line.

To return to the one-parameter scaling, it is sufficient to assume the ex-
istence of a fixed point F , that is stable on the critical surface (AB) and
unstable beyond it (Ref. 3, Ch. 6). The point F is of saddle-type and char-
acterized by two asymptotes, AB and CD (Fig. 2,a). The movement in
the (g, ϕ)-plane can be roughly divided into two stages: relaxation to line
CD on some scale L0 and evolution along CD on the scale ξ, which is arbi-
trarily large near the phase transition. For L ≫ L0, the whole (g, ϕ)-plane
reduces to line CD, and the position on the latter is uniquely determined
by the Thouless parameter g(L). Thereby we return to the usual picture of
localization, and we assume it to be valid for low dimensions.

Let us now suppose that for high dimensions there is no fixed point on
the critical line AB (Fig. 2,b). If a system is in a critical point, then it
moves upwards along this line (the movement downwards means that the off-
diagonal disorder dissapears asymptotically, and contradicts to the previous
arguments). Consequently, this implies that in the critical point parameter
g(L) increases (in contrast to g(L) = const in the previous scenario): it
does not mean that degree of gybridization grows but indicates that the
diagonal disorder transforms to off-diagonal one. In the metallic phase, g(L)
is represented by a more rapid dependence ∼ σLd−2 (Ref. 1), and, in the
localized phase, it exhibits non-monotonic behavior, i.e. increasing for L <∼ ξ
and decreasing for L >∼ ξ.

The first scenario is changed by the second one at some critical value of
d, which we identify with dc2. To obtain the phemomenological description
of such a bifurcation we introduce a new variable h = F (g, ϕ), so that in the
(g, h)-plane the line AB has behavior g ∼ h for large g, h (the critical line
will then have regular projections on both axes), and the other asymptote
CD becomes vertical (this would simplify equations). In the case of the two
relevant parameters, g(L) and h(L), the following relations can be written
down by following the usual line of reasoning (cf. Eq. (2)):

d ln g

d lnL
= β(g, h) ,

d lnh

d lnL
= γ(g, h) . (6)

In the region of large g and h, where the fixed point F is situated for d close
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to dc2, Eqs. (6) take the form

d ln g

d ln L
= (d − 2) +

Ah

g
+

Bh2

g2
+

Ch3

g3
+ . . . ≡ (d − 2) + β̃

(

g

h

)

, (7)

d lnh

d lnL
= µ +

b

h
, (7b)

where µ changes the sign at the point d = dc2,

µ = α(d − dc2) , d → dc2 (8)

and the following unequalities are satisfied: α > 0 , b > 0 , and A < 0 .
Indeed, at constant h the function β(g, h) should have all the properties
discussed in Ref. 1, and it should then be expanded accordingly: β(g, h) =
(d−2)+A1(h)/g+A2(h)/g2 + . . . . In addition, the coefficients An(h) should
have expansion in 1/h beginning with hn in order to yield a root gc ∼ h.
Keeping the leading terms with respect to h results in Eq. (7a). For d > dc2,
function γ(g, h) should provide the indefinite growth of h, which, however,
should not be faster than that of g. This gives unequility 0 < γ(g, h) < d−2 ,
suggesting that the expansion of γ(g, h) in 1/g, 1/h begins with zero-order:
γ(g, h) = µ + a/g + b/h + . . . . In the case of the vertical asymptote CD,
the fixed point hc is independent of g, and thereby a = 0. The fixed point
should be stable for d < dc2 and absent for d > dc2. This requires that b > 0
and µ to change the sign in the point dc2.

The system of Eqs. (7) can be easily investigated. For d < dc2, Eq. 7b
has a fixed point hc = b/|µ| and replacement g → ghc in Eq. (7) results in
the one-parameter scaling description with critical exponents given by

1/ν = gcβ̃
′(gc) , s = ν(d − 2) , (d − 2) + β̃(gc) = 0 . (9)

For d > dc2, we have h(L) ∼ Lµ at large h, and the replacement g → gLµ in
Eq. 7b gives

1/ν = gcβ̃
′(gc) , (10a)

s = ν(d − 2 − µ) , (10b)

(d − 2 − µ) + β̃(gc) = 0 . (10c)

For L <∼ ξ, the Thouless parameter can be written down as follows:

g(L) = gc + (g0 − gc) (L/a0)
1/ν , d < dc2 , (11a)
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g(L) = gc (L/a0)
µ + (g0 − gc) (L/a0)

µ+1/ν , d > dc2 . (11b)

In the critical point g(L) grows as Lµ for d > dc2, thereby leading to the
violation of the Wegner relation (see Eq. (10 b)). In general, critical exponents
as functions of d have cusps at d = dc2. Usually the critical exponents are
independent of d for d > dc2. According to Eq. (10 b) this would become
possible for µ = d + const, which results together with Eq. (8) in

µ = d − dc2 . (12)

The results obtained can be compared with the symmetry theory [8] that
gives the same critical exponents as in Ref. 9:

ν = 1/(d − 2) , s = 1 for 2 < d < 4 ,

ν = 1/2 , s = 1 for d > 4 . (13)

The Wegner relation s = ν(d − 2) is valid only for d < 4 implying that
dc2 = 4. To obtain the result analogous to Eqs. (11), we find from Ref. 8
the diffusion constant DL of a finite block of size L. It is determined by the
diffusion coefficient D(ω, q) of the infinite system: DL ∼ D (iDL/L2, L−1) .
1 Using Eqs. (112) and (116a) of Ref. 8 and g(L) ∝ DLLd−2 one can finally
obtain the folowing reation:

g(L) = gc (L/a0)
d−2−1/ν + (g0 − gc) (L/a0)

d−2 . (15)

This result coincides with Eq. (11) if Eqs. (12) and (13) are taken into ac-
count. Such an agreement is nontrivial because the symmetry theory [8] is
based on completely different principles without any reference to the scaling
ideas.

This paper was stimulated by discussions with V. E. Kravtsov, A. D. Mir-
lin and M. V. Feigel’man. It is supported by INTAS (grant 96–0580) and the
Russian Fund of Fundamental Research (grant 96-02-19527).

1This relation is not valid in the localized phase for L>
∼ ξ due to the nonlocal response

[9].
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