СИММЕТРИЙНАЯ ТЕОРИЯ ПЕРЕХОДА АНДЕРСОНА

И. М. Суслов

Институт физических проблем им.П.Л.Капицы РАН, 117334, Москва, ул.Косыгина, 2.

Аннотация

Доказана гипотеза Вольхардта-Вольфле о наличии в неприводимой вершине $U_{\mathbf{k}\mathbf{k}'}(q)$, входящей в уравнение Бете-Солпитера, диффузионного полюса при $\mathbf{k} + \mathbf{k}' \rightarrow 0$, в который входит наблюдаемый коэффициент диффузии $D(\omega, q)$. В квантовом кинетическом уравнении величина $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ играет роль вероятности перехода $W_{\mathbf{k}\mathbf{k}'}$ и ее аномальное возрастание при уменьшении $D(\omega, q)$ является физической причиной локализации. При $\omega \to 0$ в локализованной фазе $D(\omega,q) = (-i\omega)d(q)$, где d(q) – регулярная функция q², связанна со свойствами типичной волновой функции. Наличие в $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ диффузионного полюса позволяет представить квантовый "оператор столкновений" \hat{L} в виде суммы сингулярного оператора \hat{L}_{sing} , имеющего бесконечное число нулевых мод, и регулярного оператора \hat{L}_{req} общего вида. Исследование реакции системы на изменение \hat{L}_{reg} приводит к уравнению самосогласования, заменяющее грубое уравнение Вольхардта-Вольфле. Его решение показывает, что D(0,q) обращается в точке перехода в нуль одновременно для всех q; пространственна дисперсия $D(\omega,q)$ при $\omega \sim 0$ в относительных единицах оказывается ~ 1 , определяется атомным масштабом и не имеет проявлений на масштабе $q \sim \xi^{-1}$, связанном с корреляционным радиусом ξ . Полученные значени критических индексов проводимости (s) и радиуса локализации (ν) в d-мерном пространстве, s = 1(d > 2) и $\nu = (d - 2)^{-1}(2 < d < 4), \nu = 1/2(d > 4),$ согласуются с большинством известных результатов. По характеру изменени симметрии переход Андерсона оказывается аналогичным точке Кюри изотропного ферромагнетика с бесконечным числом компонент, дл которого критические индексы известны точно и согласуются с указанными выше: это является аргументом в пользу полноты выявления симметрии критической точки и точного определени индексов.

1. Введение.

К настоящему времени достаточно широко осознано (см. напр. [1], стр. 76), что в принципе теория фазовых переходов должна строиться как некотора симметрийная теория. Именно, эффективный гамильтониан системы представляется в виде

$$H = H_c + \tau H_{int} \tag{1}$$

где H_c – гамильтониан критической точки, обладающий повышенной симметрией, H_{int} – оператор общего вида, совместимый с симметрией полного гамильтониана H, τ – параметр, измеряющий расстояние до перехода. Наиболее общая мотивация разбиения (1) состоит в том, что множество гамильтонианов H_c (напр. гамильтонианов различных ферромагнетиков в точке Кюри) должно быть выделено из множества всех гамильтонианов H наложением каких-то дополнительных условий, которые можно интерпретировать как обобщенные симметрийные требования.

В таком подходе проблема состоит в установлении полной симметрии гамильтониана H_c , что до настоящего времени не удалось сделать дл большинства фазовых переходов. Так, известная теория Ландау [2] исходит из очевидной симметрии гамильтониана и не учитывает масштабной инвариантности и других элементов симметрии, возникающих из-за флуктуаций вблизи критической точки [3, гл. IX, §2]. Лишь в пространствах высокой размерности, где дополнительной симметрии, связанной с флуктуациями, не возникает, теория Ландау оказывается точной, давая пример законченной симметрийной теории. Другим примером является конформная теория фазовых переходов для двумерного случая [4], которая, исходя из конформной инвариантности системы в критической точке и конечности числа сильно флуктуирующих величин, фиксирует дискретный ряд наборов критических индексов.

В настоящей работе мы применим симметрийный подход к исследованию перехода Андерсона [5-10], производя разбиение типа (1) не для гамильтониана H, а для оператора \hat{L} , являющегося квантовым аналогом больцмановского оператора столкновений. Теория основана на следующих исходных положениях.

1. Рассматривается уравнение Шредингера в *d*-мерном пространстве

$$[\epsilon(\hat{\mathbf{p}}) + V(\mathbf{r})]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(2)

описывающее движение невзаимодействующих электронов с произвольным спектром $\epsilon(\mathbf{p})$ в случайном потенциале $V(\mathbf{r})$; относительно последнего предполагается лишь возможность использования диаграммной техники для вычисления средних по его реализациям. Для стандартных моделей случайного потенциала существование диаграммной техники устанавливается непосредственно [1, 11, 12]; в общем случае вопрос о границах ее применимости мало исследован – какие-то проблемы заведомо возникают для квазислучайных систем [13, 14].

Точная функция Грина уравнения (2) выражается через его собственные функции $\psi_s(\mathbf{r})$ и собственные значения ϵ_s (s = 1, 2, ..., N):

$$G_E^{R,A}(\mathbf{r},\mathbf{r}') = \sum_s \frac{\psi_s(\mathbf{r})\psi_s^*(\mathbf{r}')}{E - \epsilon_s \pm i\delta}$$
(3)

Усредненная функция Грина $\langle G(r, r') \rangle$ определяетс диаграммным рядом (рис. 1,а) и в соответствии с существующими представлениями [8, 15] предполагается аналитичной в точке перехода Андерсона: для $d \ge 4$ это недавно доказано автором [16, 17]. Сингулярностью в точке перехода обладает величина

$$\phi(\mathbf{r}_1\mathbf{r}_2, \mathbf{r}_3\mathbf{r}_4) = \langle G_{E+\omega}^R(\mathbf{r}_1\mathbf{r}_2)G_E^A(\mathbf{r}_3\mathbf{r}_4)\rangle \tag{4}$$

содержащая информацию о кинетических свойствах; она определяетс совокупностью диаграмм с четырьмя концами, построенных на G^{R} - и G^{A} -линиях (рис. 1,6), и по свойствам аналогична двухчастичной функции Грина теории взаимодействующих частиц [11]. Для нее справедливо уравнение Бете – Солпитера, содержащее неприводимую вершину U (рис. 1,в).

2. Предполагаются следующие элементы симметрии:

(a) Пространственная однородность в среднем, приводящая к закону сохранения для внешних импульсов в диаграммах, что позволяет выразить $\langle G \rangle$ через собственную энергию Σ ,

$$\langle G_E^{R,A}(\mathbf{k}) \rangle \equiv G_{\mathbf{k}}^{R,A} = \frac{1}{E - \epsilon_{\mathbf{k}} - \Sigma_{\mathbf{k}}^{R,A}},\tag{5}$$

а для функции ϕ ввести трехимпульсное обозначение $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ (рис. 1,г) и записать уравнение Бете – Солпитера (рис. 1,в) в виде:

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = G_{\mathbf{k}+\mathbf{q}/2}^R G_{\mathbf{k}-\mathbf{q}/2}^A \{ N\delta_{\mathbf{k}-\mathbf{k}'} + \frac{1}{N} \sum_{\mathbf{k}_1} U_{\mathbf{k}\mathbf{k}_1}(\mathbf{q})\phi_{\mathbf{k}_1\mathbf{k}'}(\mathbf{q}) \}$$
(6)

Здесь и в дальнейшем энергетическая переменная равна $E + \omega$ для функций G^R и E – для функций G^A .

(б) Изотропия в среднем; с ее учетом функция $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ зависит лишь от скалярных произведений, составленных из $\mathbf{k}, \mathbf{k}', \mathbf{q}$, откуда в частности

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \phi_{-\mathbf{k},-\mathbf{k}'}(-\mathbf{q}) \tag{7}$$

Аналогично, $G_{\mathbf{k}}^{R}$ и $G_{\mathbf{k}}^{A}$ зависят от \mathbf{k}^{2} и четны по \mathbf{k} .

(в) Инвариантность относительно обращения времени, позволяюща выбрать собственные функции $\psi_s(\mathbf{r})$ действительными и опустить знак сопряжения в (3); тогда $G(\mathbf{r}, \mathbf{r}') = G(\mathbf{r}', \mathbf{r})$ и перестановка $\mathbf{r}_1, \mathbf{r}_2$ и $\mathbf{r}_3, \mathbf{r}_4$ в (4) при переходе в импульсное представление дает

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \phi_{-\mathbf{k}',-\mathbf{k}}(-\mathbf{q}) \tag{8}$$

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \phi_{(\mathbf{k}-\mathbf{k}'+\mathbf{q})/2,(\mathbf{k}'-\mathbf{k}+\mathbf{q})/2}(\mathbf{k}+\mathbf{k}') \tag{9}$$

Сопоставляя (7) и (8), получим

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \phi_{\mathbf{k}'\mathbf{k}}(\mathbf{q}) \tag{10}$$

Рис. 1: а, б – диаграммы для средней функции Грина (а) и величины ϕ (б), соответствующие гауссовскому случайному потенциалу [1] или борновскому приближению для случайно расположенных примесей [11] (в дальнейшем их конкретный вид не используется); в – графическое изображение уравнения Бете – Солпитера; г – пояснение трехимпульсных обозначений.

Формально разрешая (6) относительно функции $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ и используя (7, 10), нетрудно установить для нее аналогичные свойства

$$U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = U_{-\mathbf{k},-\mathbf{k}'}(-\mathbf{q}), \quad U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = U_{\mathbf{k}'\mathbf{k}}(\mathbf{q})$$
(11)

3. Принято считать, что переход Андерсона происходит из фазы с экспоненциальной локализацией волновых функций в фазу с конечным коэффициентом диффузии. Для уравнения (2) в результате многочисленных исследований твердо установлено существование экспоненциальной локализации при $E \to -\infty$ и конечной диффузии при больших положительных E (для d > 2 и неограниченного спектра $\epsilon(\mathbf{p}), 0 \le \epsilon(\mathbf{p}) \le \infty$); убежденность в существование при одной энергии состояний с разной степенью локализации невозможно ввиду неустойчивости относительно бесконечно малого возмущения общего вида. Аргумент Мотта не запрещает, однако, существование промежуточных типов состояний – со степенной локализацией, гибридных и т.д. – и соответственно – различных типов "перехода Андерсона" (так в квазислучайных системах [13, 14] переход происходит от экспоненциальной локализации к баллистическому режиму). Ниже исследуется перва неустойчивость, возникающая при движении из глубины экспоненциально локализованной фазы и показывается, что она действительно соответствует переходу в фазу с конечной диффузией.

4. Используются общие представления современной теории критических явлений [1] о параметрическом пространстве, критической поверхности, существенных и несущественных параметрах.

5. В основе теории лежит физическая идея о связи явления локализации с диффузионным полюсом в неприводимой четыреххвостке

$$U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q}) + U_{\mathbf{k}\mathbf{k}'}^{sing}(\mathbf{q}) = U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q}) + \frac{F(\mathbf{k},\mathbf{k}',\mathbf{q})}{-i\omega + D(\omega,\mathbf{k}+\mathbf{k}')(\mathbf{k}+\mathbf{k}')^2}$$
(12)

выдвинутая Вольхардтом и Вольфле в т.н. "самосогласованной теории локализации"[18] (см. также [10, 19]). Эта идея согласуется с представлениями теории слабой локализации [20 – 22], согласно которой диффузионный полюс в $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ определяет главные квантовые поправки к проводимости, которые в свою очередь определяют скейлинговое поведение в пространстве размерности $d = 2 + \epsilon$. Диффузионный полюс в $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ с классическим коэффициентом диффузии D_{cl} возникает в результате суммировани "веерных" диаграмм [20]; Вольхардт и Вольфле предположили, что при учете всех диаграмм D_{cl} заменяется на точный коэффициент диффузии $D(\omega, \mathbf{q})$. Далее они использовали для $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ аппроксимацию с $U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q}) = \text{const}, F(\mathbf{k}, \mathbf{k}', \mathbf{q}) = \text{const}$ и приближенно решали уравнение Бете – Солпитера (6), которое с использованием тождества Уорда [18]

$$\Delta \Sigma_{\mathbf{k}}(\mathbf{q}) = \frac{1}{N} \sum_{\mathbf{k}_1} U_{\mathbf{k}\mathbf{k}_1}(\mathbf{q}) \Delta G_{\mathbf{k}_1}(\mathbf{q})$$
(13)

$$\Delta G_{\mathbf{k}}(\mathbf{q}) \equiv G_{\mathbf{k}+\mathbf{q}/2}^{R} - G_{\mathbf{k}-\mathbf{q}/2}^{A}, \quad \Delta \Sigma_{\mathbf{k}}(\mathbf{q}) \equiv \Sigma_{\mathbf{k}+\mathbf{q}/2}^{R} - \Sigma_{\mathbf{k}-\mathbf{q}/2}^{A}$$
(14)

переписывалось в виде

$$\left[-\omega + (\epsilon_{\mathbf{k}+\mathbf{q}/2} - \epsilon_{\mathbf{k}-\mathbf{q}/2})\right]\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) + \frac{1}{N}\sum_{\mathbf{k}_1} U_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) \left[\Delta G_{\mathbf{k}_1}(\mathbf{q})\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) - \Delta G_{\mathbf{k}}(\mathbf{q})\phi_{\mathbf{k}_1\mathbf{k}'}(\mathbf{q})\right] = (15)$$

$$\Delta G_{\mathbf{k}}(\mathbf{q}) N \delta_{\mathbf{k}-\mathbf{k}'}$$

Существует простая оценка, приводящая к тем же результатам. Заметим, что второй член в (15) напоминает больцмановский интеграл столкновений и действительно переходит в него в пределе слабого беспорядка (разд. 3); существенно, что в квантовой области роль "вероятности перехода"играет величина $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$. Использу аппроксимацию типа τ -приближения, $D \propto l \propto \langle U \rangle^{-1}$ (l – длина пробега, $\langle ... \rangle$ – усреднение по импульсам), и учитывая (12), получим уравнение самосогласования теории Вольхардта – Вольфле

$$D \sim \frac{const}{U_0 + F_0 \int \frac{d^d q}{-i\omega + D(\omega, q)q^2}} \tag{16}$$

Приведенная оценка не менее точна и более отчетливо демонстрирует суть дела, чем приближенное решение в [18] уравнения (15): при увеличении беспорядка "вероятность перехода" аномально возрастает из-за уменьшения коэффициента диффузии, обеспечивая возможность его обращения в нуль. В пренебрежении пространственной дисперсией $D(\omega, \mathbf{q})$ уравнение (16) позволяет определить критические индексы проводимости σ и радиуса локализации ξ

$$\sigma \sim \tau^s, \qquad \xi \sim \tau^{-\nu} \tag{17}$$

 $(\tau$ – расстояние до перехода); полагая $D={\rm const}(\omega)\sim\sigma$ в металлической фазе и $D\sim(-i\omega)\xi^2$ в локализованной, получим

$$s = 1, \ d > 2;$$
 $\nu = \begin{cases} \frac{1}{d-2}, & 2 < d < 4\\ \frac{1}{2}, & d > 4 \end{cases}$ (18)

Уже из приведенного изложения видны недостатки самосогласованной теории ло-кализации [18]:

а) грубый метод решения уравнения Бете – Солпитера;

б) игнорирование пространственной дисперсии $D(\omega, \mathbf{q})$, которая может существенно изменить оценку интеграла в (16);

в) использование для $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ аппроксимации, приводящей в локализованной фазе к сингулярности ~ $1/\omega$ в правой части тождества Уорда (13), что несовместимо с регулярностью Σ в точке перехода.

С п. б) связан один из интереснейших вопросов теории локализации. Из критерия Березинского – Горькова [24] следует, что в локализованной фазе $D(0, \mathbf{q}) \equiv 0$ (разд. 4); возникает вопрос о характере изменения пространственной дисперсии D вблизи перехода. Вольхардт и Вольфле исходили из того, что в точке перехода $D(0, \mathbf{q})$ обращаетс в нуль сразу при всех \mathbf{q} ; аналогичная гипотеза высказывалась Ефетовым [21].

Обращение в нуль целой функции не может произойти случайно и должно поддерживаться какой-то глубокой симметрией: существует ли эта симметрия и какова она? В п. в) затронут другой принципиальный вопрос теории: если диффузионный полюс в $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ существует, то почему нет особенности ~ $1/\omega$ в правой части тождества Уорда (13)? Условие ее сокращения предъявляет жесткие требования к используемому приближению, тогда как фактически выполнение тождества Уорда не контролировалось ни в одной из существующих теорий [10].

Ниже излагается теория, свободная от недостатков а) – в) и отвечающая на поставленные вопросы. Первая часть работы следует схеме теории Вольхардта – Вольфле и содержит обоснование соотношений, полученных в [18] ценой гипотез или сомнительных аппроксимаций: в разд. 2.3 производится выделение диффузионных полюсов $\phi_{\mathbf{kk'}}(\mathbf{q})$ и доказываетс результат (12); в разд. 4 устанавливаются общие свойства коэффициента диффузии и его связь с локализацией волновых функций. Содержание разд. 5 – 7 заменяет грубое решение уравнения Бете – Солпитера работы [18]: в разд. 5 для квантового оператора столкновений \hat{L} выявляется иерархическа структура спектра и утанавливается разбиение типа (1), удобное для симметрийного анализа, находится условие на точку перехода и выводитс уравнение самосогласования, заменяющее (16). Коэффициент диффузии $D(\omega, \mathbf{q})$ ищется в предположении произвольной пространственной дисперсии (разд. 6, 7), но внутренне непротиворечивым оказывается лишь решение со слабой зависимостью от \mathbf{q} , не влияющей на оценку интеграла в (16) и приводящее к результату (18) для критических индексов. Таким образом, все основные результаты [18] оказываются верными, что удивительно дл такой грубой теории.

Излагаемая теория исходит из очевидной симметрии системы, а дополнительна симметрия критической точки устанавливается при анализе. Неизбежен вопрос, полностью ли выявлены скрытые элементы симметрии? Серьезный аргумент, указывающий на полноту выявления, состоит в том (разд. 8), что переход Андерсона по характеру изменения симметрии оказывается аналогичным точке Кюри для изотропного *n*-компонентного ферромагнетика в пределе $n \to \infty$; эта модель ферромагнетика является основой 1/n-разложения [1], ее критические индексы известны точно и оказываютс в точном соответствии с (18). Изотропия эквивалентного ферромагнетика является симметрией, обеспечивающей обращение $D(0, \mathbf{q})$ в нуль одновременно для всех \mathbf{q} ; при этом отсутствие сингулярности в правой части тождества Уорда (13) обеспечивается приближенной ортогональностью (с точностью $\sim \omega$) сингулярной части $U_{\mathbf{k}'}(\mathbf{q}) \kappa \Delta G_{\mathbf{k}}(\mathbf{q})$ (разд.5.3)

Другой способ проверки полноты выявленной симметрии состоит в сопоставлении с результатами модельных исследований; фактически гипотеза о том, что индексы (18) являются точными, высказывалась в [25] на основе анализа всех известных результатов:

(а) Для $d = 2 + \epsilon$ справедливо соотношение Вегнера $s = (d - 2)\nu$, следующее из существования однопараметрического скейлинга [21], а ϵ -разложение для индекса ν имеет вид [26]

$$\nu = \frac{1}{\epsilon} + 0 \cdot \epsilon^0 + 0 \cdot \epsilon^1 + O(\epsilon^2) \tag{19}$$

что согласуется с (18), если нулевые коэффициенты имеют место и при более высоких степенях ϵ .

(б) Результат (18) выделяет размерности пространства $d_{c1} = 2$ и $d_{c2} = 4$, которые из независимых соображений считаются нижней [21] и верхней (см. обсуждение и ссылки в [16]) критическими размерностями.

(в) Весь опыт теории фазовых переходов показывает, что для $d > d_{c2}$ критические индексы не зависят от d, что имеет место в (18).

(г) Индексы (18) согласуются с результатами для $d = \infty$: $\nu = 1/2$ [27, 28] и s = 1[29]; противоречие с результатом $s = \infty$ работы [28] обсуждается в разд. 9.

Значение индекса $\nu = 1$ для d = 3 удовлетворительно согласуется с результатами численных расчетов ($\nu = 1, 2 \pm 0, 3$ [30], $\nu = 1, 5 \pm 0, 2$ [31]), а качественное поведение ν как функции d – с оценками из иерархических моделей [14]. В работе Вегнера [32] получен конечный вклад $\sim \epsilon^2$ в (19), сильно ухудшающий согласие с численными расчетами [30, 31]; однако, этот результат выведен для нуль-компонентной σ -модели, соответствие которой с исходной неупорядоченной системой содержит спорные моменты (чего не отрицает и сам автор [32]) и, по-видимому, верно лишь в низших порядках по ϵ (разд. 9).

Качественным результатом работы, допускающим экспериментальную проверку, является утверждение об отсутствии пространственной дисперсии $D(\omega, \mathbf{q})$ на масштабе ξ^{-1} (ср. с [33 – 35]). Взаимодействие между электронами может изменить этот результат и экспериментальное исследование $D(\omega, \mathbf{q}) \subset q \stackrel{>}{\sim} \xi^{-1}$ в пределе $\omega \to 0$ могло бы разрешить вопрос о применимости одночастичной картины для описания локализации. Отсутствие существенной пространственной дисперсии не противоречит сильной зависимости коэффициента диффузии D_L конечной системы от ее размера L [21], которая связана с временной дисперсией и определяется по известной функции $D(\omega, q)$ из соотношения $D_L \sim D(D_L/L^2, 0)$ [18].

2. Соотношения между величинами при наличии пространственной и временной дисперсии.

В этом разделе будет доказано существование диффузионного полюса в величине

$$\phi(\mathbf{q}) = \frac{1}{N^2} \sum_{\mathbf{k}\mathbf{k}'} \phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$$
(20)

являющейся фурье-образом (4) для совпадающих аргументов $\mathbf{r}_1 = \mathbf{r}_4$, $\mathbf{r}_2 = \mathbf{r}_3$; в отличие от [18] и других работ, не будет предполагаться малости q. Ввиду большой путаницы в литературе мы дадим полную сводку относящихся сюда формул.

Рассмотрим реакцию системы на электрическое поле $\mathbf{E}(\mathbf{r},t) \sim e^{i\mathbf{q}\cdot\mathbf{r}-i\omega t}$, частоту ω которого считаем конечной лишь для раскрытия возникающих неопределенностей, имея в виду предел $\omega \to 0$ в окончательных результатах. В пренебрежении магнитными эффектами поле **E** является чисто потенциальным, что позволяет ограничиться продольными компонентами восприимчивостей [36, §103]. При наличии пространственной дисперсии возможны два определения проводимости

$$\mathbf{j}(\omega, \mathbf{q}) = \tilde{\sigma}(\omega, \mathbf{q}) \mathbf{E}(\omega, \mathbf{q}) \qquad \mathbf{j} = \mathbf{j}_e + \mathbf{j}_{diff} \qquad (21)$$
$$\mathbf{j}_e(\omega, \mathbf{q}) = \sigma(\omega, \mathbf{q}) \mathbf{E}(\omega, \mathbf{q})$$

связывающие **E** с полным током **j** или с его электрической компонентой **j**_e; диффузионная компонента тока $\mathbf{j}_{diff}(\omega, \mathbf{q}) = -i\mathbf{q}D(\omega, \mathbf{q})\rho(\omega, \mathbf{q})$ обусловлена отклонением ρ электронной плотности от равновесной, которое определяется поляризуемостью α (φ – скалярный потенциал):

$$\rho(\omega, \mathbf{q}) = \alpha(\omega, \mathbf{q})\varphi(\omega, \mathbf{q}) \tag{22}$$

Проводимость $\tilde{\sigma}$ входит в формулы Кубо (см. ниже), определяющие полный отклик системы на поле **E**; проводимость σ связана с коэффициентом диффузии *D* соотношением Эйнштейна

$$\sigma(\omega, \mathbf{q}) = e^2 N(\epsilon_F) D(\omega, \mathbf{q}) \tag{23}$$

т. к. изменение скалярного φ и химического потенциала μ при условии $\mu(\mathbf{r}, t) + e\varphi(\mathbf{r}, t) =$ const не нарушает термодинамического равновесия $(N(\epsilon_F) - плотность состояний на уровне Ферми). Из уравнения непрерывности следует связь <math>\sigma$, $\tilde{\sigma}$ и α

$$-i\omega\tilde{\sigma}(\omega,\mathbf{q}) = [-i\omega + D(\omega,\mathbf{q})q^2]\sigma(\omega,\mathbf{q}), \qquad \omega\alpha(\omega,\mathbf{q}) = -iq^2\tilde{\sigma}(\omega,\mathbf{q}), \qquad (24)$$

так что различие σ и $\tilde{\sigma}$ существенно лишь при $\mathbf{q} \neq 0$. С учетом (23), для поляризуемости α и диэлектрической проницаемости ϵ имеем:

$$\alpha(\omega, \mathbf{q}) = -\frac{e^2 N(\epsilon_F) D(\omega, \mathbf{q}) q^2}{-i\omega + D(\omega, \mathbf{q}) q^2}, \qquad \epsilon(\omega, \mathbf{q}) = 1 - \frac{4\pi}{q^2} \alpha(\omega, \mathbf{q}) = 1 - \frac{4\pi \tilde{\sigma}(\omega, \mathbf{q})}{i\omega}$$
(25)

Из (23 – 25) ясно, что задание коэффициента диффузи
и $D(\omega,{\bf q})$ определяет все введенные величины.

Для $\tilde{\sigma}$ и α справедливы формулы Кубо [2, §126], [37, §75]

$$\tilde{\sigma}(\omega, \mathbf{q}) = \frac{1}{\omega} \int_{0}^{\infty} dt e^{i\omega t} \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \langle \hat{j}(\mathbf{r}, t)\hat{j}(0, 0) - \hat{j}(0, 0)\hat{j}(\mathbf{r}, t) \rangle$$
(26)

$$\tilde{\sigma}(\omega, \mathbf{q}) = \frac{1}{q} \int_{0}^{\infty} dt e^{i\omega t} \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \langle \hat{j}(\mathbf{r}, t)\hat{\rho}(0, 0) - \hat{\rho}(0, 0)\hat{j}(\mathbf{r}, t) \rangle$$
(27)

$$\alpha(\omega, \mathbf{q}) = -i \int_{0}^{\infty} dt e^{i\omega t} \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} \langle \hat{\rho}(\mathbf{r}, t) \hat{\rho}(0, 0) - \hat{\rho}(0, 0) \hat{\rho}(\mathbf{r}, t) \rangle$$
(28)

определяющие соответственно реакцию тока на вектор-потенциал, тока на скалярный потенциал и плотности на скалярный потенциал. Из уравнения непрерывности для оператора плотности $\hat{\rho}$ и продольной компоненты оператора тока \hat{j} и асимптотики $\tilde{\sigma}$ и α при $\omega \to \infty$ [36, §78] следует эквивалентность (26) и (27) и связь (24) между $\tilde{\sigma}$ и α .

Заметим, что по точному смыслу формул Кубо (см. подробное обсуждение в книге [38]) должен вычисляться отклик системы на поле **D**, созданное сторонними зарядами. При таком подходе кулоновское взаимодействие между электронами должно обязательно включаться в гамильтониан во избежание противоречий на уровне уравнений Максвелла; формулы Кубо имеют вид, несколько отличный от (26 – 28) [37, стр. 413], а входящие в них корреляторы должны вычисляться с учетом кулоновского взаимодействия. Более удобен другой подход [38: взаимодействие между электронами разбивается на короткодействующую и медленно меняющуюс дальнодействующие части; первая в явном виде включается в гамильтониан, вторая учитывается как самосогласованное поле, приводящее к экранировке поля D; поэтому рассматривается отклик на реальное физическое поле **E**, а входящие в (26 - 28) корреляторы вычисляются лишь с учетом короткодействующей части взаимодействия. Последняя может учитываться в духе теории ферми-жидкости; мы пренебрежем ей вовсе, т.к. задача Андерсона в классической постановке есть задача о невзаимодействующих электронах. Подчеркнем, что слово "невзаимодействующие" должно пониматься именно в указанном выше смысле, т. к. иначе нельзя непротиворечивым образом ввести понятие проводимости.

Коррелятор в (28) для невзаимодействующих электронов в случайном потенциале вычисляется аналогично коррелятору для ферми-газа [2, §117] с использованием вместо представления плоских волн представлени собственных функций $\psi_s(r)$ уравнения (2)¹:

$$\alpha(\omega, \mathbf{q}) = e^2 \int_{-\infty}^{\infty} d\epsilon \int_{-\infty}^{\infty} d\omega' \frac{f_0(\epsilon) - f_0(\epsilon + \omega')}{\omega - \omega' + i\delta} N(\epsilon) \langle \rho_\epsilon \rho_{\epsilon + \omega'} \rangle_{\mathbf{q}}$$
(29)

Здесь $f_0(\epsilon)$ – фермиевская функция, а $\langle \rho_E \rho_{E+\omega} \rangle_{\mathbf{q}}$ – фурье-образ спектральнной плотности Березинского – Горькова [24]

$$\langle \rho_E(\mathbf{r})\rho_{E+\omega}(\mathbf{r}')\rangle = \frac{1}{N(E)} \langle \sum_{ss'} \psi_s^*(\mathbf{r})\psi_{s'}(\mathbf{r})\psi_{s'}(\mathbf{r}')\psi_s(\mathbf{r}')\delta(E-\epsilon_s)\delta(E-\epsilon_{s'}+\omega)\rangle$$
(30)

Для малых ω и нулевой температуры взяв мнимую часть формулы (29), получим ее обращение:

$$\langle \rho_{\epsilon_F} \rho_{\epsilon_F + \omega'} \rangle_{\mathbf{q}} = -\frac{\mathrm{Im}\alpha_{\epsilon_F}(\omega, \mathbf{q})}{\pi e^2 \omega N(\epsilon_F)} \tag{31}$$

(при отсутствии взаимодействия $\psi_s(\mathbf{r})$ и ϵ_s не зависят от ϵ_F и можно заменить ϵ_F на *E*). Стандартный диффузионный вид для $\langle \rho_E \rho_{E+\omega} \rangle_{\mathbf{q}}$ [10, 24] получается путем подстановки (25) в (31) в предположении действительности $D(\omega, \mathbf{q})$, что в общем случае не имеет места.

Для функции $\phi(\mathbf{q})$ легко получить (*E* и ω – параметры, входящие в (4)).

$$\phi(\mathbf{q}) = \int_{-\infty}^{\infty} d\epsilon \int_{-\infty}^{\infty} d\omega' \frac{N(\epsilon) \langle \rho_{\epsilon} \rho_{\epsilon+\omega'} \rangle_{\mathbf{q}}}{(E+\omega-\epsilon+i\delta)(E-\omega'-\epsilon-i\delta)}$$
(32)

¹Для определенности все величины относятся к одной проекции спина; для чисто потенциального рассеяния спиновые подсистемы независимы и число спиновых компонент легко учесть в окончательных результатах.

Поляризуемость $\alpha(\omega, \mathbf{q})$ относится к категории обобщенных восприимчивостей ([2, §123, [36 §103]) и нечетность Im $\alpha(\omega, \mathbf{q})$ по частоте позволяет записать

$$\operatorname{Im}\alpha(\omega,\mathbf{q}) = \frac{\tilde{\alpha}(\omega,\mathbf{q}) - \tilde{\alpha}(-\omega,\mathbf{q})}{2i}, \qquad \qquad \tilde{\alpha}(\omega,\mathbf{q}) = \alpha(\omega,\mathbf{q}) - \alpha(0,\mathbf{q}) \qquad (33)$$

Подставляя (31) и (33) в (32), получим интегралы с $\tilde{\alpha}(\omega', \mathbf{q})$ и $\tilde{\alpha}(-\omega', \mathbf{q})$, сходящиеся по отдельности; делая во втором из них замену $\omega' \to -\omega'$ и сдвигая контур интегрирования по ω' вверх, с учетом аналитичности $\alpha(\omega, \mathbf{q})$ в верхней полуплоскости получим

$$\phi(\mathbf{q}) = \frac{1}{e^2} \int_{-\infty}^{\infty} d\omega'' \frac{\tilde{\alpha}_{E+\omega''}(\omega'', \mathbf{q})}{(\omega'' - \omega - i\delta)(\omega'' + i\delta)} \simeq \frac{2\pi i}{e^2 \omega} \tilde{\alpha}_E(\omega, \mathbf{q})$$
(34)

где $\omega'' = \epsilon - E$; второе равенство следует в пренебрежении ω'' в аргументе $E + \omega''$, по которому заметные изменения $\tilde{\alpha}$ происходят на атомном масштабе и не существенны в области $\omega'' \sim \omega$, дающей главный вклад в интеграл. Подставляя $\alpha(\omega, \mathbf{q})$ в виде (25), получим

$$\phi(\mathbf{q}) = \frac{2\pi N(E)}{-i\omega + D(\omega, \mathbf{q})q^2} + \phi_{reg}(\mathbf{q})$$
(35)

где вклад $\phi_{reg}(\mathbf{q})$ происходит от области больших ω'' в (34) и регулярен при $\omega, \mathbf{q} \to 0$. В локализованной фазе, когда $D(\omega, \mathbf{q}) \sim (-i\omega)$ (разд. 4), для получения (35) нужно при выделении $\alpha(0, \mathbf{q})$ из $\alpha(\omega, \mathbf{q})$ учитывать наличие в знаменателе бесконечно малой действительной добавки, не зависящей от частоты, необходимой для придания смысла всем выражениям. Итак, величина $\phi(\mathbf{q})$ имеет диффузионный полюс, в который входит наблюдаемый коэффициент диффузии.

3. Выделение диффузионных полюсов из уравнения Бете – Солпитера.

Введем оператор \hat{L} , являющийся симметризованной версией оператора в левой части (15), возникающей в результате замены $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) \to \phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$ и деления уравнения (15) на $\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$:

$$\hat{L}(\mathbf{q}) = \hat{L}_0(\mathbf{q}) + \hat{M}(\mathbf{q}) \tag{36}$$

$$\hat{L}_{0}\psi_{\mathbf{k}} \equiv \frac{1}{N}\sum_{\mathbf{k}_{1}}U_{\mathbf{k}\mathbf{k}_{1}}(\mathbf{q})[\Delta G_{\mathbf{k}_{1}}(\mathbf{q})\psi_{\mathbf{k}} - \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}_{1}}(\mathbf{q})}\psi_{\mathbf{k}_{1}}], \quad \hat{M}\psi_{\mathbf{k}} \equiv (\epsilon_{\mathbf{k}+\mathbf{q}/2} - \epsilon_{\mathbf{k}-\mathbf{q}/2})\psi_{\mathbf{k}}$$

Оператор \hat{L} действует в комплексном пространстве и в силу (11) самосопряжен относительно скалярного произведени

$$(\phi,\psi) = \frac{1}{N} \sum_{\mathbf{k}} \phi_{\mathbf{k}} \psi_{\mathbf{k}}$$
(37)

Его собственные функции $e_{\mathbf{k}}^{(s)}(\mathbf{q})$ образуют полный ортонормированный базис, а собственные значения $\lambda_s(\mathbf{q})$, вообще говоря, комплексны. В терминах λ_s и $e^{(s)}$ формальное решение уравнения Бете – Солпитера (15) имеет вид

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \sum_{s} \frac{f_{\mathbf{k}}^{(s)}(\mathbf{q}) f_{\mathbf{k}'}^{(s)}(\mathbf{q})}{-\omega + \lambda_{s}(\mathbf{q})}, \qquad \qquad f_{\mathbf{k}}^{(s)}(\mathbf{q}) = \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})} e_{\mathbf{k}}^{(s)}(\mathbf{q}) \tag{38}$$

Одно из собственных значений – для определенности $\lambda_0(\mathbf{q})$ – имеет при малых \mathbf{q} поведение $\lambda_0(\mathbf{q}) \sim q^2$. Действительно, оператор \hat{L}_0 имеет нулевую моду $\psi_{\mathbf{k}}(\mathbf{q}) = \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$ и, рассматрива оператор $\hat{M} \sim q$ как возмущение, можно построить итерационные ряды

$$e_{\mathbf{k}}^{(0)}(\mathbf{q}) = \operatorname{const}[\psi_{\mathbf{k}}^{(0)}(\mathbf{q}) + \psi_{\mathbf{k}}^{(1)}(\mathbf{q}) + \dots], \qquad \psi_{\mathbf{k}}^{(0)}(\mathbf{q}) = \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$$
$$\lambda_{0}(\mathbf{q}) = \lambda_{0}^{(1)}(\mathbf{q}) + \lambda_{0}^{(2)}(\mathbf{q}) + \dots, \qquad \lambda_{0}^{(n)}(\mathbf{q}), \psi^{(n)} \sim q^{n}, \quad (\psi^{(0)}, \psi^{(n)}) = 0, n \neq 0$$
(39)

в форме Бриллюэна – Вигнера [39]. Собственные значени $\lambda_s(\mathbf{q})$ четны по \mathbf{q} (см. Приложение) и поправка $\lambda_0^{(1)}$ зануляется, в чем легко убедиться непосредственно. Во втором порядке по q имеем

$$\lambda_0(\mathbf{q}) = \frac{(\psi^{(0)}, \hat{M}\psi^{(0)}) + (\psi^{(0)}, \hat{M}\psi^{(1)})}{(\psi^{(0)}, \psi^{(0)})}$$
(40)

где $\psi^{(1)}$ удовлетворяет уравнению

$$-\hat{P}_{\perp}\hat{M}\psi^{(0)} = \hat{L}_{0}\psi^{(1)} \tag{41}$$

 $(\hat{P}_{\perp}$ – проекционный оператор на подпространство, ортогональное $\psi^{(0)}$ [39]). Делая замену

$$\psi_{\mathbf{k}}^{(1)}(\mathbf{q}) = -i\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}\mathbf{q} \cdot \mathbf{l}_{\mathbf{k}}$$
(42)

и замечая, что

$$\frac{1}{N}\sum_{\mathbf{k}}\Delta G_{\mathbf{k}}(\mathbf{q}) = \frac{1}{N}\sum_{\mathbf{k}}2i\mathrm{Im}G_{\mathbf{k}}^{R} = -2\pi iN(E)$$
(43)

перепишем (40) в виде ($\mathbf{v}_{\mathbf{k}}$ – скорость электронов с импульсом \mathbf{k})

$$\lambda_0(\mathbf{q}) = \frac{i}{2\pi N(E)} \left[\frac{1}{N} \sum_{\mathbf{k}} (\mathbf{q} \cdot \mathbf{v}_{\mathbf{k}}) (\mathbf{q} \cdot \mathbf{l}_{\mathbf{k}}) (-i) \Delta G_{\mathbf{k}}(\mathbf{q}) + \frac{1}{N} \sum_{\mathbf{k}} (\mathbf{q} \cdot \mathbf{v}_{\mathbf{k}}) \Delta G_{\mathbf{k}}(\mathbf{q}) \right]$$
(44)

Для изотропного спектра $\epsilon({\bf k})=k^2/2m$ в низшем порядке по ${\bf q}$ выражения (44, 41) принимают вид

$$\lambda_0(\mathbf{q}) = -iD(0,0)q^2, \quad D(0,0) = \sigma(0,0)e^{-2}N(E)^{-1}$$
(45)

$$\sigma(0,0) = \frac{e^2}{2\pi d} \frac{1}{N} \sum_{\mathbf{k}} (\mathbf{v}_{\mathbf{k}} \cdot \mathbf{l}_{\mathbf{k}}) i \Delta G_{\mathbf{k}}(0) + \frac{e^2}{2\pi m} \frac{1}{N} \sum_{\mathbf{k}} \operatorname{Re} G_{\mathbf{k}}^R$$
(46)

$$\mathbf{v}_{\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{k}'} i U_{\mathbf{k}\mathbf{k}'}(0) \Delta G_{\mathbf{k}'}(0) (\mathbf{l}_{\mathbf{k}} - \mathbf{l}_{\mathbf{k}'})$$
(47)

В пределе слабого беспорядка, когда

$$\Delta G_{\mathbf{k}}(0) = G_{\mathbf{k}}^{R} - G_{\mathbf{k}}^{A} = 2i \operatorname{Im} \frac{1}{E - \epsilon_{\mathbf{k}} + i\gamma} \approx -2\pi i \delta(E - \epsilon_{\mathbf{k}})$$
(48)

получим из (46, 47)

$$\sigma(0,0) = \frac{e^2}{d} \frac{1}{N} \sum_{\mathbf{k}} \mathbf{v}_{\mathbf{k}} \cdot \mathbf{l}_{\mathbf{k}} \delta(E - \epsilon_{\mathbf{k}})$$
(49)

$$\mathbf{v}_{\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{k}'} 2\pi U_{\mathbf{k}\mathbf{k}'}(0) (\mathbf{l}_{\mathbf{k}} - \mathbf{l}_{\mathbf{k}'}) \delta(E - \epsilon_{\mathbf{k}'})$$
(50)

т.е. $\sigma(0,0)$ оказывается классической проводимостью, D(0,0) – классическим коэффициентом диффузии, а $\mathbf{l_k}$ – векторной длиной пробега, определяемой обычным кинетическим уравнением (50) для рассеяния на примесях [40]. Результаты (46, 47) распространяют концепции конетического уравнения и длины пробега на квантовую область; отличия от классических уравнений сводятся к

(a) размытию *б*-функции, выражающей закон сохранения энергии;

(б) замене вероятности перехода на $2\pi U_{\mathbf{k}\mathbf{k}'}(0)$;

(в) появлению квантовой поправки для σ (последний член в (46)) порядка моттовской минимальной проводимости [7].

Из (45) ясно, что диффузионный полюс связан с нулевым членом суммы в (38); для сопоставления с (35) просуммируем (38) по **k** и **k**'

$$\phi(\mathbf{q}) = \frac{A_0(\mathbf{q})^2}{-\omega + \lambda_0(\mathbf{q})} + \sum_{s \neq 0} \frac{A_s(\mathbf{q})^2}{-\omega + \lambda_s(\mathbf{q})}, \qquad A_s(\mathbf{q}) = \frac{1}{N} \sum_{\mathbf{k}} \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})} e_{\mathbf{k}}^{(s)}(\mathbf{q})$$
(51)

В пренебрежении в (36) оператором \hat{M} имеем $e_{\mathbf{k}}^{(0)}(\mathbf{q}) \sim \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$, откуда $A_0^2(\mathbf{q}) = -2\pi i N(E), A_s(\mathbf{q}) = 0, s \neq 0$; учитыва \hat{M} по теории возмущений, получим

$$A_0^2(\mathbf{q}) = \frac{-2\pi i N(E)}{1 + B(\mathbf{q})}, \quad B(\mathbf{q}) \sim q^2; \qquad A_s(\mathbf{q})^2 \sim q^2, \quad s \neq 0$$
(52)

и сопоставление (51) с (35) дает

$$D(\omega, \mathbf{q})q^2 = i\lambda_0(\mathbf{q})[1 + B(\mathbf{q})] - i\omega B(\mathbf{q}), \qquad \phi_{reg}(\mathbf{q}) \sim q^2$$
(53)

Разбиение (35) на регулярную и сингулярную части неоднозначно и допускает "калибровочное преобразование"

$$\phi_{reg}(\mathbf{q}) = \phi_{reg}(\mathbf{q}) - 2\pi N(E)C(\mathbf{q})$$
$$\tilde{D}(\omega, \mathbf{q})q^2 = \frac{D(\omega, \mathbf{q})q^2 + i\omega C(\mathbf{q})[-i\omega + D(\omega, \mathbf{q})q^2]}{1 + C(\mathbf{q})[-i\omega + D(\omega, \mathbf{q})q^2]} \qquad C(\mathbf{q}) \sim q^2$$
(54)

Рис. 2: а – структура диаграммного ряда для $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$; б – то же, с развернутой верхней *G*-линией; блоки *U* и \tilde{U} топологически эквивалентны, но соответствуют различным значениям импульсов.

с точностью до которого справедливо отождествление (53). Поэтому удобно положить по определению

$$\lambda_0(\mathbf{q}) = -iD(\omega, \mathbf{q})q^2 \tag{55}$$

считая, что так определенный коэффициент диффузии $D(\omega, \mathbf{q})$ связан с наблюдаемым $D_{obs}(\omega, \mathbf{q})$ соотношениями типа (53, 54). При любых $B(\mathbf{q})$ и $C(\mathbf{q})$ имеем $D(0,0) = D_{obs}(0,0)$, а $D(0,\mathbf{q})$ и $D_{obs}(0,\mathbf{q})$ обращаются в нуль одновременно. Практически различие $D(\omega, \mathbf{q})$ и $D_{obs}(\omega, \mathbf{q})$ несущественно: дело в том, что пространственна дисперсия $D(\omega, \mathbf{q})$ на масштабе $q \sim \Lambda$ (Λ – параметр, порядка обратного межатомного расстояния) малоинтересна; интерес представляет лишь "аномальная" дисперсия, определенная масштабом ξ^{-1} , которая может возникать вблизи перехода Андерсона. Величина $B(\mathbf{q})$ аномальной дисперсии не содержит, т.к. определяется функцией $\Delta G_{\mathbf{k}}(\mathbf{q})$, регулярной в точке перехода, и функцией $e_{\mathbf{k}}^{(0)}(\mathbf{q})$, которую можно считать постоянной (разд. 5.4); то же относится к величине $C(\mathbf{q})$, связывающей согласно (54) две регулярные функции (см. однако, разд. 4). С учетом сказанного, (38) принимает вид

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \frac{if_{\mathbf{k}}^{(0)}(\mathbf{q})f_{\mathbf{k}'}^{(0)}(\mathbf{q})}{-i\omega + D(\omega,\mathbf{q})q^2} + \phi_{\mathbf{k}\mathbf{k}'}^{(1)}(\mathbf{q}), \qquad \phi_{\mathbf{k}\mathbf{k}'}^{(1)}(\mathbf{q}) \sim q^2$$
(56)

Из соотношения (9) следует наличие в $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ диффузионного полюса при $\mathbf{k} + \mathbf{k}' \to 0$, который можно выделить из $\phi_{\mathbf{k}\mathbf{k}'}^{(1)}(\mathbf{q})$

$$\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = \frac{if_{\mathbf{k}}^{(0)}(\mathbf{q})f_{\mathbf{k}'}^{(0)}(\mathbf{q})}{-i\omega + D(\omega,\mathbf{q})q^2} + \frac{if_{\mathbf{k}-\mathbf{k}'+\mathbf{q}/2}^{(0)}(\mathbf{k}+\mathbf{k}')f_{\mathbf{k}'-\mathbf{k}+\mathbf{q}/2}^{(0)}(\mathbf{k}+\mathbf{k}')}{-i\omega + D(\omega,\mathbf{k}+\mathbf{k}')(\mathbf{k}+\mathbf{k}')^2} + \phi_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q})$$
(57)

На диаграммном языке полюс при $q \to 0$ связан с тем, что в диаграммах, содержащих два и более блока U (рис. 2,а), в интегралах

$$\int d^d k_i G^R_{\mathbf{k}_i + \mathbf{q}/2} G^A_{\mathbf{k}_i - \mathbf{q}/2} \tag{58}$$

контур интегрирования зажимается между полюсами двух функций Грина. При малых U расходимость в (58) при $\omega, q \to 0$ ограничивается лишь малым затуханием Im Σ в знаменателях G-функций и компенсирует малость, связанную с добавлением лишнего блока U; все диаграммы рис. 2,а оказываются одного порядка и ряд расходится, приводя к диффузионному полюсу. При произвольных U расходимость ряда при $\omega, q \to 0$ обеспечивается тождеством Уорда (13); существенно, что диффузионный полюс определяется диаграммами с большим числом блоков U. Ввиду $G(\mathbf{r}_1, \mathbf{r}_2) = G(\mathbf{r}_2, \mathbf{r}_1)$ результат дл $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ не изменится, если при построении диаграмм развернуть верхнюю G-линию; тогда диаграммы содержат блоки U (рис. 2,6), топологически эквивалентные блокам U, но взятые при других значениях импульсов: теперь полюса двух Gфункций сближаются при $\mathbf{k} + \mathbf{k}' \to 0$, давая второй диффузионный полюс в (57). При развороте верхней G-линии на рис. 2, а диаграммы, содержащие два и более блока U, становятся неприводимыми и входят в блок U (рис. 2,6) и наоборот, разворот G-линии в диаграмме с одним блоком U порождает всю последовательность диаграмм рис. 2,6 с более, чем двумя блоками U. Поэтому второй полюсный член в (57) в неизменном виде содержится в $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$, отличаясь лишь вкладом четырех концевых G-линий; для $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ справедлив результат (12) с функцией $F(\mathbf{k},\mathbf{k}',\mathbf{q})$ вида

$$F(\mathbf{k}, \mathbf{k}', \mathbf{q}) = i f_{(\mathbf{k} - \mathbf{k}' + \mathbf{q})/2}^{(0)} (\mathbf{k} + \mathbf{k}') f_{(\mathbf{k}' - \mathbf{k} + \mathbf{q})/2}^{(0)} (\mathbf{k} + \mathbf{k}') (G_{\mathbf{k} + \mathbf{q}/2}^R G_{\mathbf{k} - \mathbf{q}/2}^R G_{\mathbf{k}' + \mathbf{q}/2}^R G_{\mathbf{k}' - \mathbf{q}/2}^R)^{-1}$$
(59)

чем обосновывается гипотеза Вольхардта – Вольфле.

4. Критерий Березинского – Горькова и его следствия.

Спектральная плотность (30) содержит сингулярный вклад ~ $\delta(\omega)$, происходящий от членов с s = s', который конечен в локализованной фазе и исчезает в делокализованной при переходе к термодинамическому пределу: в этом состоит критерий локализации Березинского – Горькова [24]. Сингулярность $\delta(\omega)$ в $\langle \rho_E \rho_{E+\omega} \rangle_{\mathbf{q}}$ в силу (32) приводит к сингулярности $1/\omega$ в функции $\phi(\mathbf{q})$ [10]

$$\phi(\mathbf{q}) = \frac{2\pi N(E)}{-i\omega} A(\mathbf{q}) + \phi_{reg}(\mathbf{q})$$
(60)

$$A(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\mathbf{r}} A(\mathbf{r}), \qquad A(\mathbf{r}) = \frac{1}{N(E)} \langle \sum_{s} |\psi_s(\mathbf{r})|^2 |\psi_s(0)|^2 \delta(E - \epsilon_s) \rangle$$
(61)

Из соотношения (60) вытекает ряд важных следствий.

1. Сопоставление (60) и (35) показывает, что в локализованной фазе $D(\omega, \mathbf{q}) \sim \omega$: более медленная зависимость нарушила бы сингулярность $1/\omega$ в (60), а более быстрая – привела бы к исчезновению зависимости от \mathbf{q} в сингулярной части (35), которая заведомо имеется согласно (60). Этот результат, справедливый в калибровке $D(\omega, \mathbf{q})$, при которой функции $\phi_{reg}(\mathbf{q})$ в (35) и (60) совпадают, остается верным в любой другой калибровке (см. (53, 54)); итак

$$D(\omega, \mathbf{q}) = (-i\omega)d(q) \tag{62}$$

где в функции d(q) считается взятым предел $\omega \to 0$. Таким образом, из критерия Березинского – Горькова следует обращение $D(0, \mathbf{q})$ в нуль для всех \mathbf{q} , чем завершается доказательство эквивалентности всех основных критериев локализации [6, 10]. Ввиду (62) второй диффузионный полюс в (57) приводит к особенности $1/\omega$ в сумме по *s* в (51), для исключения которой из $\phi_{reg}(\mathbf{q})$ требуется преобразование (54) с $C(\mathbf{q}) \sim 1/\omega$, не нарушающее одновременную пропорциональность частоте $D(\omega, \mathbf{q})$ и $\tilde{D}(\omega, \mathbf{q})$. Функция $C(\mathbf{q})$ определяется в силу (57) величинами $\Delta G_{\mathbf{k}}(\mathbf{q})$ и $e_{\mathbf{k}}^{(0)}(\mathbf{q})$, регулярными в точке перехода и не приводящими к аномальной дисперсии, а связанная с ней перенормировка $D(\omega, \mathbf{q})$ мала вблизи перехода из-за расходимости d(q) (см. ниже).

2. Из (35, 60, 62) следует соотношение, связывающее коэффициент диффузии со свойствами волновых функций:

$$\frac{1}{1+d(q)q^2} = A(\mathbf{q}) = \int d\mathbf{r} e^{-i\mathbf{q}\cdot\mathbf{r}} A(\mathbf{r})$$
(63)

Экспоненциальная локализация волновых функций приводит к экспоненциальному убыванию $A(\mathbf{r})$ при $r \to \infty$ (см. (61)) и конечности коэффициентов разложения по **q** правой части (63); ввиду изотропии в среднем нечетные степени **q** отсутствуют и d(q) оказывается регулярной функцией q^2 ; существенно, что она не содержит нецелых степеней q, естественным образом возникающих при диффузии по фрактальным структурам [41]. Из действительности $A(\mathbf{q})$ и неравенства $0 \le A(\mathbf{q}) \le 1$ [10, 24] следует действительность и положительность d(q).

3. Из соотношения (63) следуют ограничения на вид пространственной дисперсии $D(\omega, \mathbf{q})$, которая в локализованной фазе определяется разложением²

$$1 + d(q)q^{2} = \xi^{\beta_{0}} + \xi^{\beta_{1}}q^{2} + \xi^{\beta_{2}}q^{4} + \dots + \xi^{\beta_{n}}q^{2n} + \dots, \quad \beta_{0} = 0$$
(64)

где $\beta_n \geq 0$, т.к. вклады, связанные с атомным масштабом Λ^{-1} и соответствующие $\beta_n = 0$, заведомо существуют.

Различные оценки показывают, что сглаженное по осцилляциям поведение квадрата модуля типичной волновой функции имеет вид

$$|\psi(\mathbf{r})|^2 = \operatorname{const} \left\{ \begin{array}{cc} r^{-b}, & \Lambda^{-1} \stackrel{<}{\sim} r \stackrel{<}{\sim} \xi \\ \exp(-r/\xi), & r \stackrel{>}{\sim} \xi \end{array} \right.$$
(65)

Фактически такого поведения следует ожидать, исходя из теоремы Пуанкаре об аналитической зависимости решения дифференциального уравнения от параметра: если характеризовать индексом b ($0 \le b \le \infty$) поведение волновой функции в точке перехода, $|\psi_c(\mathbf{r})|^2 \sim r^{-b}$, то в окрестности перехода для небольших \mathbf{r} имеем $\psi(\mathbf{r}) \approx \psi_c(\mathbf{r})$ в силу теоремы Пуанкаре; последняя справедлива лишь для конечной области, макси-

 $^{^{2}}$ В разложениях типа (64) подразумеваютс произвольные коэффициенты, учет которых лежит за пределами точности проводимого анализа.

Рис. 3: Возможные конфигурации индексов β_n и γ_n для $\zeta < 0$ (a) и $\zeta > 0$ (б).

мальный размер которой определяетс масштабом ξ , на котором начинается экспоненциальное убывание $\psi(\mathbf{r})$. В силу (61) функция $A(\mathbf{r})$ имеет аналогичное поведение

$$A(\mathbf{r}) = \operatorname{const} \begin{cases} r^{-d-\zeta}, & \Lambda^{-1} \stackrel{<}{\sim} r \stackrel{<}{\sim} \xi \\ \exp(-r/\xi), & r \stackrel{>}{\sim} \xi \end{cases}$$
(66)

где const выбирается из условия A(q) = 1 при q = 0. Разложение A(q) в ряд

$$A(\mathbf{q}) = \xi^{\gamma_0} + \xi^{\gamma_1} q^2 + \xi^{\gamma_2} q^n + \dots + \xi^{\gamma_n} q^{2n} + \dots, \quad \gamma_0 = 0$$
(67)

и оценка возникающих в (61) интегралов показывают возможность лишь двух вариантов: (a) $\gamma_n = 2n$ для $\zeta < 0$; (б) $\gamma_n = \max\{0, 2n - \zeta\}$ для $\zeta > 0$. Подстановка (64, 67) в (63) дает связь $\gamma_n \subset \beta_n$,

$$\gamma_n = \max_{i+j+k+\ldots=n} \{\beta_i + \beta_j + \beta_k + \ldots\}$$
(68)

приводящая к двум возможностям для индексов β_n : (a) $\beta_1 = 2$, $\beta_n \leq 2n$ для $\zeta < 0$ (рис. 3,a); (б) $\beta_n = \max\{0, 2n - \zeta\}$ для $\zeta > 0$ (рис. 3,6). Для справедливости этих результатов существенно лишь то, что, если интеграл от $A(\mathbf{r})r^n$ расходится при $\xi \to \infty$ как ξ^a , то интеграл от $A(\mathbf{r})r^{n+m}$ должен расходиться как ξ^{a+m} , т.к. определяется областью $r \sim \xi$; конкретная аппроксимация (66) фактически не используется, но удобна для наглядной интерпретации результатов. Определение радиуса локализации ξ по известному коэффициенту диффузии в общем случае требует знания всех индексов β_n ; предполагавшийся в [18, 10] результат $D(\omega, 0) \sim (-i\omega)\xi^2$ справедлив лишь для $\zeta < 0$. Для диэлектрической проницаемости получим из (25)

$$\epsilon(0,0) = 1 + 4\pi e^2 N(\epsilon_F) d(0) = \begin{cases} \sim \xi^2, & \zeta < 0\\ \sim \xi^{2-\zeta}, & 0 < \zeta < 2\\ \sim 1, & \zeta > 2 \end{cases}$$
(69)

т.е. в рамках общего анализа возможна расходимость $\epsilon(0,0)$ по закону, отличному от ξ^2 (получаемому путем обрезани металлического поведения $\epsilon(0,\mathbf{q}) \sim q^{-2}$ на масштабе $q \sim \xi^{-1}$), и даже конечность $\epsilon(0,0)$ при $\xi \to \infty$ (см. дискуссию в [23, 40, 41]).

5. Основная структура теории.

Построение теории удобно начать с анализа локализованной фазы, получа металлическое состояние как результат ее неустойчивости.

5.1. Спектр оператора \hat{L} в локализованной фазе.

Пусть M – множество значений индекса s, нумерующего собственные значения λ_s оператора \hat{L} ; покажем, что в локализованной фазе справедливо разбиение

$$M = M_0 \oplus M_1 \oplus M_\infty \tag{70}$$

такое, что

$$\lambda_s = \begin{cases} \omega \nu_s, & s \in M_0 \\ \nu_s, & s \in M_1 , \\ \nu_s/\omega, & s \in M_\infty \end{cases}$$
(71)

(рис. 4). Множество M_0 не пусто, т.к. содержит элемент $\lambda_0 \sim \omega$, связанный с коэффициентом диффузии; убедимся, что он не единственный. Согласно (57) $\phi_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$ содержит особенность $\sim 1/\omega$, связанную с двумя диффузионными полюсами; в (38) эта особенность происходит от членов с $s \in M_0$; сравнивая эти два представления и учитывая, что диффузионный полюс при q = 0 соответствует члену с s = 0 в (38), получим

$$\frac{f_{\mathbf{k}-\mathbf{k}'+\mathbf{q}/2}^{(0)}(\mathbf{k}+\mathbf{k}')f_{\mathbf{k}'-\mathbf{k}+\mathbf{q}/2}^{(0)}(\mathbf{k}+\mathbf{k}')}{1+d(\mathbf{k}+\mathbf{k}')(\mathbf{k}+\mathbf{k}')^2} = i\sum_{s\in M_0'}\frac{f_{\mathbf{k}}^{(s)}(\mathbf{q})f_{\mathbf{k}'}^{(s)}(\mathbf{q})}{1+\nu_s(\mathbf{q})}$$
(72)

где M'_0 – множество M_0 без элемента s = 0. Ввиду расходимости d(q) при $\xi \to \infty$ (см. (64)), левая часть (72) содержит δ -образную особенность при $\mathbf{k}+\mathbf{k}' \to 0$, которой члены вида $f_{\mathbf{k}}f_{\mathbf{k}'}$ в правой части (72) при $\mathbf{k}' \to -\mathbf{k}$ в ничем не выделенной точке \mathbf{k} иметь не могут; то же относится к сумме их конечного числа. Пример фурье-разложени

$$\frac{1}{1+d(\mathbf{k}+\mathbf{k}')(\mathbf{k}+\mathbf{k}')^2} = \sum_{\mathbf{x}} A_{\mathbf{x}} e^{i(\mathbf{k}+\mathbf{k}')\cdot\mathbf{x}}$$
(73)

показывает возможность воспроизведения полюсного члена в (72) бесконечным числом членов вида $f_{\mathbf{k}}f_{\mathbf{k}'}$ и необязательность для этого полной системы функций (исключение из суммы в (73) членов с небольшими **x** приводит к появлению плавной составляющей, но не меняет сингулярности при $\mathbf{k} + \mathbf{k}' \rightarrow 0$). Из сказанного ясно, что множество M_0 содержит бесконечное число элементов, но, вообще говоря, не совпадает с M.

Рис. 4: Эволюция спектра собственных значений λ_s при переходе от \hat{L}_{sing} к \hat{L} , т.е. при "постепенном включении"
оператора \hat{L}_{reg} .

Садовским [10, 44] предложен критерий локализации, состоящий в появлении нетривиального решения однородного уравнения Бете – Солпитера в пределе $\omega \to 0$. Из сказанного выше следует более сильное утверждение: в точке перехода появляется бесконечное число таких решений.

Из (36, 12) следует разбиение оператора \hat{L}

$$\hat{L} = \hat{L}_{reg} + \hat{L}_{sing} \tag{74}$$

$$\hat{L}_{reg}\psi_{\mathbf{k}} \equiv \hat{M}\psi_{\mathbf{k}} + \Delta\Sigma_{\mathbf{k}}(\mathbf{q})\psi_{\mathbf{k}} - \frac{1}{N}\sum_{\mathbf{k}'}U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q})\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}'}(\mathbf{q})}\psi_{\mathbf{k}'}$$
(75)

$$\hat{L}_{sing}\psi_{\mathbf{k}} \equiv -\frac{1}{N}\sum_{\mathbf{k}'} U^{sing}_{\mathbf{k}\mathbf{k}'}(\mathbf{q})\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}'}(\mathbf{q})}\psi_{\mathbf{k}'}$$
(76)

В локализованной фазе диффузионный полюс в U^{sing} дает особенность $1/\omega$:

$$\hat{L} = \hat{L}_{reg} + \frac{\hat{L}_1}{\omega} \tag{77}$$

где в операторе \hat{L}_1 считается взятым предел $\omega \to 0$: члены более высокого порядка по ω включены в \hat{L}_{reg} . Из (76, 12, 72) получим представление для \hat{L}_1

$$\hat{L}_{1}\psi_{\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{k}'} \left(\sum_{s \in M'_{0}} \frac{g_{\mathbf{k}}^{(s)}(\mathbf{q})g_{\mathbf{k}'}^{(s)}(\mathbf{q})}{1 + \nu_{s}(\mathbf{q})} \right) \psi_{\mathbf{k}'}, \qquad g_{\mathbf{k}}^{(s)}(\mathbf{q}) = \frac{f_{\mathbf{k}}^{(s)}(\mathbf{q})\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}}{G_{\mathbf{k}+\mathbf{q}/2}^{R}G_{\mathbf{k}-\mathbf{q}/2}^{A}}$$
(78)

из которого ясно, что собственные векторы оператора \hat{L}_1 , соответствующие ненулевым собственным занчениям, лежат в подпространстве, построенном на векторах $g_{\mathbf{k}}^{(s)}(\mathbf{q})$, и их число равно числу элементов в M'_0 ; ненулевые собственные значения \hat{L}_1 соответствуют собственным значениям $\sim 1/\omega$ оператора \hat{L}_{sing} .

Общая картина такова (рис. 4): оператор L_{sing} имеет бесконечное число собственных значений ~ $1/\omega$ и бесконечное число собственных значений, равных нулю. При добавлении оператора $\hat{L}_{reg} \sim 1$ собственные значения ~ $1/\omega$ меняются мало и образуют множество M_{∞} оператора \hat{L} ; нулевые собственные значения становятся, вообще говоря, порядка единицы, образуя множество M_1 , но часть их остается ~ ω и входят в множество M_0 . Число элементов в M_{∞} равно числу элементов в M'_0 ; относительно множества M_1 никаких утверждений сделать нельзя, но дл дальнейшего это несущественно.

5.2. Связь
$$\hat{L}$$
 и \hat{L}_{sing} .

Введем спектральное представление для сингулярной части оператора $\hat{L}_{sing} = \hat{L}_1/\omega$

$$\hat{L}_1 = \sum_s |u_s\rangle \eta_s \langle u_s|, \qquad \eta_s = \begin{cases} 0 & s \in M_0 \oplus M_1 \\ \sim 1 & s \in M_\infty \end{cases}$$
(79)

и найдем связь \hat{L} и \hat{L}_{sing} , рассматривая \hat{L}_{reg} как возмущение. Для $s \in M_{\infty}$ можно пользоваться обычной теорией возмущений, т.к. все разности собственных значений $\sim 1/\omega$ и получается регулярное разложение по степеням ω

$$|e_s\rangle = |u_s\rangle + \omega \sum_{s' \neq s} \frac{\langle u_{s'} | \hat{L}_{reg} | u_s \rangle}{\eta_s - \eta_{s'}} | u_{s'} \rangle, \qquad \lambda_s = \frac{\eta_s}{\omega} + \langle u_s | \hat{L}_{reg} | u_s \rangle, \qquad s \in M_\infty$$
(80)

Для $s \in M_0 \oplus M_1$ ищем собственные функции \hat{L} в виде

$$|e\rangle = \sum_{s \in M_0 \oplus M_1} C_s |u_s\rangle + \omega \sum_{s \in M_\infty} D_s |u_s\rangle$$
(81)

где C_s , $D_s \sim 1$; подставляя в уравнение на собственные значения, получим систему уравнений для C_s и D_s , которую можно решать итерациями по ω . Исключая D_s , получим в первом порядке по ω

$$\sum_{s'\in M_0\oplus M_1} (\lambda_s \delta_{ss'} - T_{ss'}) C_{s'} = 0, \qquad s \in M_0 \oplus M_1$$
$$T_{ss'} = \langle u_s | \hat{L}_{reg} | u_{s'} \rangle - \omega \sum_{s''\in M_\infty} \frac{\langle u_s | \hat{L}_{reg} | u_{s''} \rangle \langle u_{s''} | \hat{L}_{reg} | u_{s'} \rangle}{\eta_{s''}}$$
(82)

т.е. обычное секулярное уравнение с учетом первой поправки от переходов в состояния с $s \in M_{\infty}$.

5.3. Механизм удовлетворения тождества Уорда.

Продемонстрируем сокращение в правой части тождества Уорда (13) сиингулярного вклада ~ $1/\omega$, связанного с диффузионным полюсом в $U_{\mathbf{kk}'}(\mathbf{q})$. В разд. 5.1, 5.2 не использовалась конкретная форма \hat{L}_{reg} ; для определения \hat{L}_{reg} в виде (75) с $\hat{M} \equiv 0$ имеем

$$\frac{1}{N}\sum_{\mathbf{k}}\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}e_{\mathbf{k}}^{(s)}(\mathbf{q}) = 0, \qquad s \in M_{\infty}$$
(83)

т.к. $\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}$ является точной собственной функцией \hat{L} , принадлежащей к множеству M_0 . В силу (80) отличие $|u_s\rangle$ от $|e_s\rangle$ для $s \in M_\infty$ имеет порядок ω при любом \hat{L}_{reg} , откуда

$$\frac{1}{N}\sum_{\mathbf{k}}\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}u_{\mathbf{k}}^{(s)}(\mathbf{q}) = O(\omega), \qquad s \in M_{\infty}$$
(84)

Сравнивая (76) и (79), имеем

$$-U_{\mathbf{k}\mathbf{k}'}^{sing}(\mathbf{q})\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}'}(\mathbf{q})} = \frac{1}{\omega}\sum_{s\in M_{\infty}}u_{\mathbf{k}}^{(s)}(\mathbf{q})\eta_{s}(\mathbf{q})u_{\mathbf{k}'}^{(s)}(\mathbf{q})$$
(85)

так что сингулярный вклад в правой части (13) с учетом (84) имеет вид

$$\frac{1}{N}\sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}^{sing} \Delta G_{\mathbf{k}'}(\mathbf{q}) = -\frac{1}{\omega} \sum_{s \in M_{\infty}} \frac{u_{\mathbf{k}}^{(s)}(\mathbf{q})\eta_{s}(\mathbf{q})}{\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})}} \frac{1}{N} \sum_{\mathbf{k}'} \sqrt{\Delta G_{\mathbf{k}'}(\mathbf{q})} u_{\mathbf{k}'}^{(s)}(\mathbf{q}) = \frac{O(\omega)}{\omega}$$
(86)

и особенность $1/\omega$ сокращается. По той же причине в правой части (13) не будет особенности при приближении к переходу в металлической фазе: в этом случае спектр оператора \hat{L} имеет ту же структуру (рис. 4) с заменой ω на D_0 – характерное значение коэффициента диффузии (разд. 6.2) и в правой части (86) получим $O(D_0)/D_0$.

5.4. Симметрийный подход.

В свойствах оператора \hat{L}_{sing} наглядным образом выражена симметрия системы:

(a) пространственная однородность в среднем позволяет ввести трехимпульсные обозначения (рис. 1,г) и обеспечивает возможность введени оператора \hat{L} вообще и оператора \hat{L}_{sing} в частности.

(б) изотропия в среднем в комбинации с инвариантностью относительно обращения времени обеспечивает самосопряженность \hat{L} и \hat{L}_{sing} и существование для них ортонормированных базисов из собственных векторов.

(в) инвариантность относительно обращения времени обеспечивает повышенную симметрию \hat{L}_{sing} , проявляющуюся в существовании бесконечного числа нулевых мод³.

Разбиение (77) представляет оператор \hat{L} в виде суммы оператора \hat{L}_{sing} с повышенной симметрией и регулярного оператора \hat{L}_{reg} общего вида: оно аналогично разбиению (1) и удобно дл симметрийного анализа. Ниже будет установлено условие на точку перехода и тем самым определено начало отсчета параметра τ .

Следуя соображениям разд. 1, рассмотрим реакцию системы на возмущение $\delta \hat{L}_{reg}$ общего вида. Не все изменения в системе будут при этом существенными. Разобьем изменение оператора \hat{L} на две части

$$\delta \hat{L} = \delta \hat{L}_{\lambda} + \delta \hat{L}_{e} \tag{87}$$

где $\delta \hat{L}_{\lambda}$ изменяет собственные значения, а $\delta \hat{L}_e$ – собственные функции \hat{L} ; для бесконечно малого $\delta \hat{L}$ такое разбиение производится тривиально – $\delta \hat{L}_{\lambda}$ и $\delta \hat{L}_e$ являются диагональной и недиагональной частями $\delta \hat{L}$ в представлении собственных векторов $|e_s\rangle$. Изменения типа $\delta \hat{L}_e$ не меняют собственных значений \hat{L} , а следовательно, – коэффициента диффузии $D(\omega, \mathbf{q})$, непосредственно связанного с $\lambda_0(\mathbf{q})$ и однозначно определяющего, где находится система – в локализованной фазе, в металлической фазе или в точке перехода. Ясно, что изменения $\delta \hat{L}_e$ не выводят систему из точки перехода, а

³Их наличие (см. разд.5.1) связано с существованием диффузионного полюса при $\mathbf{k} + \mathbf{k}' \to 0$, являющегося следствием соотношени (9) (разд.3). Магнитное поле или магнитные примеси устраняют этот полюс и делают конечными в пределе $\omega \to 0$ все $\lambda_s(\mathbf{q})$ из множества M'_0 (см.(72)), в результате чего у \hat{L}_{sing} остается лишь одна нулевая мода, соответствующая $\lambda_0(\mathbf{q})$.

лишь перемещают ее вдоль критической поверхности [1]. Такие перемещения не приводят к неаналитичности физических величин⁴ и могут не рассматриваться: критические индексы, получаемые при движении по нормали к критической поверхности и под произвольным ненулевым углом к касательной плоскости, совпадают. Аналогично, в возмущениях типа $\delta \hat{L}_{\lambda}$ можно не рассматривать часть, соответствующую изменению $\lambda_s \ c \ s \in M_1 \oplus M_{\infty}$.

Существенными являются лишь изменения собственных значений λ_s из множества M_0 , реакция которых на возмущение действительно нетривиальна. Пусть система находится в глубине локализованной фазы; малое возмущение $\delta \hat{L}_{reg}$ не выводит ее из состояния локализации и сохраняет пропорциональность $\lambda_s \sim \omega$ для $s \in M_0$. С другой стороны, возмущение $\delta \hat{L}_{reg}$ общего вида имеет ненулевые матричные элементы по собственным векторам $|e_s\rangle$ подпространства M_0 и должно приводить к малым, но не исчезающим при $\omega \to 0$, значениям λ_s . Разрешение этого противоречия приведет к установлению уравнения самосогласования (разд. 5.6).

5.5. "Вращение "сингулярного оператора.

Чтобы сформировать адекватный язык для дальнейшего обсуждения, рассмотрим следующую задачу о "вращении"сингулярного оператора.

Пусть для оператора \hat{L} справедливо разбиение (77), где $\omega \to 0$; оператор \hat{L}_{reg} действует в пространстве Ω , тогда как оператор \hat{L}_1 имеет ненулевые собственные значения ~ 1 в подпространстве Ω_1 , являющемся частью Ω ($\Omega = \Omega_0 \oplus \Omega_1$), что оправдывает сохранение в (77) двух членов разного порядка. Пусть производится возмущение $\delta \hat{L}_1$ оператора \hat{L}_1 ; если это возмущение – общего вида, то добавка $\delta \hat{L}_1/\omega$ к оператору \hat{L} рассматриваетс по обычной теории возмущений и приводит к поправкам ~ $1/\omega$. Пусть, однако, возмущение $\delta \hat{L}_1$ таково, что оператор $\hat{L}_1 + \delta \hat{L}_1$ обладает теми же свойствами, что и исходный оператор \hat{L}_1 : тогда размерность подпространства Ω_1 не меняется, а происходит лишь его "поворот" (при этом $\delta \hat{L}_1$ не имеет ненулевых матричных элементов в Ω_0). Требуется определить результат такого возмущения в подпространстве Ω_0 .

Пусть $\bar{\eta}_s$ и $|\bar{u}_s\rangle$ – собственные значения и собственные векторы исходного оператора \hat{L}_1 . В "верхнем" подпространстве Ω_1 оператором \hat{L}_{reg} можно пренебречь, а в "нижнем" (Ω_0) – нужно составить секулярное уравнение по матричным элементам $\langle \bar{u}_s | \hat{L}_{reg} | \bar{u}_{s'} \rangle$. Возмущение $\delta \hat{L}_1$ приводит к изменению $\delta u_s \sim \delta \hat{L}_1$ собственных векторов $|u_s\rangle$ и матрица секулярного уравнения определяется элементами

$$\langle u_s | \hat{L}_{reg} | u_{s'} \rangle = \langle \bar{u}_s + \delta u_s | \hat{L}_{reg} | \bar{u}_{s'} + \delta u_{s'} \rangle \equiv \langle \bar{u}_s | \hat{L}_{reg} + \delta \hat{V} | \bar{u}_{s'} \rangle \tag{88}$$

Качественный результат состоит в том, что ограничение вида оператора $\delta \hat{L}_1$ приводит к ослаблению его воздействия на нижнее подпространство: эффективное возмущение $\delta \hat{V}$ оказывается $\sim \delta \hat{L}_1$ вместо $\delta \hat{L}_1/\omega$ для оператора общего вида.

⁴На критической поверхности возможны сингулярности, связанные с изменением типа фазового перехода – например, превращением фазового перехода второго рода в фазовый переход первого рода; мы предполагаем, что система находится далеко от таких сингулярностей.

Изменение $|u_s\rangle$ в подпространстве Ω_1 можно вычислить по обычной теории возмущений, т.к. все разности собственных значений ~ 1 и возникает ряд по малому параметру

$$|u_s\rangle = |\bar{u}_s\rangle + \sum_{s' \neq s} \frac{\langle \bar{u}_{s'} | \delta L_1 | \bar{u}_s \rangle}{\bar{\eta}_s - \bar{\eta}_{s'}} | \bar{u}_{s'}\rangle, \qquad s \in \Omega_1$$
(89)

В подпространстве Ω_0 ввиду вырождения возможен произвольный выбор $|u_s\rangle$, совместимый с соотношениями ортогональности: в первом порядке по $\delta \hat{L}_1$ можно положить

$$|u_s\rangle = |\bar{u}_s\rangle - \sum_{s'\in\Omega_1} \frac{\langle \bar{u}_s | \delta \hat{L}_1 | \bar{u}_{s'} \rangle}{\bar{\eta}_{s'}} | \bar{u}_{s'} \rangle, \qquad s \in \Omega_0$$
⁽⁹⁰⁾

Подставляя (90) в (88), получим для матричных элементов эффективного возмущени

$$\langle \bar{u}_s | \delta \hat{V} | \bar{u}_{s'} \rangle = -\sum_{s'' \in \Omega_1} \frac{\langle \bar{u}_s | \delta \hat{L}_1 | \bar{u}_{s''} \rangle \langle \bar{u}_{s''} | \hat{L}_{reg} | \bar{u}_{s'} \rangle + \langle \bar{u}_{s'} | \delta \hat{L}_1 | \bar{u}_{s''} \rangle \langle \bar{u}_{s''} | \hat{L}_{reg} | \bar{u}_s \rangle}{\bar{\eta}_{s''}} \tag{91}$$

5.6. Уравнение самосогласования.

Теперь легко понять, как разрешается противоречие, констатированное в разд. 5.4: возмущение $\delta \hat{L}_{reg}$ приводит к изменению $\delta d(q)$ в коэффициенте диффузии (62), которое ввиду соотношени

$$\hat{L}_{sing}\psi_{\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{k}'} \frac{W(\mathbf{k}, \mathbf{k}', \mathbf{q})\psi_{\mathbf{k}'}}{-i\omega + D(\omega, \mathbf{k} + \mathbf{k}')(\mathbf{k} + \mathbf{k}')^2} =$$
$$= \frac{1}{(-i\omega)} \int \frac{d^d\tilde{q}}{(2\pi)^d} \frac{W(\mathbf{k}, -\mathbf{k} + \tilde{\mathbf{q}}, \mathbf{q})\psi_{-\mathbf{k} + \tilde{\mathbf{q}}}}{1 + d(\tilde{q})\tilde{q}^2} \equiv \frac{\hat{L}_1\psi_{\mathbf{k}}}{\omega}$$
(92)

вызывает изменение \hat{L}_1 :

$$\delta \hat{L}_1 \psi_{\mathbf{k}} = (-i) \int \frac{d^d \tilde{q}}{(2\pi)^d} \frac{\tilde{q}^2 \delta d(\tilde{q})}{[1 + d(\tilde{q})\tilde{q}^2]^2} W(\mathbf{k}, -\mathbf{k} + \tilde{\mathbf{q}}, \mathbf{q}) \psi_{-\mathbf{k} + \tilde{\mathbf{q}}}$$
(93)

Поворот подпространства M_{∞} оператора \hat{L}_{sing} создает в подпространстве M_0 эффективное возмущение $\delta \hat{V}$, которое в нулевом порядке по ω компенсирует $\delta \hat{L}_{reg}$.

Вводя в (82) малые изменения $\delta \hat{L}_{reg}$ и $\delta \hat{L}_1$ (последнее входит через изменение собственных функций (90)), имеем дл матрицы секулярного уравнени

$$T_{ss'} = \langle \bar{u}_s | \bar{T} + \delta \hat{L}_{reg} + \delta \hat{V} | \bar{u}_{s'} \rangle \qquad s, s' \in M_0 \oplus M_1 \tag{94}$$

где черта над буквой отмечает невозмущенные значения величин, а \bar{T} и $\delta \hat{V}$ определяются выражениями (82) и (91) (с заменой $\Omega_1 \to M_\infty, \Omega_0 \to M_0 \oplus M_1$); в членах $\sim \omega$

ограничиваемся нулевым порядком по приращениям. Выбор векторов $|\bar{u}_s\rangle$ в подпространстве $M_0 \oplus M_1$ произволен ввиду вырождения: выберем их так, чтобы диагонализовать матрицу \hat{T} – тогда они в нулевом порядке по ω совпадают с собственными векторами $|\bar{e}_s\rangle$ оператора \hat{L} (см. (81)); учитывая, что собственные значения матрицы \hat{T} совпадают с собственными значениями \hat{L} , имеем

$$T_{ss'} = \bar{\lambda}_s \delta_{ss'} + \langle \bar{e}_s | \delta \hat{L}_{reg} + \delta \hat{V} | \bar{e}_{s'} \rangle, \qquad s, s' \in M_0 \oplus M_1$$
(95)

Для бесконечно малых $\delta \hat{L}_{reg}$
и $\delta \hat{V}$ диагональные элементы матрицы \hat{T} определяют собственные значени
оператора \hat{L}

$$\lambda_s = \bar{\lambda}_s + \langle \bar{e}_s | \delta \hat{L}_{reg} + \delta \hat{V} | \bar{e}_s \rangle, \qquad s \in M_0 \oplus M_1 \tag{96}$$

а недиагональные – поправки к его собственным функциям; последние соответствуют возмущениям типа $\delta \hat{L}_e$ (разд. 5.4) и могут быть отброшены. При постоянных $|e_s\rangle$ в (96) можно перейти от бесконечно малых к конечным приращениям. Далее, можно не рассматривать изменений λ_s в подпространстве M_1 (разд. 5.4). Наконец, заметим, что задание $\lambda_0(\mathbf{q})$ для всех \mathbf{q} означает задание коэффициента диффузии, что в свою очередь определяет все $\lambda_s(\mathbf{q})$ с $s \in M'_0$, которые могут быть восстановлены по бинарному разложению (72). Таким образом, если уравнение (96) удовлетворяется для s = 0

$$-i[D(\omega,q)q^2 - \bar{D}(\omega,q)q^2] = \langle \bar{e}_0 | \delta \hat{L}_{reg} | \bar{e}_0 \rangle - 2 \sum_{s'' \in M_\infty} \frac{\langle \bar{e}_0 | \delta \hat{L}_1 | \bar{e}_{s''} \rangle \langle \bar{e}_{s''} | \hat{L}_{reg} | \bar{e}_0 \rangle}{\bar{\eta}_{s''}}$$
(97)

(использованы (55, 91, 80)), то оно автоматически удовлетворяется для всех *s* из M_0 . Нетрудно показать (см. Приложение), что разложение по **q** правой части (97) содержит лишь четные степени **q**, а члены $\sim q^0$ отсутствуют в каждом из двух слагаемых. Полага

$$\langle \bar{e}_0 | \delta \hat{L}_{reg} | \bar{e}_0 \rangle = -iq^2 \delta f(q) \tag{98}$$

и подставляя (93) в (97), получим

$$D(\omega, q) - \bar{D}(\omega, q) = \delta f(q) + \hat{Q}\delta d(q)$$
(99)

$$\hat{Q}\delta d(q) = \int \frac{d^d \tilde{q}}{(2\pi)^d} \frac{B(q, \tilde{q})\tilde{q}^2}{[1+d(\tilde{q})\tilde{q}^2]^2} \delta d(\tilde{q})$$
(100)

где $\delta f(q)$ и $B(q, \tilde{q})$ – регулярные функции общего вида от аргументов q^2 и \tilde{q}^2 . Величина $W(\mathbf{k}, \mathbf{k}', \mathbf{q})$ в (92) в силу (76, 12, 59) выражается через функции, регулярные в точке перехода, что позволяет при переходе от (92) к (93) варьировать только d(q). Уравнение (99) содержит коэффициент диффузии в правой и левой частях и заменяет уравнение самосогласования (16) теории Вольхардта – Вольфле.

5.7. Условие на точку перехода.

В локализованной фазе $D(\omega, q)$ и $\overline{D}(\omega, q)$ обращаютс в нуль при $\omega = 0$ и уравнение (99) определяет изменение $\delta d(q) = -\hat{Q}^{-1}\delta f(q)$ по заданному возмущению $\delta \hat{L}_{reg}$. Производя малые изменения $\delta \hat{L}_{reg}$, будем получать соответствующие изменения $\delta d(q)$, сохраняющие пропорциональность $D(\omega, q) \sim (-i\omega)$; такая ситуация сохраняется до тех пор, пока существует оператор, обратный \hat{Q} , т.е. пока все собственные значения \hat{Q} – ненулевые. Пусть при движении из глубины локализованной фазы в некоторой точке появляется нулевое собственное значение оператора \hat{Q} : как мы увидим ниже, такая точка соответствует физическим представлениям о переходе Андерсона.

Расходимость d(q) при $\xi \to \infty$ (разд. 4) означает (см. (100)), что в точке перехода оператор \hat{Q} обращается в нуль целиком или на некотором подпространстве. Поэтому при анализе нужно иметь в виду, что в точке перехода могут одновременно обращаться в нуль многие или даже все собственные значения μ_s оператора \hat{Q} , для каждого из которых удобно ввести критический индекс $\delta_s \geq 0$

$$\hat{Q}\phi_s(q) = \mu_s\phi_s(q), \qquad \mu_s \sim \tau^{\delta_s} \tag{101}$$

При $d(q) \to \infty$ изменения функции $B(q, \tilde{q})$ не могут сделать оператор \hat{Q} конечным и следовательно – не выводят систему из критической точки; они лишь перемещают ее вдоль критической поверхности и могут не рассматриваться. Для не зависящей от τ функции $B(q, \tilde{q})$ равенство

$$\int \frac{d^d q}{(2\pi)^d} B(q, \tilde{q})\phi(q) = 0 \tag{102}$$

не может выполняться ни для какой функции $\phi(q)$, т.к. соответствует наличию нулевой моды у транспонированного оператора \hat{Q}^T , а следовательно – у самого \hat{Q} , не только в точке перехода, но и в целой его окрестности.

6. Решение уравнения самосогласования.

6.1. Классификация возможных решений.

Уравнение самосогласования для металлической фазы может быть выведено лишь при конкретных предположениях о функциональном виде $D(\omega, q)$: поэтому удобно рассмотреть несколько случаев, исчерпывающих все возможности.

(а) Пусть среди показателей δ_s в (101) имеется максимальный (дл определенности δ_0), т.е. среди множества мягких мод одна мода является самой мягкой: тогда при приближении к переходу компонента const $\phi_0(q)$, содержащаяся в $\delta f(q)$, будет вызывать аномально большой отклик const $\tau^{-\delta_0}\phi_0(q)$ в функции $\delta d(q)$. Поэтому вблизи перехода решение можно искать в виде

$$D(\omega, q) = D_0[\phi_0(q) + \varphi(q)], \qquad \varphi(q) \ll \phi_0(q) \tag{103}$$

Для доминирования $\phi_0(q)$ при всех q необходимо условие $\phi_0(0) \neq 0$, которое и будет предполагаться.

(б) Пусть максимальное значение имеют несколько показателей $\delta_0 = \delta_1 = ... = \delta_p$, а среди функций $\phi_0(q), \phi_1(q), ..., \phi_p(q)$ хотя бы одна (напр. $\phi_0(q)$) отлична от нуля при q = 0: тогда вблизи перехода

$$D(\omega, q) = D_0[\phi_0(q) + C_1\phi_1(q) + \dots + C_p\phi_p(q) + \varphi(q)]$$
(104)

где $C_1 \sim C_2 \sim ... \sim C_p \sim 1, \ \varphi(q) << \phi_0(q).$

(в) Если для двух собственных функций при $q \to 0$ имеем $\phi_0(q) \sim q^{2n_0}$, $\phi_1(q) \sim q^{2n_1}$, причем $n_0 > n_1$, $\delta_0 > \delta_1$, то в разложении $D(\omega, q)$ по $\phi_s(q)$ требуется сохранение обеих функций: хотя коэффициент при $\phi_0(q)$ вблизи перехода растет быстрее, функция $\phi_1(q)$ доминирует при малых q. В общем случае возникает необходимость искать d(q) в виде разложения (64) с произвольными β_n .

Фактически, как мы увидим, реализуется случай (б) (разд. 6.3), но его анализ почти не отличается от более простого случая (а) (разд. 6.2), воспроизводящего решение самосогласованной теории локализации [18]. Анализ случая (в) требует специального математического аппарата (разд. 7) и его достаточно провести для локализованной фазы, т.к. решений, отличных от сводящихся к (б), не существует.

6.2. Случай одной доминирующей моды.

Ищем решение в виде (103). Определение операторов \hat{L}_1 и \hat{Q} в разд. 5 предполагало исследование зависимости лишь от ω в локализованной фазе; для исследования зависимости от ω и τ нужно учесть, что в окрестности перехода и в металлической фазе величина диффузионного знаменателя определяется параметром $D_0 >> \omega$. Производя разбиение

$$\frac{1}{-i\omega + D(\omega,q)q^2} = \frac{1}{D_0} \left\{ \frac{1}{\phi_0(q)q^2} - \frac{\varphi(q) - \frac{i\omega}{D_0}q^{-2}}{\phi_0(q)[-\frac{i\omega}{D_0} + \phi_0(q)q^2 + \varphi(q)q^2]} \right\}$$
(105)

запишем \hat{L}_{sing} в виде

$$\hat{L}_{sing} = \frac{\hat{\bar{L}}_1 + \delta \hat{L}_1}{D_0} \tag{106}$$

где \hat{L}_1 и $\delta \hat{L}_1$ соответствуют первому и второму члену в фигурных скобках (105). Подстановка $\delta \hat{L}_1$ в (97) приводит вместо (99) к уравнению

$$D(\omega,q) = \tau f(q) + \hat{Q}_R \varphi(q) - \frac{i\omega}{D_0} \hat{Q}_R q^{-2}$$
(107)

$$\hat{Q}_R\varphi(q) = \int \frac{d^d q}{(2\pi)^d} \frac{B(q,\tilde{q})}{\phi_0(\tilde{q})[-\frac{i\omega}{D_0} + \phi_0(\tilde{q})\tilde{q}^2]}\varphi(\tilde{q})$$
(108)

где мы пренебрегли $\varphi(q)$ в знаменателе (105), записали $\delta f(q)$ в виде $\tau f(q)$ и учли, что $\overline{D}(\omega,q) \equiv 0$, т.к. оператор \hat{L}_1 соответствует пределу $\omega, \tau \to 0$ (см. ниже рис. 5). Для однозначности разбиения (103) наложим на $\varphi(q)$ условие

$$(\bar{\phi}_0(q),\varphi(q)) = 0 \tag{109}$$

 $(\bar{\phi}_0(q)$ – собственная функция \hat{Q}_R^T , соответствующая собственному значению μ_0^R), выражающее требование, что $\varphi(q)$ "не содержит в себе" компоненты const $\cdot \phi_0(q)$. Умножая (107) скалярно на $\bar{\phi}_0(q)$, получим

$$D_0(\bar{\phi}_0, \phi_0) = \tau(\bar{\phi}_0, f) - \frac{i\omega}{D_0}(\bar{\phi}_0, \hat{Q}_R q^{-2})$$
(110)

где последний член отличен от нуля ввиду невозможности (102), а член с $\varphi(q)$ отсутствует ввиду $(\bar{\phi}_0, \hat{Q}_R \varphi) = (\varphi, \hat{Q}_R^T \bar{\phi}_0) = \mu_0^R(\varphi, \bar{\phi}_0) = 0$. В подробной записи (110) имеет структуру

$$D_{0} = A\tau - \frac{i\omega}{D_{0}} \int \frac{d^{d}\tilde{q}}{(2\pi)^{d}} \frac{B(\tilde{q})}{\phi_{0}(\tilde{q})\tilde{q}^{2}[-\frac{i\omega}{D_{0}} + \phi_{0}(\tilde{q})\tilde{q}^{2}]} \varphi(\tilde{q})$$
(111)

При d > 4 интеграл определяется большими \tilde{q} и можно пренебречь $-i\omega/D_0$ в знаменателе; при d < 4 интеграл определяется малыми \tilde{q} и можно положить $\tilde{q} = 0$ в медленно меняющихся функциях $B(\tilde{q})$ и $\phi_0(\tilde{q})$, устремить размеры области интегрирования к бесконечности и провести обезразмеривание. Результат для обоих случаев можно записать в едином виде

$$D_0 = A\tau + B\left(-\frac{i\omega}{D_0}\right)^{1/2\nu} \tag{112}$$

введя индекс ν согласно (18). Уравнение (112) имеет два типа решений: в металлической фазе $D_0 = \text{const} \neq 0$ при $\omega \to 0$ и (112) дает $D_0 = A\tau$ в соответствии со значением s = 1 для индекса проводимости (18); в диэлектрической фазе $D_0 = (-i\omega)\xi^2$ (в рассматриваемом случае конфигурация индексов β_n соответствует случаю рис. 3,а) и $\xi \sim \tau^{-\nu}$ в соответствии с определением индекса радиуса локализации. Уравнение (112) и значени индексов *s* и ν совпадают с полученными в [18].

Для случая d > 4 уравнение (112) сводится к квадратному и легко проследить, как происходит отбор решений (рис. 5). При $\omega = 0$ имеется пересечение термов $D_0 = A\tau$ и $D_0 = 0$ (рис. 5, а); при конечных ω вырождение снимается на величину $\sim \omega^{1/2\nu+1}$ (рис. 5,б), причем из двух ветвей лишь одна удовлетворяет условию $\operatorname{Re} D(\omega, q) \ge 0$, следующему из (31, 25) и неотрицательности $\langle \rho_E \rho_{E+\omega} \rangle_{\mathbf{q}}$; выбирая указанную ветвь и устремл ω к нулю, получим конечность D_0 лишь по одну сторону перехода – для определенности, при $\tau > 0$ (рис. 5,в).

Для функции $\varphi(q)$ имеем из (107)

$$\varphi(q) = \hat{Q}_R^{-1} \hat{P}_\perp \left(D_0 \phi_0(q) - \tau f(q) + \frac{i\omega}{D_0} \hat{Q}_R q^{-2} \right)$$
(113)

где \hat{P}_{\perp} – оператор проектирования на подпространство, ортогональное к $\bar{\phi}_0(q)$. Ввиду $\hat{Q}_R \sim 1$ (см. ниже) получим $\varphi(q) \sim \max\{|\tau|, \omega^{1/(2\nu+1)}\}$, что оправдывает предположение $\varphi(q) << \phi_0(q)$. Для d > 2 интеграл в (108) определяется большими \tilde{q} для любой регулярной функции $\varphi(\tilde{q})$ и все собственные значения μ_s^R оператора \hat{Q}_R оказываются порядка единицы; дл оператора \hat{Q} из разд. 5 (отличающегося от \hat{Q}_R в локализованной

Рис. 5: Эволюция спектра собственных значений λ_s при переходе от \hat{L}_{sing} к \hat{L} , т.е. при "постепенном включении"
оператора \hat{L}_{reg} .

фазе множителем ξ^{-2}) это означает обращение всех μ_s в нуль по одинаковому закону. Следовательно, предположение об одной доминирующей моде не подтверждается результатом и фактически имеет место случай (б) разд. 6.1.

6.3. Случай нескольких доминирующих мод.

Ищем $D(\omega, q)$ в виде (104), где выбор функции $\varphi(q)$ зафиксирован условиями $(\bar{\phi}_0, \varphi) = 0, C_i = \operatorname{const}(\tau), \varphi \to 0$ при $\tau \to 0$ (если требовать ортогональности φ к $\bar{\phi}_1, ..., \bar{\phi}_p$, то коэффициенты C_i оказываются функциями τ , что приводит к неудобствам при определении оператора \bar{L}_1 , соответствующего пределу $\omega, \tau \to 0$ и не зависящего от τ). Используя вместо ϕ_0 "правильную"линейную комбинацию $\phi_0 + C_1\phi_1 + ... + C_p\phi_p$ и повторяя рассуждения разд. 6.2., придем к уравнениям типа (107, 108); умножая первое скалярно на $\bar{\phi}_0$, придем к (112) со всеми вытекающими следствиями. По-прежнему, все собственные значения Q обращаются в нуль по одинаковому закону и в (104) следует считать $p \to \infty$, т.е. включать в правильную линейную комбинацию все $\phi_s(q)$; умножая аналог уравнени (107) скалярно на $\bar{\phi}_1, \bar{\phi}_2, ...,$ получим систему уравнений для определения C_i

$$D_0 C_i(\bar{\phi}_i, \phi_i) = \tau(\bar{\phi}_i, f) + \mu_i^R(\bar{\phi}_i, \varphi) - \frac{i\omega}{D_0}(\bar{\phi}_i, \hat{Q}_R q^{-2}), \qquad i = 1, 2, \dots$$
(114)

где $\mu_i^R \sim 1$. Функция $\varphi(q)$ оказывается $\sim \tau$ и при $\omega \to 0$ имеет излом при $\epsilon = 0$, т.е.

$$\varphi(q) = \tau \begin{cases} B_1^M \phi_1(q) + B_2^M \phi_2(q) + \dots, & \tau > 0\\ B_1^D \phi_1(q) + B_2^D \phi_2(q) + \dots, & \tau < 0 \end{cases}$$
(115)

Подставляя (115) в (114), получим в пределе $\omega \to 0$ уравнени

$$D_0 C_i(\bar{\phi}_i, \phi_i) = \tau(\bar{\phi}_i, f) + \tau \mu_i^R B_i^M(\bar{\phi}_i, \phi_i)$$

$$0 = \tau(\bar{\phi}_i, f) + \tau \mu_i^R B_i^D(\bar{\phi}_i, \phi_i) + \xi^{-2}(\bar{\phi}_i, \hat{Q}_R q^{-2})$$
(116)

соответственно для металлической и диэлектрической фазы. При любых C_i уравнения (116) могут быть удовлетворены соответствующим выбором B_i^M и B_i^D , т.е. коэффициенты правильной линейной комбинации совершенно произвольны; смысл этой неоднозначности выяснится в разд. 8.

Окончательно, $D(\omega, q)$ вблизи перехода имеет вид

$$D(\omega, q) = D_0 \bar{d}(q), \qquad D_0 \sim \begin{cases} \tau, & \tau >> \omega^{1/(2\nu+1)} \\ \omega^{1/(2\nu+1)}, & |\tau| \stackrel{<}{\sim} \omega^{1/(2\nu+1)} \\ (-i\omega)|\tau|^{-2\nu}, & -\tau >> \omega^{1/(2\nu+1)} \end{cases}$$
(116a)

где функция $\bar{d}(q) \equiv d(q)/d(0)$ меняется на масштабе $q \sim \Lambda$; этот результат, полученный для определения $D(\omega, q)$ согласно (55), справедлив и для наблюдаемого коэффициента диффузии $D_{obs}(\omega, q)$, т.к. перенормировки, связанные с функциями $B(\mathbf{q})$, $C(\mathbf{q})$ в (53, 54) либо не содержат аномальной дисперсии, либо малы.

Рис. 6: – построение верхней касательной в точке x_k к множеству точек (n, α_n) ; б – выпуклая огибающая $\tilde{\alpha}(x)$ для последовательности α_n .

7. Единственность решения.

В этом разделе уравнение самосогласования (99) в локализованной фазе исследуется в предположении для d(q) разложения (64) общего вида.

7.1. Метод опорных точек.

В дальнейшем большую роль играют интегралы вида

$$I_k = \int \frac{d^d q}{(2\pi)^d} \frac{q^{2k}}{\xi^{\alpha_0} + \xi^{\alpha_1} q^2 + \dots + \xi^{\alpha_n} q^{2n} + \dots}, \qquad \alpha_n \ge 0$$
(117)

асимптотика которых при $\xi \to \infty$ вычисляетс методом "опорных точек". Подберем подходящее обезразмеривание, дела замену $q = \xi^{-b}t$ и вынося из знаменателя общий множитель ξ^a , в результате чего индексы α_s преобразуются в $\alpha_s - a - 2sb$; выбором a и b занулим индексы в двух членах знаменателя (117), сделав остальные отрицательными. Тогда

$$I_k = \xi^{-a-b(d+2k)} \int \frac{d^d t}{(2\pi)^d} \frac{t^{2k}}{t^{2s_1} + t^{2s_2} + \sum_{s \neq s_1, s_2} \xi^{\alpha_s - a - 2sb} t^{2s}} \sim \xi^{-a-b(d+2k)}$$
(118)

если s_1 и s_2 удовлетворяют условию $2s_1 < d + 2k < 2s_2$, обеспечивающему сходимость интеграла после отбрасывания суммы по s (во избежание неопределенностей считаем d нецелым, производя предельный переход к целым d в окончательных результатах). Описанная процедура допускает простую геометрическую интерпретацию⁵. Построим график последовательности α_n (рис. 6,а), отметим на оси абсцисс точку $x_k = (d + 2k)/2$ и построим к множеству точек (n, α_n) верхнюю касательную в точке x_k : если наглядно представлять точки вбитыми гвоздями, то такое построение осуществляется

⁵Аналогичные построения возникают при исследовании уравнения Бюргерса [45].

при помощи "палки" (сплошна линия на рис. 6,а) и "веревки" (пунктир). Номера точек, на которые "ложится" верхняя касательная, определяют s_1 и s_2 , а ее уравнение $\alpha = a + 2bn$ – параметры a и b.

Строя ломаную линию, состоящую из отрезков верхних касательных (рис. 6,б), получим выпуклую огибающую $\tilde{\alpha}(x)$, в терминах которой результат (118) принимает вид

$$I_k \sim \xi^{-\tilde{\alpha}(x_k)}, \qquad x_k = \frac{d+2k}{2} \tag{119}$$

По построению функция $\tilde{\alpha}(x)$ являетс возрастающей и выпуклой (в нестрогом смысле); для ограниченной последовательности α_n с максимумом при $n = n_0$ $\tilde{\alpha}(x)$ строго возрастает при $x < n_0$ и постоянна при $x > n_0$ (при $x_k > n_0$ опорная точка s_2 уходит на бесконечность). Для строго возрастающей и строго выпуклой последовательности α_n из (119) вытекают следующие неравенства

$$I_0 >> I_1 >> I_2 >> \dots >> I_k >> I_{k+1} >> \dots$$
 (120)

$$I_{k_1}I_{k_2} \ll I_{k_1-1}I_{k_2+1} \ll I_{k_1-2}I_{k_2+2} \ll \dots, \qquad k_1 \le k_2$$
(121)

Для произвольной последовательности α_n часть сильных неравенств заменяется на слабые; в дальнейшем для определенности исходим из сильных неравенств в (120, 121), имея в виду, что по порядку величины результаты сохраняются в общем случае.

7.2. Симметризация оператора \hat{Q} .

Положим в (99) $\delta f(q) \equiv \delta \tau f(q)$ и раскладывая в ряды все функции

$$f(q) = \sum_{k=0}^{\infty} f_k q^{2k}, \qquad \delta d(q) = \sum_{k=0}^{\infty} \delta d_k q^{2k}, \qquad B(q, \tilde{q}) = \sum_{k,k'=0}^{\infty} B_{kk'} q^{2k} \tilde{q}^{2k'}$$
(122)

получим в пределе $\omega \to 0$

$$-\delta\tau f_k = \sum_{k'=0}^{\infty} B_{kk'} \sum_{k''=0}^{\infty} I_{k'+k''} \delta d_{k''}$$
(123)

где введены обозначения для интегралов

$$I_k = \int \frac{d^d q}{(2\pi)^d} \frac{q^{2k+2}}{[1+d(q)q^2]^2}$$
(124)

Матрица $\hat{B} = ||B_{kk'}||$ и столбец $\hat{f} = ||f_k||$ – общего вида с элементами ~ 1; теми же свойствами обладает столбец $\hat{f} = \hat{B}^{-1}\hat{f}$. Умножа (123) на \hat{B}^{-1} , получим

$$-\delta\tau \begin{vmatrix} f_0 \\ \tilde{f}_1 \\ \tilde{f}_2 \\ \vdots \end{vmatrix} = \begin{vmatrix} I_0 & I_1 & I_2 & \dots \\ I_1 & I_2 & I_3 & \dots \\ I_2 & I_3 & I_4 & \dots \\ \dots & \dots & \dots & \dots \end{vmatrix} \begin{vmatrix} \delta d_0 \\ \delta d_1 \\ \delta d_2 \\ \vdots \end{vmatrix}$$
(125)

т.е. уравнение типа (99), но с симметризованной матрицей оператора \hat{Q} .

При использовании для d(q) разложения (64) интегралы (124) приводятся к виду (117) с индексами

$$\alpha_n = \max_{\{k_i\}} (\beta_{k_1} + \beta_{k_2})_{k_1 + k_2 = n} \tag{126}$$

и лишним q^2 в числителе. Индексы β_n неотрицательны и растут не быстрее, чем 2n (разд. 4), что обеспечивает условие $\alpha_n \ge 0$ и возможность построения выпуклой огибающей.

7.3. Обращение оператора \hat{Q} .

Ограничивая верхний предел суммирования в (122) некоторым конечным n, получим в (125) систему уравнений конечного порядка, которую можно решать по правилу Крамера. Детерминант матрицы Q в (125) состоит из всевозможных произведений вида

$$I_{k_0}I_{k_1+1}I_{k_2+2}...I_{k_n+n} \tag{127}$$

где $k_0, k_1, ..., k_n$ есть перестановка 0, 1, ..., n. Выделим в (125) пару $I_{k_s+s}I_{k'_s+s'}$ с s < s'; если $k_s > k_{s'}$, то из (120, 121) следует, что

$$I_{k'_{s}+s}I_{k_{s}+s'} >> I_{k_{s}+s}I_{k_{s'}+s'} \tag{128}$$

и произведение (127) может быть увеличено перестановкой k_s и $k_{s'}$, не затрагивающей остальных k_i . Ясно, что в максимальном из произведений (127), определяющем порядок величины детерминанта Q, должно быть $k_0 < k_1 < \ldots < k_n$, откуда $k_0 = 0, k_1 = 1, \ldots, k_n = n$ и следовательно

$$detQ \sim I_0 I_2 I_4 \dots I_{2n} \tag{129}$$

Минор Q_j^i матрицы Q, получаемый вычеркиванием i-й строки и j-го столбца, состоит из всевозможных произведений вида

$$I_{k_0}I_{k_1+1}...I_{k_{j-1}+(j-1)}I_{k_{j+1}+(j+1)}...I_{k_n+n}$$
(130)

где $k_0, k_1, ..., k_{j-1}, k_{j+1}, ..., k_n$ есть перестановка 0, 1, ..., i-1, i+1, ..., n; в максимальном произведении эти две последовательности совпадают. Нетрудно проверить, что

$$Q_j^0 << Q_j^1 << \dots << Q_j^n \sim I_0 I_2 \dots I_{2j-2} I_{2j+1} I_{2j+3} \dots I_{2n-1}$$
(131)

Решая (125) по правилу Крамера и используя (129, 131), получим

$$\delta d_k \sim \delta \tau \frac{1}{I_{2k}} \frac{I_{2k+1} I_{2k+3} \dots I_{2n-1}}{I_{2k+2} I_{2k+4} \dots I_{2n}}, \qquad k = 0, 1, \dots, n$$
(132)

и с учетом (119) результат выражается через последовательность α_k . Для выпуклой последовательности β_k из (126) имеем $\alpha_{2m} = 2\beta_m$, $\alpha_{2m+1} = \beta_m + \beta_{m+1}$, что можно записать в виде $\alpha_k = 2\beta_{k/2}$, если доопределить последовательность β_k в полуцелых точках

соотношением $\beta_{k+1/2} = (\beta_k + \beta_{k+1})/2$; поскольку значени $\beta_{k+1/2}$ лежат на выпуклой огибающей $\tilde{\beta}(x)$, то дл произвольных x получим

$$\tilde{\alpha}(x) = 2\tilde{\beta}(x/2) \tag{133}$$

Этот результат сохраняется для произвольной последовательности β_k : для доказательства нужно ввести вспомогательную выпуклую последовательность $\bar{\beta}_k = \tilde{\beta}(k) \geq \beta_k$ и заметить, что замена β_k на $\bar{\beta}_k$ не меняет величину интегралов I_k . Для выпуклой β_k имеем

$$\hat{\beta}(k+\varphi) = (1-\varphi)\beta_k + \varphi\beta_{k+1}, \qquad 0 \le \varphi \le 1$$
(134)

что позволяет перейти от выпуклой огибающей непосредственно к значениям β_k ; в общем случае (134) верно с заменой β_k на $\bar{\beta}_k$. Полага

$$d \equiv 4m + 4\psi, \qquad m - \text{целое}, \quad 0 \le \psi \le 1 \tag{135}$$

получим из (132, 119, 133, 134) при $n \to \infty$

$$\delta d_k \sim \delta \tau \xi^{S(k)}, \qquad S(k) = \begin{cases} (1 - 2\psi)\bar{\beta}_{m+k} + 2\psi\bar{\beta}_{m+k+1} + \bar{\beta}_{\infty}, & 0 \le \psi \le \frac{1}{2} \\ \bar{\beta}_{m+k+1} + \bar{\beta}_{\infty}, & \frac{1}{2} \le \psi \le 1 \end{cases}$$
(136)

где предел $\bar{\beta}_{\infty} = \lim_{k \to \infty} \bar{\beta}_k$ считается конечным в соответствии с соображениями следующего раздела.

7.4. Невозможность неограниченного роста β_k .

Для неограниченной последовательности β_k выпуклая огибающа $\hat{\beta}_k$ строго возрастает и иерархия (120) продолжается до бесконечности, что в силу (132) означает расходимость δd_k при $n \to \infty$. Для выяснения причины расходимости заметим, что недиагональная часть матрицы Q в (125) при условиях (120, 121) может рассматриваться как возмущение; ее собственные значения в главном порядке равны I_{2k} и при $k \to \infty$ сгущаются вблизи нуля. При доказательстве теорем Фредгольма показывается [46], что при обрыве разложений (122) на *n*-м члене воспроизводятся (*n*+1) максимальных собственные значения и отклик системы на малое возмущение расходится. Такая ситуация имеет место не только в точке перехода, но и в целой ее окрестности (пока $\xi >> \Lambda^{-1}$), и является нефизической, т.к. система неустойчива относительно бесконечно малого возмущения общего вида.

Этот вывод имеет важные качественные следствия, т.к. исключает случаи, соответствующие рис. 3,6, и доказывает однозначность результатов $D(\omega, 0) \sim (-i\omega)\xi^2$ и $\epsilon(0,0) \sim \xi^2$ в локализованной фазе.

7.5. Изменение d(q) при приближении к переходу.

Раскладывая числитель в (92) по степеням \tilde{q}^2 , получим интегралы, вычисляемые методом опорных точек и имеющие соответственно порядок $\xi^{-\tilde{\beta}(x_0)}, \xi^{-\tilde{\beta}(x_1)}$ и т.д. Положим

$$\hat{L}_{sing}(\xi) = \frac{\hat{L}_1(\xi)}{(-i\omega)\xi^{\tilde{\beta}(x_0)}} = \frac{\hat{\bar{L}}_1 + \xi^{-y_1}\hat{l}_1 + \xi^{-y_2}\hat{l}_2 + \dots}{(-i\omega)\xi^{\tilde{\beta}(x_0)}}$$
(137)

где члены $\xi^{-y_k} \hat{l}_k$ возникают от высших членов разложения по \tilde{q}^2 и от поправок к основному скейлингу в методе опорных точек. Изменение определения \hat{L}_1 по сравнению с (77) позволяет выделить главную сингулярность при $\tau \to 0$ и ввести оператор \hat{L}_1 , соответствующий пределу $\omega, \tau \to 0$.

В (137) предполагалось постоянство β_k ; пусть теперь изменение $\delta \tau$ параметра τ вызывает изменения $\delta \xi$ и $\delta \beta_k$ величин ξ и β_k . Тогда

$$\hat{L}_{sing}(\xi + \delta\xi) = \frac{\hat{L}_1(\xi + \delta\xi)}{(-i\omega)(\xi + \delta\xi)^{\tilde{\beta}(x_0)}} = \frac{\hat{L}_1 + (\xi + \delta\xi)^{\tilde{\beta}(x_0)}(-i)\delta\hat{L}_1 + (\xi + \delta\xi)^{-y_1}\hat{l}_1}{(-i\omega)(\xi + \delta\xi)^{\tilde{\beta}(x_0)}}$$
(138)

где сохранен лишь член с минимальным индексом y_1 , а $\delta \hat{L}_1$ определяется выражением (93) с $\delta d(q)$ вида

$$\delta d(q) = \sum_{k=0}^{\infty} q^{2k} \xi^{\beta_{k+1}} \ln \xi \delta \beta_{k+1}$$
(139)

Используя в качестве $\delta \hat{L}_1$ в (97) величину $\hat{L}_1(\xi + \delta \xi) - \hat{L}_1(\xi)$, получим вместо (99)

$$\delta D(\omega, q) = \delta \tau f(q) + \xi^{-y_1 - 1} \delta \xi R(q) + \xi^{\tilde{\beta}(x_0)} \hat{Q} \delta d(q), \qquad (140)$$

где $\delta D(\omega, q) \to 0$ при $\omega \to 0$. При точном скейлинге, когда $\delta d(q) \equiv 0$, первые два члена в правой части компенсируют друг друга, откуда $y_1 = 1/\nu$; в общем случае они – одного порядка. Обращая оператор \hat{Q} согласно разд. 7.3 и сравнивая с (139), имеем

$$\delta d_k \sim \delta \tau \xi^{-\tilde{\beta}(x_0) + S(k)} \sim \xi^{\beta_{k+1}} \ln \xi \delta \beta_{k+1} \tag{141}$$

откуда

$$\delta\beta_k \sim \frac{\delta\tau}{\ln\xi} \xi^{\gamma_k} \tag{142}$$

где γ_k удобно записать в виде

$$\gamma_{k} = \begin{cases} (\bar{\beta}_{k} - \beta_{k}) + (\bar{\beta}_{\infty} - \tilde{\beta}(x_{0})) + (\bar{\beta}_{m+k} - \bar{\beta}_{k}), & \frac{1}{2} \leq \psi \leq 1\\ (\bar{\beta}_{k} - \beta_{k}) + (\bar{\beta}_{\infty} - \tilde{\beta}(x_{0})) + (1 - 2\psi)(\bar{\beta}_{m+k-1} - \bar{\beta}_{k}) + 2\psi(\bar{\beta}_{m+k} - \bar{\beta}_{k}), & 0 \leq \psi \leq \frac{1}{2}, m \geq 1\\ (\bar{\beta}_{k} - \beta_{k}) + (\bar{\beta}_{\infty} - \bar{\beta}_{k}) + (1 - 2\psi)(\bar{\beta}_{k-1} - \bar{\beta}_{0}) + 2\psi(\bar{\beta}_{k} - \bar{\beta}_{1}), & 0 \leq \psi \leq \frac{1}{2}, m = 0\\ (143) \end{cases}$$

Все комбинации в круглых скобках неотрицательны и $\gamma_k \geq 0$. При фиксированном ξ определение индексов β_k в (64) неоднозначно: коэффициент при q^{2k} может быть записать как $C_k \xi^{\beta k}$ и изменение β_k эквивалентно изменению C_k . Конкретная конфигурация

индексов β_k имеет смысл лишь при условии, что она не меняется при изменении τ . Согласно (142), при $\gamma_k > 0$ происходит существенное изменение индексов; лишь при $\gamma_k \equiv 0$ изменения $\delta\beta_k \sim \delta\tau/\ln\xi$ могут быть включены в изменения C_k , которые малы для малого интервала изменени τ . Условие $\gamma_k \equiv 0$ требует зануления всех комбинаций в круглых скобках (142) и фиксирует единственную конфигурацию индексов, которая различна для d > 2 и d < 2:

$$\beta_1 = \beta_2 = \beta_3 = \dots, \qquad d > 2 \tag{144}$$

$$\beta_0 = \beta_1 = \beta_2 = \dots, \qquad d < 2$$

По определению, $\beta_0 = 0$ и при d < 2 все индексы равны нулю, что означает отсутствие расходимости d(q) и сохранение локализованной фазы для всех τ [21]. Для d > 2переопределением ξ все индексы можно сделать равными 2 в соответствии с требованием $\beta_1 = 2$ (рис. 3,а); все собственные значения \hat{Q} меняются по одному закону и мы возвращаемся к случаю (б) разд. 6.1.

8. Изменение симметрии при переходе Андерсона.

Изменение \hat{L}_{reg} вызывает поворот подпространства M_{∞} оператора \hat{L}_{sing} , что аналогично повороту вектора намагниченности **M** при изменении магнитного поля **H** в ферромагнетике. Эта аналогия оформлена в виде табл. 1; дадим некоторые пояснения⁶.

	Таблица 1.
Аналогия между ферромагнетиком и	и неупорядоченной системой

Ферромагнетик	Неупорядоченная система
Ориентация магнитного поля Н:	Оператор \hat{L}_{reg} :
компоненты орта	коэффициенты f_n
Ориентация намагниченности М:	Подпространство M_{∞} оператора \hat{L}_{sing}
компоненты орта	коэффициенты d_n
Квадрат модуля поля H^2	Частота ω
Квадрат модуля намагниченности M^2	Коэффициент диффузии D_0
Тензор магнитной	Оператор \hat{Q}^{-1}
восприимчивости χ_{ij}	
Парамагнитная фаза	Локализованная фаза
Ферромагнитная фаза	Металлическая фаза
Точка Кюри	Точка перехода Андерсона
$T - T_c$	Расстояние до перехода τ

⁶Похожая, но не совпадающая аналогия обсуждалась в [41].

Операторы \hat{L}_{reg} и \hat{L}_{sing} имеют много степеней свободы, значительная часть которых не входит в уравнение самосогласования; существенные степени свободы определяются функциями f(q) и $\bar{d}(q)$ (см. (116,a)), коэффициенты разложения которых

$$f(q) = 1 + f_1 q^2 + \dots + f_n q^{2n} + \dots, \qquad \bar{d}(q) = 1 + d_1 q^2 + \dots + d_n q^{2n} + \dots$$
(145)

можно рассматривать как компоненты единичных ортов $\hat{\mathbf{H}}$ и $\hat{\mathbf{M}}$: в локализованной фазе их малые изменения связаны оператором \hat{Q} , обратный которому аналогичен тензору магнитной восприимчивости χ_{ij} .

Конечность частоты ω размывает переход аналогично конечности магнитного поля в ферромагнетике; в локализованной фазе $D_0 \sim \omega$, в металлической – $D_0 = \text{const}(\omega)$, что аналогично появлению спонтанной намагниченности: т.е. величины D_0 и ω аналогичны $|\mathbf{M}|$ и $|\mathbf{H}|$. Ввиду качественного характера аналогии такое отождествление неоднозначно: например, в качестве аналога D_0 можно взять любую монотонную функцию $F(|\mathbf{M}|)$, равную нулю при $|\mathbf{M}| = 0$; как функция самой намагниченности она имеет вид $F(M^2)$ ввиду необходимости составить скаляр из вектора. Наконец, для малых M^2 ее можно разложить в ряд, получая аналогию D_0 с M^2 ; аналогично, для ω естественным аналогом является H^2 .

В найденной аналогии существенно, что: (а) число компонент вектора **M** бесконечно ввиду бесконечного числа коэффициентов разложени d_n ; (б) ферромагнетик оказывается изотропным. Последнее ясно из того, что все собственные значения "тензора восприимчивости" \hat{Q}^{-1} расходятся в точке перехода по одинаковому закону и для малых изменений d_n и f_n могут быть сделаны равными не зависящим от τ линейным преобразованием. Аналог коллинеарности **M** и **H** в изотропном ферромагнетике существует с некоторой оговоркой: дело в том, что в случае перехода Андерсона "вектор $|\mathbf{M}|$ "и "вектор $|\mathbf{H}|$ "находятся в разных подпространствах и нет естественного способа установить взаимную ориентацию последних; поэтому при заданной функции f(q) выбор d(q) произволен (разд. 6.3) в соответствии с произволом в выборе базисов в двух подпространствах. При специальном выборе $B_i^M \equiv 0$ в (115) имеем $f(q) \equiv \bar{d}(q)$, что соответствует выбору "правильной"взаимной ориентации базисов.

Модель изотропного ферромагнетика с числом компонент $n \to \infty$ хорошо известна в теории фазовых переходов и является основой дл 1/*n*-разложения [1]. Ее критические индексы известны точно – в частности для индексов намагниченности $M \sim \tau^{\beta}$ и корреляционного радиуса $\xi \sim \tau^{-\nu}$ имеем

$$\beta = \frac{1}{2}, \quad d > 2; \quad \nu = \begin{cases} \frac{1}{d-2}, & 2 < d < 4\\ \frac{1}{2}, & d > 4 \end{cases}$$
(146)

что с учетом $s = 2\beta$ точно соответствует (18).

9. Заключение.

В настоящее время наиболее строгим считается подход к теории локализации, основанный на формализме σ -моделей [22, 47, 48]; однако, его строгости не нужно переоценивать. Во-первых, не вполне ясно, в какой степени приближения, используемые при выводе σ -моделей сохраняют точную инвариантность относительно обращения времени исходной неупорядоченной системы и выполнение тождества Уорда (13), которые важны для воспроизведения полюсной структуры $U_{\mathbf{k}\mathbf{k}'}(\mathbf{q})$. Во-вторых, учет пространственной дисперсии $D(\omega, \mathbf{q})$ требует введения в лагранжиан σ -модели дополнительных градиентных вершин, которые аномально растут на начальном этапе ренормгрупповых преобразований [49]. Аналог такого роста можно получить из (142, 143), полагая дл начальной конфигурации индексов $\beta_1 = 2$, $\beta_k = 0$ ($k \geq 2$):

$$\frac{\partial \beta_k}{\partial \tau} \sim \frac{1}{\ln \xi} \xi^{2-\beta_k}, \qquad k = 1, 2, \dots$$
 (147)

Рост β_k с $k \geq 2$ означает усиление пространственной дисперсии $D(\omega, \mathbf{q})$ при приближении к переходу, а на языке магнитной аналогии (разд. 8) – превращение одноосного ферромагнетика в изотропный⁷: по-видимому, аналогичным образом ренормгрупповые преобразования переводят нуль-компонентную σ -модель в бесконечно-компонентную. Указанные трудности, по-видимому, не существенны в низших порядках по $\epsilon = d - 2$, т.к. при малых ϵ переход Андерсона попадает в область слабого беспорядка, для которой вывод σ -модели действительно обоснован.

Обсудим возможные причины расхождения (18) с результатом работы [28] дл индекса s. Результат [28] для диэлектрической проницаемости $\epsilon(0,0) \sim \xi$ соответствует случаю $\zeta = 1$ раздела 4; о том же свидетельствует приведенное в [28] выражение для функции $A(\mathbf{r})$ из формулы (66). При $\zeta = 1$ индексы β_k линейно возрастают с ростом k: из разд. 7.4 ясно, что если результат [28] соответствует точному решению некоторой идеализированной модели, то эта модель нефизична ввиду неустойчивости относительно бесконечно малого возмущения общего вида. Более вероятно, что приближения, используемые при выводе σ -модели и отборе диаграмм в [28], нарушают полюсную структуру $U_{\mathbf{kk'}}(\mathbf{q})$: в связи с этим подозрительным кажется совпадение результатов для моделей с нарушенной и ненарушенной инвариантностью относительно обращения времени. Наконец, при выводе σ -модели для больших d приходится вводить конструкцию из слабо связанных гранул, для которой из-за наличи искусственных малых параметров критическая область может аномально сужаться и в результате приближений сжиматься в точку: результаты [28] могут соответствовать какой-то промежуточной асимптотике.

Некоторые возражения вызывает аргументация Ефетова [43], что диаграммный подход в принципе не "чувствует"некомпактности, которая по мнению автора [43] определяет основное отличие теории неупорядоченных систем от теории фазовых переходов. С последним утверждением можно согласиться: некомпактность является следствием мнимых добавок $\pm i\delta$, определяющих тип функции Грина, которые приводят к непертурбативным вкладам, обусловливающих различие двух указанных теорий [17]; однако непертурбативные вклады могут быть получены из диаграммной техники [16]. При выделении диффузионных полюсов добавки $\pm i\delta$ играют существенную

⁷Для детального исследования эволюции β_k требуется учет коэффициентов пропорциональности в (64) и (142).

роль, т.к. благодаря им контур интегрирования в (58) зажимается между полюсами двух функций Грина.

Автор признателен А.Ф.Андрееву, А.И.Ларкину, М.В.Садовскому, М.В.Фейгельману за обсуждение и участникам семинаров в ИФП и ФИАН за интерес к работе.

Работа выполнена при финансовой поддержке Международного научного фонда (грант МОНООО) и Российского фонда фундаментальных исследований (проект 93-02-2690).

Приложение. Разложение по с уравнения самосогласования.

Если для оператора \hat{L} имеем

$$\hat{L}(\mathbf{q})\psi_{\mathbf{k}} \equiv \frac{1}{N} \sum_{\mathbf{k}'} L_{\mathbf{k}\mathbf{k}'}(\mathbf{q})\psi_{\mathbf{k}'}, \quad L_{\mathbf{k}\mathbf{k}'}(\mathbf{q}) = L_{\mathbf{k}'\mathbf{k}}(\mathbf{q}) = L_{-\mathbf{k},-\mathbf{k}'}(-\mathbf{q})$$
(.1)

то нетрудно доказать, что: (a) собственные значения \hat{L} четны по \mathbf{q} , $\lambda_s(\mathbf{q}) = \lambda_s(-\mathbf{q})$; (б) собственные функции $e_{\mathbf{k}}^{(s)}(\mathbf{q})$ могут быть выбраны так, что $e_{\mathbf{k}}^{(s)}(\mathbf{q}) = e_{-\mathbf{k}}^{(s)}(-\mathbf{q})$; (в) если имеется несколько операторов вида (П. 1), то матричные элементы одного оператора по собственным функциям другого четны по \mathbf{q} . Операторы \hat{L} , \hat{L}_{reg} , \hat{L}_1 относится к виду (П. 1) и в силу (а) – (в) правая часть (97) четна по \mathbf{q} и раскладывается по степеням q^2 .

Учитывая, что оператор \hat{L}_1 в разд. 5.1 определен строго не зависящим от ω , получим, что в (86) $O(\omega) \equiv 0$ и определения (75, 76) эквивалентны следующим

$$\hat{L}_{reg}\psi_{\mathbf{k}} = (\epsilon_{\mathbf{k}+\mathbf{q}/2} - \epsilon_{\mathbf{k}-\mathbf{q}/2})\psi_{\mathbf{k}} + \frac{1}{N}\sum_{\mathbf{k}'}U_{\mathbf{k}\mathbf{k}'}^{reg}(\mathbf{q})[\Delta G_{\mathbf{k}'}(\mathbf{q})\psi_{\mathbf{k}} - \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}'}(\mathbf{q})}\psi_{\mathbf{k}'}] \quad (.2)$$

$$\hat{L}_{sing}\psi_{\mathbf{k}} = \frac{1}{N} \sum_{\mathbf{k}'} U_{\mathbf{k}\mathbf{k}'}^{sing}(\mathbf{q}) [\Delta G_{\mathbf{k}'}(\mathbf{q})\psi_{\mathbf{k}} - \sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})\Delta G_{\mathbf{k}'}(\mathbf{q})}\psi_{\mathbf{k}'}]$$
(.3)

Для определения (П. 2) имеем в силу (39)

$$\hat{L}_{reg}|e_0\rangle = \hat{L}_{reg}\{\operatorname{const}\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})} + O(\mathbf{q})\} = \operatorname{const}(\epsilon_{\mathbf{k}+\mathbf{q}/2} - \epsilon_{\mathbf{k}-\mathbf{q}/2})\sqrt{\Delta G_{\mathbf{k}}(\mathbf{q})} + O(\mathbf{q}) = O(\mathbf{q})$$

и вклад $O(q^{\circ})$ отсутствует в каждом из членов правой части (97).

Список литературы

- [1] Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- [2] Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, Москва (1976).
- [3] А. З. Паташинский, В. Л. Покровский, Флуктуационная теори фазовых переходов, Наука, Москва (1982).
- [4] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B **241**, 333 (1984).
- [5] P. W. Anderson, Phys. Rev. **109**, 1492 (1958).
- [6] D. J. Thouless, Phys. Rep. **13**, 92 (1974).
- [7] Н. Мотт, Э. Дэвис, Электронные процессы в некристаллических веществах, Мир, Москва (1974).
- [8] А. Л. Эфрос, УФН **126**, 223 (1978).
- [9] М. В. Садовский, УФН 133, 223 (1981);
 D. Belitz, T. R. Kirkpatrick, Rev. Mod. Phys., 66, 261 (1994).
- [10] M. V. Sadovskii, Sov. Sci. Rev. A. Phys. 7, 1 (1986).
- [11] А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Физматгиз, Москва (1962).
- [12] S. F. Edwards, Phil. Mag. 3, 1020 (1958).
- [13] И. М. Суслов, ЖЭТФ 83, 1079 (1982); 84, 1792 (1983).
- [14] И. М. Суслов, ЖЭТФ **92**, 1433 (1987).
- [15] A. Aharony, Y. Imry, J. Phys. C 10, L487 (1977).
- [16] И. М. Суслов, ЖЭТФ **102**, 1951 (1992).
- [17] И. М. Суслов, ЖЭТФ **106**, 560 (1994).
- [18] D. Vollhardt, P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982); in Modern Problems in Condensed Matter Sciences, ed. by V. M. Agranovich and A. A. Maradudin, v. 32, North-Holland, Amsterdam (1992).
- [19] А. В. Мясников, М. В. Садовский, ФТТ 24, 3569 (1982).
- [20] Л. П. Горьков, А. И. Ларкин, Д. Е. Хмельницкий, Письма в ЖЭТФ **30**, 248 (1979).

- [21] E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- [22] К. Б. Ефетов, А. И. Ларкин, Д. Е. Хмельницкий, ЖЭТФ 79, 1120 (1980).
- [23] К. Б. Ефетов, ЖЭТФ **88**, 1032 (1985).
- [24] В. Л. Березинский, Л. П. Горьков, ЖЭТФ 77, 2499 (1979).
- [25] H. Kunz, R. Souillard, J. de Phys. Lett. 44, L506 (1983).
- [26] S. Hikami, Phys. Rev. B **24**, 2671 (1981).
- [27] H. Kunz, R. Souillard, J. de Phys. Lett. 44, L411 (1983).
- [28] К. Б. Ефетов, ЖЭТФ **94**, 357 (1988).
- [29] B. Shapiro, Phys. Rev. Lett. 50, 747 (1983).
- [30] A. MacKinnon, B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).
- [31] M. Shreiber, B. Kramer, Anderson Localization, Springer Proc. in Physics 28, ed. T. Ando and H. Fukuyama (Springer, Berlin 1988), p. 92.
- [32] F. Wegner, Nucl. Phys. B **316**, 663 (1989).
- [33] Y. Imry, Y. Gefen, D. Bergman, Phys. Rev. B 26, 3436 (1982).
- [34] E. Abrahams, P. A. Lee, Phys. Rev. B **33**, 683 (1986).
- [35] J. T. Chalker, I. H. Nahm, J. Phys. Condens. Mat, 1, 3615 (1989).
- [36] Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
- [37] Е. М. Лифшиц, Л. П. Питаевский, Статистическая физика, ч. 2, Наука, Москва (1978).
- [38] Д. Пайнс, Ф. Нозьер, Теория квантовых жидкостей, Мир, Москва (1967).
- [39] Дж. Займан, Современная квантовая теория, Мир, Москва (1971), с. 64.
- [40] Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979), §78.
- [41] B. L. Al'tshuler, A. G. Aronov, D. E. Khmel'nitskii, A. I. Larkin, in Quantum theory of solids, ed. by I. M. Lifshitz, Mir Publishers, Moscow (1982).
- [42] И. М. Суслов, Письма в ЖЭТФ, 43, 544 (1986).

- [43] К. Б. Ефетов, ЖЭТФ **92**, 638 (1987).
- [44] М. В. Садовский, ЖЭТФ 83, 1418 (1982).
- [45] Ya. G. Sinai, Commun. Math. Phys. 148, 601 (1992).
- [46] В. С. Владимиров, Уравнения математической физики Наука, Москва (1967), с. 238 – 244.
- [47] L. Shäfer, F. Wegner, Z. Phys. B 38, 113 (1980).
- [48] K. B. Efetov, Adv. Phys. **32**, 53 (1983).
- [49] В. Е. Кравцов, И. В. Лернер, В. И. Юдсон, ЖЭТФ, 94, 255 (1988);
 F. Wegner, Z. Phys. В 78, 33 (1990).