Распределение кондактансов в магнитном поле

И.М.Суслов

Институт физических проблем им. П. Л. Капицы РАН, 119334, Москва, Россия E-mail: suslov@kapitza.ras.ru

Распределение кондактансов в магнитном поле описывается теми же уравнениями, что и при отсутствии поля. Изменение магнитного поля не приводит к качественным эффектам в распределении кондактансов, но влияет на его количественные характеристики, изменяя положение системы в пространстве трех параметров. В отличие от предыдущей работы описание квазиодномерных систем производится на основе обобщенного уравнения ДМПК, а не из простой аналогии с одномерными системами; это позволило уточнить сделанные утверждения и сделать их более строгими.

1. Введение

Как известно, кондактанс неупорядоченной системы является сильно флуктуирующей величиной: его среднеквадратичная флуктуация в металлической фазе не зависит от размера системы [1, 2] и сравнима со средним значением вблизи перехода Андерсона; поэтому актуален вопрос о его распределении W(g). Здесь и в дальнейшем $g = hG/e^2$ — безразмерный кондактанс, определяемый полной проводимостью G системы в квантовых единицах e^2/h .

В недавней работе автора [3] на основе модификации метода Шапиро [4, 5] введено двухпараметрическое семейство распределений кондактанса W(g), которое находится во взаимно-однозначном соответствии с распределениями кондактанса квазиодномерных систем размера $L^{d-1} \times L_z$ (d — размерность пространства), характеризуемых параметрами L/ξ и L_z/L (ξ — корреляционный радиус). Исследование этого семейства позволило описать все существенные свойства распределения W(q), установленные в численных экспериментах, и воспроизвести результаты для кумулянтных средних, полученные с помощью сигмамоделей [6]. В основе подхода лежит уравнение эволюции для функции распределения $P(\rho)$ безразмерных ландауэровских сопротивлений ($\rho =$ 1/q [7] для строго одномерных систем, из которых по определенной схеме строится *d*-мерная система [4, 5]. На первый взгляд, обобщение результатов работы [3] на случай наличия магнитного поля не представляет проблемы: достаточно использовать одномерное уравнение эволюции, не предполагающее существовани инвариантности относительно обращения времени. Однако реализаци этой схемы (разд.2) приводит к двум трудностям: (а) несоответствию по числу актуальных параметров, и (б) неправильной оценке критического поведения для $d = 2 + \epsilon$. Анализ этих противоречий приводит к выводу (разд.3), что они возникают из-за качественного различия квазиодномерных и строго одномерных систем при наличии магнитного поля. Замена одномерного уравнени эволюции на обобщенное уравнение Дорохова-Мелло-Перейра-Кумара (ДМПК) [8] устраняет указанные трудности (разд.4). Вывод уравнения эволюции для $P(\rho)$ из обобщенного уравнения ДМПК (разд.5) приводит к уравнению той же структуры, что и в одномерном случае, но с большим числом параметров и переменными коэффициентами. Последнее объясняет причину возникавших трудностей, но оказывается несущественным при переходе к *d*-мерному случаю (разд.6). В результате распределение кондактансов в магнитном поле описывается теми же уравнениями, что и при отсутствии поля; при этом один из несущественных параметров становится существенным. Таким образом оказывается, что изменение магнитного поля не приводит к качественным эффектам в распределении кондактансов, но влияет на его количественные характеристики, изменяя положение системы в пространстве трех параметров. Этот вывод находится в соответствии с результатами численных экспериментов [9, 10].

2. Простейшая схема

Рис. 1: Крупно-масштабные построения, используемые в схеме Шапиро: из кубических блоков размера L составляются квазиодномерные системы длиной L_z , которые затем параллельно соединяются, чтобы образовать d-мерный куб большего размера.

Использованный в работе [3] подход основан на крупномасштабных построениях Шапиро [4, 5], аналогичных преобразованиям Мигдала– Каданова в обычной теории фазовых переходов [11, 12]. Из b кубических блоков размера L составляется квазиодномерная система (Рис.1), после чего параллельное соединение b^{d-1} таких систем образует d-мерный куб большего размера. Квазиодномерные системы предполагаются разделенными диэлектрическими прослойками (Рис.1), но при больших L их роль незначительна и схема Шапиро выглядит вполне обоснованной.

Согласно гипотезе однопараметрического скейлинга [13], свойства кубической системы размера L полностью определяютс параметром L/ξ . Свойства квазиодномерной системы, составленной из кубических блоков, зависят от свойств одного блока (L/ξ) и числа кубиков (L_z/L) , так что для кондактанса

$$g = F\left(\frac{L}{\xi}, \frac{L_z}{L}\right). \tag{1}$$

Полагая L равным межатомному расстоянию a, получим, что распределение кондактансов W(g)квазиодномерной системы соответствует некоторому распределению кондактансов строго одномерной системы¹. Этот вывод согласуется с тем,

Рис. 2: В одномерной системе трансфер-матрица \hat{T} связывает амплитуды плоских волн слева и справа от рассеивателя.

что известное уравнение эволюции для одномерных систем [4, 14, 15, 16, 17]

$$\frac{\partial P(\rho)}{\partial L} = \alpha \frac{\partial}{\partial \rho} \left[\rho(\rho+1) \frac{\partial P(\rho)}{\partial \rho} \right]$$
(2)

допускает двухпараметрическое обобщение [3]

$$\frac{\partial P(\rho)}{\partial L} = \tilde{\alpha} \frac{\partial}{\partial \rho} \left[-\gamma (2\rho + 1)P(\rho) + \rho(\rho + 1) \frac{\partial}{\partial \rho} P(\rho) \right],$$
(3)

так что параметры L/ξ и L_z/L уравнения (1) находятся во взаимно-однозначном соотношении с параметрами $\tilde{\alpha}L$ и γ , определяющими уравнение (3). Мы не пытаемся установить характер этого соотношения для каких-то конкретных ситуаций, а исследуем все множество распределений в целом. Поскольку свойства квазиодномерной системы описываются уравнением (3) и в принципе известны, то переход к d-мерной системе не составляет проблемы: достаточно от $P(\rho)$ перйти к W(g)и найти распределение суммы b^{d-1} независимых случайных величин с одинаковыми распределениями W(q). Эту процедуру можно произвести в дифференциальной форме [3, 4, 5] и получить уравнение эволюции, соответствующее *d*-мерной системе (разд.6).

При описании одномерных систем каждый рассеиватель удобно рассматривать как "черный ящик, характеризуемый трансферматрицей \hat{T} , связывающей амплитуды волн слева $(Ae^{ikx} + Be^{-ikx})$ и справа $(Ce^{ikx} + De^{-ikx})$ от него (Рис.2):

$$\left(\begin{array}{c}A\\B\end{array}\right) = \hat{T}\left(\begin{array}{c}C\\D\end{array}\right). \tag{4}$$

Последовательное расположение рассеивателей описываетс произведением тра- нсфер-матриц.

ся. Пока ограничимся тем, что оно является строгим в рамках ортодоксального скейлинга работы [13].

При наличии инвариантности относительно обращения времени трансфер-матрица допускает параметризацию [18]

$$\hat{T} = \begin{pmatrix} \sqrt{\rho+1} e^{-i\varphi} & -\sqrt{\rho} e^{-i\theta} \\ -\sqrt{\rho} e^{i\theta} & \sqrt{\rho+1} e^{i\varphi} \end{pmatrix}, \quad (5)$$

так что нужно рассматривать совместную функцию распределени $P(\rho, \varphi, \theta)$ параметров, входящих в (5). При перемножении большого числа n трансфер-матриц распределение φ и θ обычно стабилизируется, так что

$$P_n(\rho,\varphi,\theta) = P_n(\rho) P(\varphi,\theta) . \tag{6}$$

Если распределение фаз является однородным $(P(\varphi, \theta) = const)$, то справедливо уравнение (2), тогда как в общем случае возникает уравнение (3) с параметрами

$$\gamma = \frac{1 - 2A_0}{2A_0}, \quad \tilde{\alpha} = 2\alpha A_0, \quad A_0 = \left\langle \sin^2(\varphi - \theta) \right\rangle.$$
⁽⁷⁾

Из сказанного вытекает простой способ обобщения описанной процедуры на случай наличия магнитного поля. Для этого достаточно заменить трансфер-матрицу (5) на более общее выражение

$$\hat{T} = \begin{pmatrix} \sqrt{\rho+1} e^{-i\varphi} & -\sqrt{\rho} e^{-i\theta+i\zeta} \\ -\sqrt{\rho} e^{i\theta} & \sqrt{\rho+1} e^{i\varphi+i\zeta} \end{pmatrix}, \quad (8)$$

справедливое без предположения об инвариантности относительно обращения времени, и повторить вывод уравнения эволюции (см. Приложение 1); в результате получается то же самое уравнение (3) с параметрами

$$\gamma = \frac{1 - 2A_0}{2A_0}, \quad \tilde{\alpha} = 2\alpha A_0, \quad A_0 = \left\langle \sin^2(\varphi - \theta + \zeta) \right\rangle$$
(9)

Таким образом, включение магнитного поля приводит к тому, что фаза ζ , строго равная нулю при отсутствии поля, приобретает некоторое стационарное распределение; это изменяет коэффициенты уравнения (3), не меняя его структуры. Использу результаты работы [3], приходим к выводу, что и в *d*-мерном случае распределение кондактансов описывается теми же уравнениями, что и при отсутствии поля.

Однако, при ближайшем рассмотрении использованная схема сталкивается с двумя трудностями. Во-первых, при наличии магнитного поля соотношение (1) заменяется на

$$g = F_H\left(\frac{L}{\xi}, \frac{L_z}{L}, \frac{L}{l_H}\right), \qquad (10)$$

где $l_H = (c\hbar/2eH)^{1/2}$ — магнитна длина. Полагая L = a, получим, что при описании одномерных систем должно быть три актуальных параметра, а не два, как в уравнении (3).

С другой стороны, возникает проблема с оценкой критического поведения корреляционного радиуса ξ , приведенной в разд.5.1 работы [3] и первоначально предложенной Шапиро [5]. Умножая уравнение (2) на ρ и интегрируя, получим замкнутое уравнение для среднего значения $\langle \rho \rangle$, решение которого

$$\langle \rho_L \rangle = \frac{1}{2} \left(e^{2\alpha L} - 1 \right) \tag{11}$$

может быть переписано в виде масштабного преобразования, справедливого для одномерных систем

$$\langle \rho_{bL} \rangle = \frac{1}{2} \left[\left(1 + 2 \left\langle \rho_L \right\rangle \right)^b - 1 \right] \,. \tag{12}$$

При параллельном соединении b^{d-1} одномерных цепочек сопротивление уменьшается в b^{d-1} раз, что дает масштабное преобразование *d*-мерной системы:

$$\langle \rho_{bL} \rangle = \frac{1}{2} b^{-(d-1)} \left[(1 + 2 \langle \rho_L \rangle)^b - 1 \right].$$
 (13)

Если уравнение (3) используется вместо (2), то зависимость от γ пропадает и результаты (11–13) остаются неизменными. В действительности при параллельном соединении цепочек складываются средние проводимости, т.е. $\langle g_{bL} \rangle = b^{d-1} \langle g_L \rangle$ вместо использованного соотношения $\langle \rho_{bL} \rangle =$ $b^{-(d-1)}\langle \rho_L \rangle$. Поэтому масштабное преобразование (13) справедливо лишь для $d = 2 + \epsilon$, когда распределение $P(\rho)$ является узким и два указанных соотношения в первом приближении совпа-) дают; при этом для критического индекса корреляционной длины получаетс правильный результат $\nu = 1/\epsilon$. Поскольку при наличии магнитного поля по-прежнему справедливо уравнение (3), то сохраняется и результат $\nu = 1/\epsilon$; однако, теперь он является неправильным, так как должно быть $\nu = 1/2\epsilon$ [19, 20].

Таким образом, возникает странная ситуация: использование схемы Шапиро при отсутствии магнитного поля приводит к прекрасным результатам [3], тогда как при наличии пол она приводит к очевидным противоречиям.

3. Анализ ситуации

Для анализа ситуации воспользуемся тем, что критическое поведение для $d = 2 + \epsilon$ прямо связано с эффектами слабой локализации и допускает простую физическую интерпретацию.

Рис. 3: Поведение функции $\beta(g)$ в уравнении (14).

Согласно гипотезе однопараметрического скейлинга [13], типичное значение кондактанса *g* подчиняется уравнению ренормгруппы

$$\frac{d\ln g}{d\ln L} = \beta(g), \qquad (14)$$

где $\beta(g) = d-2$ при $g \to \infty$ н $\beta(g) = \ln g$ при $g \to 0$. Для d > 2 функция $\beta(g)$ имеет корень g_c (Рис.3), который соответствует точке перехода Андерсона; при этом критический индекс ν определяется производной β -функции в точке g_c

$$\frac{1}{\nu} = g_c \beta'(g_c) \,. \tag{15}$$

При $d=2+\epsilon$ критическая точка находится в области больших g,где справедливо разложение

$$\beta(g) = \epsilon + \frac{A_1}{g} + \frac{A_2}{g^2} + \dots \tag{16}$$

Нетрудно проверить, что при $A_1 < 0$ имеем, сохраняя в (16) два первых члена

$$\nu = 1/\epsilon$$
 (независимо от A_1), (17)

тогда как при $A_1 = 0, A_2 < 0$

$$u = 1/2\epsilon$$
 (независимо от A_2), (18)

т.е. в главном ε-приближении критическое поведение определяется структурой разложения (16), а не конкретными значениями коэффициентов.

При d = 2 интегрирование (14) с начальным условием $g = g_0$ при L = a дает в области больших g

$$g = g_0 + A_1 \ln(L/a)$$
, (19)

т.е. известную логарифмическую поправку теории слабой локализации. Ее существование следует из диаграммной техники [21], подтверждая конечность и отрицательность A_1 . При наличии магнитного поля логарифмическая расходимость при $L \to \infty$ обрезается на магнитной длине l_H ; отсутствие члена $\sim \ln L$ означает обращение в нуль коэффициента A_1 и справедливость результата (18).

Согласно качественной картине для слабой локализации [22, 20], главная квантовая поправка к классической диффузии связана с самопересечением траекторий, когда возможность прохода замкнутой петли в двух противоположных направлениях делает неизбежной квантовую интерференцию. Если диффузионную траекторию представлять в виде трубки толщиной λ (λ дебройлевская длина волны), то вероятность самопересечени определяется отношением объема $v_F \lambda^{d-1} dt$, заметаемого траекторией за время dt, к объему $(Dt)^{1/2}$ области, в которой траектория с подавляющей вероятностью локализована в момент времени $t (v_F -$ фермиевска скорость, D коэффициент диффузии). Главная квантова поправка Δg к классической проводимости g_0 определяется полной вероятностью самопересечения, получаемой путем интегрирования по t

$$-\frac{\Delta g}{g_0} \sim \int v_F \lambda^{d-1} (Dt)^{-d/2} dt \,, \qquad (20)$$

и при d = 2 логарифмически расходится на верхнем пределе (нижний предел интегрирования определяется временем между столкновениями τ). Эта расходимость обрезается на масштабе $\tau_L \sim L^2/D$, приводя к логарифмической зависимости от L.

При наличии магнитного поля амплитуды прохождения замкнутой петли в двух противоположных направлениях приобретают разность фаз $\Delta \varphi$, которая становится порядка 2π при площади петли порядка l_{H}^{2} . Для петель большего размера квантовая поправка разрушается и логарифмическая расходимость при $L \to \infty$ обрезается на масштабе l_{H} . Тем самым мы имеем полную физическую картину, объясняющую эффекты слабой локализации и критическое поведение для $d = 2 + \epsilon$.

В случае квазиодномерных систем замкнутые петли оказываютс сильно вытянутыми (Рис.4) и их площадь стремится к нулю в пределе строго одномерных систем. Если представление о траекториях с самопересечением в последнем случае сохраняется, то эффект разрушения квантовой поправки магнитным полем полностью исчезает. Из сказанного следует непреложный вывод:

Рис. 4: В квазиодномерных системах замкнуты петли у траекторий с самопересечением становял ся сильно вытянутыми, а в пределе строго одно мерных систем их площадь стремится к нулю.

если при отсутствии магнитного поля различи между квазиодномерными и строго одномерны ми системами не является принципиальным, т при наличии поля оно приобретает качественный характер.

Вернемся к возможности положить L = a в формуле (1). В действительности универсальные соотношения такого типа формируются на больших масштабах, а на масштабах $\sim a$ имеют некоторое переходное поведение. В предположении неизменности функции F в формуле (1) можно положить лишь $L \sim a$, но не L = a. Если при отсутствии магнитного поля это различие не имело существенного значения, то при наличии поля оно становится принципиальным. Поэтому в последнем случае функцию F в (1) нужно связывать не с уравнением (3), а с уравнением эволюции, справедливым для квазиодномерных систем.

4. Обобщенное уравнение ДМПК

Аналогом уравнения (2) в квазиодномерных системах являетс уравнение Дорохова-Мелло-Перейра-Кумара [23]-[27], описывающее эволюцию диагональных элементов многоканальной трансфер-матрицы.

Представляя квазиодномерную систему как набор N связанных одномерных цепочек, можно рассматривать ее как эффективный рассеиватель и характеризовать трансфер-матрицей Т, связывающей амплитуды волн слева $(A_n e^{ikx} + B_n e^{-ikx})$ в *n*-м канале) и справа $(C_n e^{ikx} + D_n e^{-ikx})$ от него (Рис.5). Понимая амплитуды A_n как компоненты вектора А и аналогично для других амплитуд, можно написать векторный аналог соотношения (4):

$$\begin{pmatrix} A \\ B \end{pmatrix} = \hat{T} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \begin{pmatrix} C \\ D \end{pmatrix},$$
(21)

Рис. 5: Многоканальная трансфер-матрица \hat{T} связывает амплитуды плоских волн слева (A_n, B_n) и справа (C_n, D_n) от рассеивателя.

блоков размера $N \times N$. Она допускает параметризацию [25, 28]

$$\hat{T} = \begin{pmatrix} u_1 & 0\\ 0 & v_1 \end{pmatrix} \begin{pmatrix} \sqrt{1+\lambda} & \sqrt{\lambda}\\ \sqrt{\lambda} & \sqrt{1+\lambda} \end{pmatrix} \begin{pmatrix} u & 0\\ 0 & v \end{pmatrix}$$
(22)

где u, v, u_1, v_1 — унитарные матрицы, а λ — диагональная матрица с положительными элементами λ_i , которые в частности определяют проводимость

$$g_{ES} = \sum_{i} \frac{1}{1 + \lambda_i} \tag{23}$$

(в определении Эконому-Соукоулиса [29, 30]). Уравнение ДМПК описывает эволюцию распределени совместной функции их $P(\lambda_1, \lambda_2, \dots, \lambda_N) \equiv P\{\lambda\}$ при изменении длины системы L

$$\frac{\partial P\{\lambda\}}{\partial L} = \alpha \sum_{i} \frac{\partial}{\partial \lambda_{i}} \left[\lambda_{i} (1 + \lambda_{i}) J\{\lambda\} \frac{\partial}{\partial \lambda_{i}} \frac{P\{\lambda\}}{J\{\lambda\}} \right],$$

$$(24)$$

$$J\{\lambda\} = \prod_{i < j} |\lambda_{i} - \lambda_{j}|^{\beta},$$

где $\beta = 1$ для ортогонального ансамбля (обычные системы со случайным потенциалом), $\beta = 2$ для унитарного ансамбл (системы в сильном магнитном поле), $\beta = 4$ дл симплектического ансамбля (системы с сильным спин-орбитальным взаимодействием); параметр $\alpha = 1/\xi_{1D}$ имеет смысл обратной корреляционной длины квазиодномерной системы. Уравнение (24) получено из принципа максимума энтропии (т.е. в предположении максимальной случайности, совместимой с симметрийными ограничениями) и идеологически близко к теории случайных матриц Вигнера–Дайсона [31].

В строго одномерной системе имеем $J{\lambda} = 1$, в котором трансфер-матрица состоит из четырех а λ совпадает с ландауэровским сопротивлением ρ , так что уравнение (24) переходит в (2).² Это не является удивительным, так как (24) и (2) основаны на аналогичных предположениях (ср. [17] и [24]). В работе автора [8] предложена более общая форма уравнения ДМПК, переходящая в (3) в одноканальном случае³

$$\frac{\partial P\{\lambda\}}{\partial L} = \alpha \sum_{i} K_{ii} \frac{\partial}{\partial \lambda_{i}} \left[-\gamma_{i} (1+2\lambda_{i}) P\{\lambda\} + \frac{\partial}{\partial \lambda_{i}} P\{\lambda\} \right]$$

$$+ \lambda_i (1 + \lambda_i) J_i \{\lambda\} \frac{\partial}{\partial \lambda_i} \frac{P\{\lambda\}}{J_i\{\lambda\}} \right]$$
(25)

$$J_i\{\lambda\} = \prod_{j < k} |\lambda_j - \lambda_k|^{\beta_{jk}^i}, \qquad \beta_{jk}^i = 2K_{jk}/K_{ii},$$
$$\gamma_i = (1 - \sum_j K_{ij})/K_{ii},$$

где матрица K_{ij} определяется усредненными комбинациями от матричных элементов u и v. Уравнение (25) сводится к обычному уравнению ДМПК в металлическом режиме и обеспечивает правильное обобщение (24) за его пределами. Уравнение (25) имеет одинаковую структуру для ортогонального и унитарного ансамбля, что позволяет описывать системы в произвольном магнитном поле.

Если поперечные размеры квазиодномерной системы достаточно малы, то ее каналы хорошо перемешиваются рассеиванием, и представляетс разумным приближение эквивалентных каналов, в котором можно положить $\alpha K_{ii} = \tilde{\alpha}, \beta_{jk}^i = \beta,$ $\gamma_i = \gamma$. Тогда уравнение эволюции описывается трем параметрами $\tilde{\alpha}L, \beta, \gamma$, которые находятся во взаимно-однозначном соотношении с параметрами $L/\xi, L_z/L, L/l_H$, входящими в формулу (10).⁴ Тем самым решается первая проблема из сформулированных в разд.2.

Нетрудно проверить, что решается и вторая проблема. Положим $\alpha = 1/\xi_{1D}$ и рассмотрим предел $L/\xi_{1D} \ll 1$, когда справедливо обычное уравнение ДМПК; тогда из (23), (24) легко видеть, что кондактанс g определяется отношением L/ξ_{1D} и допускает разложение [37]

$$g = F\left(\frac{L}{\xi_{1D}}\right) = \frac{\xi_{1D}}{L} + B_0 + B_1 \frac{L}{\xi_{1D}} + \dots \quad (26)$$

Подставляя в (14), нетрудно получить разложение $\beta(g)$ в квазиодномерном случае

$$\beta_{1D}(g) = -1 + \frac{B_0}{g} + \frac{2B_1}{g^2} + \dots$$
 (27)

Если в качестве характерного значения g принять его среднее $\langle g \rangle$, то согласно схеме Шапиро (Рис.1) имеем

$$g_{bL}^{(d)} = b^{d-1} g_{bL}^{(1)} . (28)$$

Положим $b = 1 + \Delta L/L$, так что размер кубической системы изменяется от L до $L + \Delta L$. Увеличение длины квазиодномерной системы описывается уравнением (14), а увеличение поперечного размера — уравнением (28)

$$\ln g_{L+\Delta L}^{(1)} = \ln g_L^{(1)} + \frac{\Delta L}{L} \beta_{1D} \left(g_L^{(1)} \right) , \qquad (29)$$

$$\ln g_{L+\Delta L}^{(d)} = \ln g_{L+\Delta L}^{(1)} + (d-1)\frac{\Delta L}{L},$$

откуда

$$\ln g_{L+\Delta L}^{(d)} = \ln g_{L}^{(d)} + \left[d - 1 + \beta_{1D} \left(g_{L}^{(d)} \right) \right] \frac{\Delta L}{L}$$
(30)

так что в *d*-мерном случае $\beta(g) = d - 1 + \beta_{1D}(g)$ и получается разложение (16) с коэффициентами

$$A_1 = B_0 , \qquad A_2 = 2B_1 . \tag{31}$$

Коэффициенты разложения в (26) вычислены в работе Маседо [37] при произвольных значениях вигнер-дайсоновского параметра β :

$$B_0 = -\frac{2-\beta}{3\beta}, \qquad B_1 = \frac{12-14\beta+3\beta^2}{45\beta^2}, \quad (32)$$

что дает

$$A_1 = -\frac{1}{3}, \qquad A_2 = \frac{2}{45}, \qquad (\beta = 1)$$

 $A_1 = 0, \qquad A_2 = -\frac{2}{45}, \qquad (\beta = 2)$

и обеспечивает правильную структуру разложения (16) и результаты (17), (18) для ортогонального и унитарного ансамбл соответственно. 5

² При этом оно не содержит параметра β , различающего ортогональный и унитарный ансамбли. Это согласуется со сделанным ранее выводом, что строго одномерные системы "не чувствуют" магнитного поля.

³ Несколько менее общая форма уравнени получена ранее Мутталибом с соавторами [32, 33, 34] и использовалась в [35, 36] для описания распределени кондактансов.

⁴ Как показывает исследование уравнения ДМПК [27], при большом числе каналов структура его решения не зависит от N. Формально она получается в пределе $N \to \infty$, $L/a \to \infty$, Na/L = const, когда уравнение ДМПК воспроизводит диаграммные результаты.

⁵ В высших порядках по ϵ следует учитывать отличие β_{ik}^{i} от вигнер-дайсоновских значений.

Вернемся еще раз к возможности положить L = a в уравнении (1), где функция F имеет некоторое переходное поведение на масштабах порядка a. Как указывалось в [3], это переходное поведение можно исключить в соответствии с анализом Вильсона [11, 12], если специальным образом выбрать модель на малых масштабах. Из сказанного выше ясно, что такая "идеальная" модель описывается уравнением ДМПК с предельным переходом, указанным в примечании 4.

Таким образом, схема Шапиро оказывается удовлетворительной при наличии магнитного поля, если в качестве квазиодномерного уравнения эволюции использовать обобщенное уравнение ДМПК.

5. Уравнение эволюции для $P(\rho)$

Как обсуждалось в [3, 38], для правильного определени проводимости конечных систем полезно введение полупрозрачных границ, отделяющих рассматриваемую систему от присоединенных к ней идеальных контактов. При переходе к пределу слабо-проницаемых границ возникают универсальные уравнения, не зависящие от способа исключения контактного сопротивления резервуара [39], которые затем можно экстраполировать к прозрачности порядка единицы. Такое определение заведомо относится к изучаемой системе (а не составной системе "образец+идеальные провода") и обеспечивает бесконечное значение проводимости для идеальных систем [38]. В пределе слабо-проницаемых границ масштаб всех λ_i возрастает и определение кондактанса (23) по Эконому-Соукоулису [29] становится эквивалентным определению

$$g = \frac{1}{\rho} = \sum_{i} \frac{1}{\lambda_i}, \qquad (33)$$

в котором проводимость каждого канала определяется по Ландауэру [7]. Для перехода от λ_i к ρ введем набор угловых переменных $\{\varphi\} = (\varphi_1, \varphi_2, \dots, \varphi_{N-1})$ и положим

$$\frac{1}{\lambda_i} = \frac{1}{\rho} f_i\{\varphi\}.$$
(34)

Для больших λ_i нетрудно показать, что

$$\rho_{ES} = \rho + \rho_0, \qquad \rho_0 = \sum_i f_i^2 \{\varphi\}, \qquad (35)$$

откуда следует неравенство

$$0 \le \rho_0 \le 1 \,, \tag{36}$$

вытекающее из $f_i\{\varphi\} \ge 0$ и $\sum_i f_i\{\varphi\} = 1$. Фактически в зависимости от ситуации перекрывается весь диапазон изменения ρ_0 : в металлической фазе все λ_i одного порядка, так что $f_i\{\varphi\} \sim 1/N$ и $\rho_0 \sim 1/N$, что может быть сколь угодно мало при большом числе каналов. В сильно локализованом режиме проводимость определяется одним каналом, так что $f_1\{\varphi\} \approx 1$, $f_i\{\varphi\} \approx 0$ $(i \neq 1)$ и $\rho_0 \approx 1$.

Замена переменных (35) аналогична переходу $x_i = rf_i\{\varphi\}$ от декартовых координат x_i к сферическим, когда радиус-вектор r имеет размерность длины, а углы φ_k безразмерны; при этом размерность x_i совпадает с размерностью r. Аналогично этому удобно считать, что ρ является размерной величиной, а λ_i имеют размерность ρ . Поскольку при преобразовании производных размерность всех выражений сохраняется, то результат перехода к переменным ρ , φ_k в уравнении (25) может быть выписан просто из соображений размерности

$$\frac{\partial P}{\alpha \partial L} = \left[a_1 \{\varphi\} \rho^2 + a_2 \{\varphi\} \rho \right] \frac{\partial^2 P}{\partial \rho^2} + \left[a_3 \{\varphi\} \rho + a_4 \{\varphi\} \right] \frac{\partial P}{\partial \rho} + a_5 \{\varphi\} P + \sum_k \left[b_k \{\varphi\} \rho + c_k \{\varphi\} \right] \frac{\partial^2 P}{\partial \rho \partial \varphi_k} + \sum_k g_k \{\varphi\} \frac{\partial P}{\partial \varphi_k} + \sum_{kk'} h_{kk'} \{\varphi\} \frac{\partial^2 P}{\partial \varphi_k \partial \varphi_{k'}}, \quad (38)$$

где опущены члены с множителем $1/\rho$. ⁶ Усредняя по φ_k и устраняя производные по углам с помощью интегрирования по частям, придем к уравнению

$$\frac{\partial P(\rho)}{\partial L} = \alpha \left[\left(C_1 \rho^2 + C_2 \rho \right) \frac{\partial^2 P(\rho)}{\partial \rho^2} + \left(C_3 \rho + C_4 \right) \frac{\partial P(\rho)}{\partial \rho} + C_5 P(\rho) \right].$$
(39)

Для сохранения вероятности правая часть должна иметь форму полной производной; включая C_1 в перенормировку α , получим уравнение

$$\frac{\partial P(\rho)}{\partial L} = \tilde{\alpha} \,\frac{\partial}{\partial \rho} \left[\left(A\rho + B \right) P(\rho) + \left(\rho^2 + C\rho \right) \frac{\partial P(\rho)}{\partial \rho} \right],\tag{40}$$

⁶ Такие члены должны сократиться, так как они соответствуют вкладу $P(\rho) \ln \rho$ в квадратной скобке (40), для существования которого нет оснований.

имеющее ту же структуру, что и (3). Уравнения становятс идентичными в результате следующих преобразований, проведенных в [3]. Неоднозначность в определении кондактанса, связанная с исключением контактного сопротивления резервуара [39], соответствует замене $\rho \rightarrow \rho - \rho_0$, где ρ_0 зависит от деталей определения. Эта зависимость становится несущественной в пределе слабо-проницаемых границ, когда масштаб ρ неограниченно возрастает, а ρ_0 остается ограниченным. Это соответствует замене во втором члене в квадратной скобке (3)

$$\rho(\rho+1) \longrightarrow (\rho-\rho_0)(\rho+1-\rho_0) \longrightarrow \rho^2, \quad (41)$$

приводящей к универсальному уравнению, не зависящему от ρ_0 , которое можно экстраполировать к прозрачности порядка единицы. Аналогичная процедура для первого члена в квадратной скобке (3)

$$2\gamma\rho + \gamma \longrightarrow 2\gamma\rho + \gamma(1 - 2\rho_0) \longrightarrow 2\gamma\rho + \tau_0$$
 (42)

осложняется неизвестным поведением второго слагаемого в ходе указанной процедуры; поэтому мы обозначаем его τ_0 , остерегаясь полагать равным нулю. Дальнейшее исследование показывает, что τ_0 следует считать конечным из физических соображений. Таким образом, реальная форма уравнения (3), используемая в схеме Шапиро, имеет вид

$$\frac{\partial P(\rho)}{\partial L} = \tilde{\alpha} \frac{\partial}{\partial \rho} \left[-(2\gamma\rho + \tau_0)P(\rho) + \rho^2 \frac{\partial}{\partial \rho}P(\rho) \right].$$
(43)

Аналогичная процедура, примененная к уравнению (40), приводит к тому же результату, если заметить, что константа C ограничена неравенством $0 \le C \le 1$ (см. Приложение 2) и не может приводить к непредсказуемым эффектам.

В предыдущей работе [3] мы не считали параметр τ_0 существенным. Он возникает в результате плохо определенной экстраполяции к прозрачности порядка единицы и определяет абсолютный масштаб кондактанса, который в теории не контролируется. При наличии магнитного поля ситуация меняется, так как в общем случае параметр τ_0 зависит от величины поля и должен считаться существенным. Таким образом, уравнение эволюции для $P(\rho)$ определяется тремя параметрами $\tilde{\alpha}L$, γ , τ_0 , которые находятся во взаимнооднозначном соответствии с параметрами L/ξ , L_z/L , L/l_H уравнения (10). Если первая из двух проблем разд.2 таким образом решается, то вторая проблема стоит попрежнему остро. Нетрудно проверить, что преобразование типа (13) не приводит к результату $\nu = 1/2\epsilon$ ни при каких постоянных значениях A, B, C в (40). Однако, эти коэффициенты можно считать постоянными лишь в случае, когда распределение $P(\rho)$ близко к стационарному и распределение фаз φ_k успевает отрелаксировать. Но в квазиодномерной геометрии стационарное распределение для $P(\rho)$ никогда не достигается и параметры A, B, C всегда содержат некоторую зависимость от L. При учете такой зависимости добиться результата $\nu = 1/2\epsilon$ не представляет проблемы (см. Приложение 3).

Из сказанного ясно, что на уровне уравнения для $P(\rho)$ две проблемы, указанные в разд.2, решаются в результате более четкой формулировки утверждений, сделанных в [3]. Однако, это требует некоторых предположений, которые в контексте уравнения ДМПК выполняются автоматически.

6. Переход к *d*-мерному случаю

Если уравнение эволюции для квазиодномерной системы принимаетс в виде (43), то переход к *d*-мерному случаю в схеме Шапиро не представляет проблемы. Уравнение для W(g), соответствующее (43), получается заменами $P = g^2 W$, $\rho = 1/g$ [3]

$$\frac{\partial W(g)}{\partial L} = \tilde{\alpha} \left[\left(2\gamma g + 2g + \tau_0 g^2 \right) W(g) + g^2 W'_g(g) \right]'_g,$$
(44)

после чего нужно найти распределение суммы $n = b^{d-1}$ независимых случайных величин с одинаковым распределением W(g): это осуществляется путем перехода к характеристической функции $F(t) = \langle e^{igt} \rangle$ и возведением ее в степень n. Вместо характеристической функции удобнее использовать преобразование Лапласа

$$F(\tau) = \int_0^\infty e^{-\tau g} W(g) dg \,,$$

а указанную процедуру можно провести в дифференциальной форме. Уравнение для $F(\tau)$, соответствующее (44), удобно записать для конечных приращений

$$F_{L+\Delta L}(\tau) = F_L(\tau) + \tilde{\alpha} \Delta L \left[\tau(\tau + \tau_0) F_L''(\tau) - 2\gamma \tau F_L'(\tau) \right].$$
(45)

Возводя $F_L(\tau)$ в степень $n = b^{d-1}$ и полага $b = 1 + \Delta L/L$, получим в (45) дополнительный член $(\Delta L/L)(d-1)F_L \ln F_L$ и окончательное уравнение эволюции для *d*-мерной системы имеет вид

$$\frac{\partial F(\tau)}{\partial \ln L} = \tilde{\alpha} L \left[\tau(\tau + \tau_0) F''(\tau) - 2\gamma \tau F'(\tau) + pF(\tau) \ln F(\tau) \right], \qquad (46)$$

где $p = (d-1)/\tilde{\alpha}L$. Величина $\tilde{\alpha}L$ имеет смысл L/ξ и эволюция по L при постоянном L/ξ приводит к стационарному распределению, соответствующему большим масштабам; при этом τ_0 , γ и p стремятся к постоянным пределам и переменность коэффициентов в квазиодномерном уравнении (40) не имеет никакого значения. Уравнение (46) описывает переходный процесс при увеличении L от атомного масштаба к масштабам порядка ξ , и основной интерес представляет его стационарная версия; при этом параметр $\tilde{\alpha}L$ теряет свою актуальность и его роль переходит к параметру p. Таким образом, стационарные значени au_0, γ, p находятся во взаимно-однозначном соотношении с параметрами $L/\xi, L_z/L, L/l_H$ уравнени (10), которые считаются постоянными при предельном переходе $L \to \infty$. Поэтому ξ неограниченно возрастает и все получаемые распределения относятся к критической точке. Обычно под "критическим распределением"в теоретических работах (напр. [4, 5]) понимают распределение, соответствующее значениям $L/\xi = 0, L_z/L = 1, L/l_H = \infty$ (в конечном магнитном поле) или $L/l_H = 0$ (при отсутствии поля), что однозначно фиксирует значения параметров τ_0, γ, p для соответствующей размерности пространства. Для больших, но конечных размеров системы, достижимы любые значения параметров L/ξ , L_z/L , L/l_H .

Стационарная версия уравнения (46) подробно исследовалась в работе [3]. Общим свойством распределения W(g) является существование двух асимптотик — лог-нормальной для малых g и экспоненциальной при больших g, тогда как их актуальность зависит от конкретной ситуации. В металлической фазе распределение определяется центральным гауссовским пиком, а указанные асимптотики относятся лишь к далеким хвостам. В критической области лог-нормальное поведение распространяется на окрестность максимума и практически все распределение определяется двумя асимптотиками. При движении в локализованную фазу лог-нормальное поведение распространяется дальше и вытесняет экспоненциальную асимптотику в область далекого хвоста.

7. Заключение

Из сказанного ясно, что распределение кондактансов в магнитном поле описывается теми же уравнениями, что и при отсутствии поля; изменение магнитного поля не приводит ни к каким качественным эффектам, но влияет на количественные характеристики распределения, изменяя положение системы в пространстве трех параметров τ_0, γ, p . Этот вывод находится в соответствии с результатами численных экспериментов [9, 10]. Тот факт, что изменение распределения действительно имеет место, ясен из результатов для металлической фазы: магнитное поле изменяет как среднее значение кондактанса (отрицательное магнетосопротивление [40]), так и его среднеквадратичную флуктуацию [1, 2, 41] за счет подавления куперонных вкладов.

В отличие от предыдущей работы [3] уравнения эволюции для квазиодномерных систем устанавливаются на основе обобщенного уравнения ДМПК, а не из простой аналогии с одномерными системами. Это позволило уточнить некоторые утверждения работы [3] и сформулировать их более четко. Как и в предыдущей работе, мы не ставили целью вычисление параметров τ_0 , γ , p для каких-то конкретных ситуаций, а исследовали все множество распределений в целом. Значения этих параметров могут быть установлены путем вычисления нескольких первых моментов кондактанса, что может быть сделано стандартными методами.

Приложение 1. Одномерное уравнение эволюции

Для установления общего вида трансферматрицы заметим, что амплитуды падающих и отраженных волн связаны *S*-матрицей рассеяни

$$\begin{pmatrix} B \\ C \end{pmatrix} = S \begin{pmatrix} A \\ D \end{pmatrix} = \begin{pmatrix} r & t' \\ t & r' \end{pmatrix} \begin{pmatrix} A \\ D \end{pmatrix}, (A.1)$$

определяемой амплитудами прохождения (t) и отражения (r) при падении волны слева на рассеиватель и аналогичными амплитудами (t' u r') при падении волны справа на него. Условие унитарности *S*-матрицы дает

$$|r|^{2} + |t|^{2} = 1$$
, $|r'|^{2} + |t'|^{2} = 1$, $r^{*}t' = -t^{*}r'$.
(A.2)

Возводя последнее соотношение по модулю в квадрат, получим, что |r| = |r'|, |t| = |t'| и элементы S-матрицы можно параметризовать в виде

$$r = |r|e^{i\theta}, \quad r' = |r|e^{i\theta'}, \quad t = |t|e^{i\varphi}, \quad t' = |t|e^{i\varphi'}, \quad (A.3)$$

где фазы связаны соотношением

$$e^{i\theta + i\theta' - i\varphi - i\varphi'} = -1, \qquad (A.4)$$

следующим из (A.2). Переписывая связь между амплитудами (A.1) в виде (4), имеем

$$\hat{T} = \begin{pmatrix} 1/t & -r'/t \\ r/t & (tt' - rr')/t \end{pmatrix} =$$
$$= \begin{pmatrix} |1/t|e^{-i\varphi} & |r/t|e^{-i\theta + i\varphi'} \\ |r/t|e^{i\theta - i\varphi} & |1/t|e^{i\varphi'} \end{pmatrix}.$$
(A.5)

Вводя ландауэровское сопротивление $\rho = |r/t|^2$ [7], полагая $\zeta = \varphi' - \varphi$ и производя сдвиг начала отсчета θ , приведем (A.5) к виду (8).

При увеличении длины одномерной системы от L до $L + \Delta L$ происходит перемножение трансферматриц, $\hat{T}_{L+\Delta L} = \hat{T}_L \hat{T}_{\Delta L}$. Принимая форму (8) для матрицы \hat{T}_L и полагая ⁷

$$\hat{T}_{\Delta L} = \begin{pmatrix} \sqrt{1+\epsilon^2} e^{i\beta_1} & -i\epsilon e^{i\beta_2+i\beta_3} \\ i\epsilon e^{-i\beta_2} & \sqrt{1+\epsilon^2} e^{-i\beta_1+i\beta_3} \end{pmatrix},$$
(A.6)

где ϵ , β_1 , β_2 , β_3 — малые случайные величины, получим для параметра $\tilde{\rho}$, соответствующего матрице $\hat{T}_{L+\Delta L}$, во втором порядке по ϵ

$$\tilde{\rho} = \rho - 2\epsilon \sqrt{\rho(\rho+1)} \sin \psi + \epsilon^2 (2\rho+1), \quad (A.7)$$

где

$$\psi = \theta - \varphi - \zeta + \beta_1 + \beta_2 \,. \tag{A.8}$$

Соотношение (A.7) отличается от формулы (A.2) работы [3] лишь определением фазы ψ , поэтому дальнейший вывод уравнения эволюции остается неизменным и приводит к уравнению (3) с параметрами (9).

Приложение 2. Неравенство для параметра C в (40)

Если $\varphi_1, \varphi_2, \ldots, \varphi_{N-1}$ — независимые переменные, то полага

$$\frac{1}{\lambda_i} = \frac{\varphi_i}{\rho}, \quad i = 1, 2, \dots, N-1$$

$$\frac{1}{\lambda_N} = \frac{\varphi_N}{\rho}, \qquad \varphi_N = 1 - \varphi_1 - \varphi_2 - \dots - \varphi_{N-1}$$
(A.9)

и переходя от переменных λ_i к переменным ρ , φ_1 , $\varphi_2, \ldots, \varphi_{N-1}$, получим для первого члена в правой части (38)

$$\left[\rho^2 \sum_{i=1}^N K_{ii} \varphi_i^2 + \rho \sum_{i=1}^N K_{ii} \varphi_i^3\right] \frac{\partial^2 P}{\partial \rho^2}. \qquad (A.10)$$

Поскольку $K_{ii} \geq 0$ (см. формулу (34) в [8])
и $0 \leq \varphi_i \leq 1,$ то

$$\sum_{i=1}^{N} K_{ii} \varphi_i^2 \ge \sum_{i=1}^{N} K_{ii} \varphi_i^3 \ge 0, \qquad (A.11)$$

что после усреднения дает $C_1 \ge C_2 \ge 0$ в (39) и $0 \le C \le 1$ в (40).

Приложение 3. К оценке критического поведени

Умножая (40) на ρ и интегрируя, получим замкнутое уравнение для $\langle \rho \rangle$

$$\frac{\partial \langle \rho \rangle}{\partial L} = a \langle \rho \rangle + b \tag{A.12}$$

где $a = \tilde{\alpha}(2 - A), b = \tilde{\alpha}(C - B)$. Если положить

$$a = a_0 + a_1 L$$
, $b = b_0 + b_1 L$ (A.13)

то

$$\langle \rho \rangle = b_0 L + \frac{1}{2} (a_0 b_0 + b_1) L^2 + \frac{1}{6} (a_0^2 b_0 + a_0 b_1 + 2a_1 b_0) L^3 + \dots$$
(A.14)

и при выборе $a_0b_0 + b_1 = 0$ член порядка L^2 обращается в нуль, что для узкого распределения эквивалентно исчезновению B_0 в (26) и справедливости результата (18).

Список литературы

 Б. Л. Альтшулер, Письма в ЖЭТФ 41, 530 (1985);

Б. Л. Альтшулер, Д. Е. Хмельницкий, Письма в ЖЭТФ **42**, 291 (1985).

- [2] P. A. Lee, A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985);
 - P. A. Lee, A. D. Stone, Y.Fukuyama, Phys. Rev. B **35**, 1039 (1987).

⁷ Вид матрицы (A.6) выбран из аналогии с точечным рассеивателем, позволяющей считать среднее значение ϵ равным нулю [3].

- [3] И. М. Суслов, ЖЭТФ 151, 897 (2017).
- [4] B. Shapiro, Phys. Rev. B **34**, 4394 (1986).
- [5] B. Shapiro, Phil. Mag. 56, 1031 (1987).
- [6] Б. Л. Альтшулер, В. Е. Кравцов, И. В. Лернер, ЖЭТФ 91, 2276 (1986).
- [7] R. Landauer, IBM J. Res. Dev. 1, 223 (1957);
 Phil. Mag. 21, 863 (1970).
- [8] И. М. Суслов, arXiv: 1703.02387.
- [9] K. Slevin, T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997).
- [10] T. Ohtsuki, K. Slevin, T. Kawarabayashi, J. Phys.: Condensed Matter 10, 11337 (1998).
- [11] К. Вильсон, Дж. Когут, Ренормализационная группа и *є*-разложение, Мир, Москва (1975).
- [12] Ш. Ма, Современная теория критических явлений, Москва, Мир, 1980.
- [13] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).
- [14] В. И. Мельников, ФТТ **23**, 782 (1981).
- [15] A. A. Abrikosov, Sol. St. Comm. 37, 997 (1981).
- [16] N. Kumar, Phys. Rev. B **31**, 5513 (1985).
- [17] P. Mello, Phys. Rev. B **35**, 1082 (1987).
- [18] P. W. Anderson, D. J. Thouless, E. Abrahams,
 D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
- [19] К. Б. Ефетов, ЖЭТФ 82, 872 (1982)]
- [20] K. Efetov, Supersymmetry in disorder and haos, Cambridge, University Presss, 1995, p.32– 34.
- [21] Л. П. Горьков, А. И. Ларкин, Д. Е. Хмельницкий, Письма в ЖЭТФ **30**, 248 (1979).
- [22] B. L. Altshuler, A. G. Aronov, D. E. Khmelnitskii, A. I. Larkin, in Quantum Theory of Solids, ed. I. M. Lifshits, MIR Publishers, 1983.
- [23] О. Н. Дорохов, Письма в ЖЭТФ 36, 259 (1982).

- [24] P. A. Mello, P. Pereyra, N. Kumar, Ann. Phys. (N.Y.) 181, 290 (1988).
- [25] P. A. Mello, A. D. Stone, Phys. Rev. B 44, 3559 (1991).
- [26] A. M. S. Macêdo, J. T. Chalker, Phys. Rev. B 46, 14985 (1992).
- [27] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
- [28] P. A. Mello, J. L. Pichard, J. Phys. I 1, 493 (1991).
- [29] E. N. Economou, C. M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981).
- [30] D. S. Fisher, P. A. Lee, Phys. Rev. B 23, 6851 (1981).
- [31] M. L. Mehta, Random Matrices, Academic, New York, 1991.
- [32] K. A. Muttalib, J. R. Klauder, Phys. Rev. Lett. 82, 4272 (1999).
- [33] K. A. Muttalib, V. A. Gopar, Phys. Rev. B 66, 11538 (2002).
- [34] A. Douglas, P. Markoš, K. A. Muttalib, J. Phys.
 A: Math. Theor. 47, 125103 (2014).
- [35] K. A. Muttalib, P. Markoš, P. Wölfle, Phys. Rev. B 72, 125317 (2005).
- [36] A. Douglas, K. A. Muttalib, Phys. Rev. B 80, 161102(R) (2009); arXiv: 1007.1438.
- [37] A. M. S. Macêdo, Phys. Rev. B 49, 1858 (1994).
- [38] И. М. Суслов, ЖЭТФ 142, 1020 (2012).
- [39] A. D. Stone, A. Szafer, IBM J. Res. Dev. 32, 384 (1988).
- [40] B. L. Altshuler, D. E. Khmelnitskii, A. I. Larkin, P. A. Lee, Phys. Rev. B 22, 5142 (1980).
- [41] Б. Л. Альтшулер, Б. И. Шкловский, ЖЭТФ 91, 220 (1986).