Спектральный анализ универсальных флуктуаций кондактанса

И.М.Суслов

Институт физических проблем им. П. Л. Капицы РАН,

119334, Москва, Россия

E-mail: suslov@kapitza.ras.ru

Универсальные флуктуации кондактанса обычно наблюдаются в виде апериодических осцилляций в магнетосопротивлении тонких проволочек при изменении магнитного поля *B*. Если такие осцилляции являются полностью случайными на масштабах больших ξ_B , то их Фурье-анализ должен обнаруживать спектр белого шума на частотах, меньших ξ_B^{-1} . Альтернативный сценарий возникает при сопоставлении с результатами для одномерных систем: в этом случае осцилляции определяются суперпозицией несоизмеримых гармоник и их спектр должен содержать дискретные частоты. Аккуратный Фурье-анализ классического эксперимента Вебба и Вашбурна обнаруживает практически дискретный спектр в согласии со второй концепцией. Однако в целом его форма близка к спектру дискретного белого шума, который по свойствам близок к непрерывному. Более подробный анализ обнаруживает наличие непрерывной компоненты, малость которой объясняется теоретически. Получено множество качественных результатов, подтверждающих представленную картину: распределение фаз, разностей частот и показателей экспоненциального роста согласуются с теоретическими предсказаниями; дискретные частоты слабо зависят от процедуры обработки; обнаруженные сдвиговые осцилляции подтверждают аналогию с одномерными системами. Микроскопические оценки указывают на соответствие полученных результатов с геометрическими размерами образца.

1. Введение

Универсальные флуктуации кондактанса [1, 2, 3, 4] обычно наблюдаются в виде апериодических осцилляций в магнетосопротивлении тонких проволочек при изменении магнитного поля B [5] (Рис.1) (см. обзоры [6, 7]). Картина флуктуаций выглядит случайной, но полностью воспроизводится при повторных прохождениях по магнитному полю. Она характеризует конкретную реализацию случайного потенциала и полностью меняется после отогрева образца до достаточно высокой температуры, при которой примеси получают подвижность и возникает новая примесная конфигурация ("магнитные отпечатки пальцев").

Согласно теории [1, 2, 3, 4], кондактанс G(B)при фиксированном значении поля B испытывает флуктуации порядка e^2/h при изменении примесной конфигурации; флуктуации G(B) и $G(B + \Delta B)$ статистически независимы, если ΔB превышает некоторый характерный масштаб ξ_B . Естественно ожидать, что на масштабах, больших ξ_B , осцилляции G(B) на Рис.1 являютс полностью случайными; тогда их Фурье анализ должен выявить плоский спектр белого шума на частотах, меньших ξ_B^{-1} .

Альтернативная точка зрения возникает при сопоставлении с результатами для одномерных

Рис. 1: Кондактанс тонкой проволочки из Au как функция магнитного поля [5].

систем [8]. Магнитное поле, перпендикулярное к тонкой проволочке создает вдоль нее квадратичный потенциал [9], который эффективно ограничивает длину системы L; поэтому изменение магнитного поля аналогично изменению L. Сопротивление ρ одномерной системы является сильно флуктуирующей величиной и форма его функции распределения $P(\rho)$ существенно зависит от нескольких первых моментов. Действительно, Фурье-образ $P(\rho)$ определяет характеристическую функцию

$$F(t) = \left\langle e^{i\rho t} \right\rangle = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \left\langle \rho^n \right\rangle \,, \tag{1}$$

которая является производящей функцией моментов $\langle \rho^n \rangle$. Если известны все моменты распределения, то по ним можно построить F(t), после чего $P(\rho)$ определяется обратным Фурьепреобразованием. Если $\langle \rho^n \rangle$ растут с n не слишком быстро, то вклад высших моментов подавлен множителем 1/n!, тогда как несколько первых моментов оказываются существенными. Эти моменты являются осциллирующими функциями L,

$$\begin{split} \langle \rho \rangle &= a_1(L) + b_1(L) \cos(\omega_1 L + \varphi_1), \\ \langle \rho^2 \rangle &= a_2(L) + b_2(L) \cos(\omega_2 L + \varphi_2) + \\ &+ b_3(L) \cos(\omega_3 L + \varphi_3), \quad \text{M T. д.} \quad , \end{split}$$

где $a_s(L)$ и $b_s(L)$ — монотонные функции. Дело в том, что показатель экспоненциального роста дл $\langle \rho^n \rangle$ определяетс алгебраическим уравнением (2n+1)-го порядка [8], один из корней которого всегда действителен, тогда как остальные комплексны для энергий внутри разрешенной зоны; поэтому имеетс *n* пар комплексно сопряженных корней. Выражение для $\langle \rho^n \rangle$ содержит линейную комбинацию соответствующих экспонент, и комплексные корни обеспечивают наличие *n* осциллирующих членов. В общем случае частоты ω_s являются несоизмеримыми, но их несоизмеримость исчезает в глубине разрешенной зоны при слабом беспорядке (разд.9). Согласно этой картине, осцилляции G(B) на Рис.1 определяются суперпозицией несоизмеримых гармоник и их Фурье-спектр должен обнаруживать наличие дискретных частот. Косвенным подтверждением этой картины являютс приведенные в [8] экспериментальные данные работы [10], согласно которым функция распределения $P(\rho)$ не является стационарной, а испытывает систематические изменени апериодического характера.

Из сказанного ясно, что Фурье-анализ зависимости G(B) (Рис.1) позволяет установить, какой из двух сценариев являетс более адекватным. Ниже показано, что такой анализ приводит к спектру, который выглядит чисто дискретным (разд.2): это указывает на справедливость второй концепции. При этом противоречий с диаграммными результатами [1, 2, 3, 4] не возникает, так как в целом форма спектра близка к дискретному белому шуму, который по свойствам аналогичен непрерывному. Более детальный анализ (разд.4) обнаруживает наличие непрерывной компоненты, малость которой теоретически объясняетс в разд.5. Зависимость результатов от процедуры обработки обсуждается в разд.3: несмотря на очевидные проблемы, возникающие при отходе от оптимального режима, дискретные частоты спектральных линий обнаруживают удивительную стабильность, свидетельствующую об их объективном происхождении. Анализ действительной и мнимой части Фурье-образа $F(\omega)$ зависимости G(B) (Рис.1) обнаруживает наличие быстрых осцилляций, связанных со сдвигом ее аргумента относительно "естественного" начала отсчета, природа которого обсуждаетс в разд.6. После исключения быстрых осцилляций изучаетс распределение фазовых сдвигов дискретных гармоник, которое не противоречит их ожидаемой стохастизации (разд.7). Положени экстремумов $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$ отличаютс от таковых для $|F(\omega)|$, что указывает на проявление экспоненциального роста гармоник, ожидаемого из аналогии с одномерными системами (разд.8). Распределение показателей и разностей частот соответствует теоретическим ожиданиям дл металлического режима (разд.9). Микроскопические оценки подтверждают соответствие результатов с геометрическими размерами образца (разд.10). Краткое сообщение о результатах работы опубликовано ранее [11].

2. Фурье-спектр апериодических осцилляций

Фурье-анализ зависимости G(B) (Рис.1) не может быть проведен непосредственно, так как резкий обрыв экспериментальных данных приводит к появлению медленно спадающих осцилляций в ее спектре и хаотизации последнего¹; для получения четких результатов необходимо использование надлежащей сглаживающей функции. Поясним ситуацию поподробнее.

¹ На Рис.14 работы [5] Фурье-спектр тонкой проволочки сравнивается со спектром маленького колечка; последний обнаруживает дополнительные осцилляции, связанные с эффектом Ааронова–Бома. При этом апериодические осцилляции не являлись предметом для обсуждения и их спектр (который в силу резкого обрезания носил хаотический характер) был огрублен авторами и представлен в виде огибающей по осцилляциям. Последнее выявляется путем сопоставления с Рис.12,13 работы [5], где хаотические осцилляции присутствуют в яеном виде.

Пусть функция f(x) определяется суперпозицией дискретных гармоник и является действительной; тогда

$$f(x) = \sum_{s} A_{s} \mathrm{e}^{i\omega_{s}x} = \frac{1}{2} \sum_{s} \left[A_{s} \mathrm{e}^{i\omega_{s}x} + A_{s}^{*} \mathrm{e}^{-i\omega_{s}x} \right] ,$$
(3)

где частоты ω_s без ограничения общности можно считать положительными. Тогда Фурье-образ f(x) имеет вид

$$F(\omega) = \pi \sum_{s} \left[A_s \delta(\omega + \omega_s) + A_s^* \delta(\omega - \omega_s) \right], \quad (4)$$

а его модуль

$$|F(\omega)| = \pi \sum_{s} |A_s| \left[\delta(\omega + \omega_s) + \delta(\omega - \omega_s) \right] \quad (5)$$

зависит лишь от интенсивностей спектральных линий и не содержит информации о фазовых сдвигах для соответствующих дискретных гармоник. Поскольку $|F(\omega)|$ являетс четной функцией, то можно ограничиться положительными значениями ω и опустить первую дельта-функцию в (5).

Поскольку функция f(x) может быть экспериментально измерена лишь в некотором конечном интервале значений x, то практически мы имеем

$$f(x) = \frac{1}{2} \sum_{s} \left[A_s \mathrm{e}^{i\omega_s x} + A_s^* \mathrm{e}^{-i\omega_s x} \right] G(x) \,, \qquad (6)$$

где функция G(x) равна единице внутри рабочего интервала и нулю вне его; в дальнейшем она будет подвержена сглаживанию. Тогда вместо (4) получим

$$F(\omega) = \frac{1}{2} \sum_{s} \left[A_s g(\omega + \omega_s) + A_s^* g(\omega - \omega_s) \right], \quad (7)$$

где $g(\omega) - \Phi$ урье-образ функции G(x), который являетс действительным, если G(x) выбрана четной. Таким образом, ограничение рабочего интервала приводит к замене дельта-функций на спектральные линии конечной ширины. Если дискретные частоты являются хорошо разделенными, а $g(\omega)$ сильно локализована вблизи нуля, то можно пренебречь перекрытием функций $g(\omega \pm \omega_s)$) и записать при положительных частотах

$$|F(\omega)|^2 \approx \frac{1}{4} \sum_s |A_s|^2 g^2(\omega - \omega_s) \,. \tag{8}$$

Рис. 2: (a) Функция G(x), определенная формулой (9), и (6) ее Фурье-образ $g(\omega)$ при различных значениях μ и T: $1 - \mu = 3.5, T = 0.125; 2 - \mu = 3, T = 0.25; 3 - \mu = 2,$ $T = 0.5; 4 - \mu = T \ln 2, T = 0.8.$

Функция $|F(\omega)|^2$ (т.н. спектральная плотность мощности [12]) более объективно характеризует относительный вклад различных гармоник, так как интеграл от нее по всем частотам равен интегралу от $|f(x)|^2$ по всем x; поэтому изменение спектра f(x) при неизменности среднеквадратичной флуктуации приводит к перераспределению интенсивностей между различными частотами при сохранении полной мощности спектра.

Нетрудно видеть, что для получения четкой картины в случае дискретного спектра нужно иметь по-возможности более узкую форму спектральных линий $q^2(\omega)$, что обеспечиваетс надлежащим выбором функции G(x). Общая стратегия определяетс свойствами интегралов от быстро осциллирующих функций [13]. Если f(x) является разрывной, то ее Фурье-образ спадает как $1/\omega$ на больших частотах; если разрыв имеет *n*-я производная, то соответственно $F(\omega) \sim \omega^{-n-1}$. В случае гладкой f(x) ее интеграл Фурье вычисляется путем сдвига контура в комплексную плоскость и определяется ближайшей сингулярностью или перевальной точкой, что приводит к зависимости $F(\omega) \sim \exp(-\alpha \omega)$. Если регулярная функция получена путем слабого сглаживания сингулярности, то показатель α является малым и экспонента проявлется лишь при очень больших ω , тогда как в остальной области сохраняется поведение, соответствующее сингулярной функции. В нашем случае требуется сгладить разрывность G(x), которой соответствует поведение $g(\omega) \sim \sin \omega a / \omega$. При этом слабое сглаживание не эффективно, а сильное сглаживание приводит к уменьшению G(x) вблизи границ рабочего интервала и потере экспериментальной информации; поэтому требуется некоторый разумный компромисс.

Выберем G(x) в виде симметризованной по x фермиевской функции

$$G(x) = \frac{1}{1 + e^{(x-\mu)/T} + e^{(-x-\mu)/T}} = \frac{1}{1 + 2e^{-\mu/T} ch(x/T)}, \quad (9)$$

интеграл Фурье для которой вычисляется точно

$$g(\omega) = \int_{-\infty}^{\infty} \frac{e^{i\omega x} dx}{b ch\beta x + c} = \frac{2\pi}{b\beta shx_0} \frac{\sin(\omega x_0/\beta)}{sh(\omega \pi/\beta)},$$
$$x_0 = \operatorname{arch}(c/b).$$
(10)

В нашем случае при выборе $x = B - \mu_0$ экспериментальные данные соответствуют интервалу $|x| \leq \mu_0$ с $\mu_0 = 4$ (при измерении в теслах). Мы приняли $\mu = \mu_0 - 4T$, что обеспечивает малое значение $G(\mu_0) \approx 0.02$ на границе интервала. Как ясно из Рис.2, при малых T в основном сохраняется поведение $g(\omega) = 2 \sin \mu \omega / \omega$, характерное дл резкого обрезания. Разумным представляется выбор $\mu = 2, T = 0.5$, использованный в работе [11]; при этом эффективно используется 50% экспериментальных данных, а ширина линии примерно такая же, как в случае предельного сглаживания, соответствующего $\mu = T \ln 2$, когда $x_0 = 0$ и

$$g(\omega) = \frac{2\pi T^2 \omega}{\mathrm{sh}\pi T \omega} \tag{11}$$

и осцилляции полностью исчезают. Для настоящей работы удобен выбор (11), при котором используется несколько меньше информации, но форма спектра практически такая же, как в [11].

Спектральный анализ экспериментальных данных (Рис.1) осуществляется путем вычисления интеграла Фурье в области $|x| < \mu_0$ с использованием указанной сглаживающей функции: полученные результаты представлены на Рис.3. Спектр очевидным образом состоит из дискретных линий, что подтверждает концепцию работы [8]. Однако, в интервале $\omega \leq 2\pi/\xi_B$ (где ξ_B оценивалось как среднеее расстояние между соседними максимумами или минимумами на Рис.1)² вид спектра напоминает дискретный белый шум: в

Рис. 3: Фурье-анализ экспериментальных данных Рис.1 со сглаживающей функцией (9) при $\mu = T \ln 2, T = 0.8$. На этом и последующих рисунках значения $F(\omega)$ умножены на 10.

грубом приближении линии эквидистантны, а их интенсивности примерно одинаковы. Поскольку сумма по частотам во многих случаях аппроксимируется интегралом, то дискретный белый шум по многим проявлениям не отличается от непрерывного. Пусть например

$$F(\omega) = \pi \sum_{s} \left[A_s \delta(\omega + \omega_s) + A_s^* \delta(\omega - \omega_s) \right] H(\omega) ,$$
(12)

где частоты ω_s эквидистантны ($\omega_s = s\Delta$), модули A_s одинаковы ($|A_s| = A$), а фазы A_s полностью случайны; функци $H(\omega)$ ограничивает спектр интервалом $|\omega| \leq \Omega$ и предполагается четной. Тогда определяя f(x) обратным Фурьепреобразованием, имеем для коррелятора

$$\langle f(x)f(x')\rangle = \frac{1}{2}\sum_{s} A^2 H^2(\omega_s) e^{i\omega_s(x-x')} \approx$$
$$\approx \frac{1}{2} A^2 \Delta^{-1} h(x-x'), \qquad (13)$$

где $h(x) - \Phi$ урье-образ $H^2(\omega)$. Если функци $H(\omega)$ является гладкой, то h(x) экспоненциально убывает на масштабе Ω^{-1} , что согласуется с диаграммными вычислениями [1, 2, 3, 4].

Таким образом, полученные результаты фактически примиряют две альтернативы, указанные в начале работы. С одной стороны — спектр дискретный, подтверждая концепцию работы [8]. С другой стороны, его форма приблизительно соответствует дискретному белому шуму, который по свойствам близок к непрерывному.

² При обработке Рис.1 был сильно увеличен и оцифрован вручную. При этом выясняется, что резкие выбросы на рисунке связаны с вертикальными штрихами, указывающими экспериментальную погрешность, тогда как фактически кондактанс является гладкой функцией магнитного поля.

3. Зависимость результатов от процедуры обработки

Обсудим зависимость результатов от выбора сглаживающей функции (9), которая при $\mu =$ $T \ln 2$ приводит к форме линии (11) и зависит от одного параметра $\beta = 1/T$. При выборе $\beta = 1.25$ она обеспечивает малое значение $G(\mu_0) \approx 0.02$ на границе рабочего интервала и спектр $|F(\omega)|^2$ имеет четкую дискретную форму (Рис.4,а), которая практически не меняется в интервале $\beta = 1.0 \div$ 1.5. При увеличении β форма линий уширяется в соответствии с (11) и происходит их частичное слияние (Рис.4,б). При уменьшении β значение $G(\mu_0)$ перестает быть малым и восстанавливается резкое обрезание, приводящее к возникновению паразитных осцилляций и появлению дополнительных максимумов в $|F(\omega)|^2$ (Рис.4,в). Смысл введения сглаживающей функции как раз и состоит в устранении таких осцилляций, не имеющих отношения к реальному спектру.

Несмотря на очевидные проблемы, возникающие при отклонении от оптимального режима обработки, частоты дискретных гармоник обнаруживают удивительную стабильность при изменении β более, чем на порядок величины (Рис.5), и нет никаких сомнений в их объективном происхождении. Небольшая зависимость от β связана с изменением формы линий и их взаимным влиянием друг на друга. Фактически Рис.5 демонстрирует, насколько хорошо работает приближение независимых гармоник.

Если бы экспериментальный диапазон изменения поля B был меньше, то режим оптимального разрешения линий (Puc.4,a) мог бы отсутствовать и происходил бы переход от Puc.4,б со слившимис линиями к Puc.4,в с паразитными осцилляциями. Можно предполагать, что и в настоящих условиях эксперимента разрешение линий является неполным и имеет место их частичное слияние.

4. Непрерывная компонента спектра

Фурье-спектр на Рис.3 выглядит чисто дискретным, что представляется не вполне естественным. Аналогия с одномерными системами приводит к выводу, что функци распределения $P(\rho)$ испытывает систематические изменени детерминированной природы, приводящие к осцилляциям ρ в конкретном образце. Но аналогичные осцилляции (случайного характера) должны

Рис. 4: Зависимость спектра Фурье от выбора сглаживающей функции: (a) $\beta = 1.25$, (b) $\beta = 2.0$, (b) $\beta = 0.25$.

Рис. 5: Зависимость частот наиболле интенсивных гармоник от параметра $\beta = 1/T$, определяющего форму сглаживающей функции.

Рис. 6: (а) Сравнение экспериментального спектра Фурье (сплошная линия) с соотношением (8) (пунктир); частоты ω_s и амплитуды $|A_s|$ определялись по положению и высоте максимумов на Рис.3. (б) Подгонка формы отдельных линий по формуле (18).

иметь место и при стационарном распределении $P(\rho)$ ввиду конечности ширины последнего. Было бы более естественно, если бы Рис.3 содержал непрерывную компоненту, на фоне которой проявлялись дискретные линии. Фактически непрерывная компонента действительно присутствует, и ниже мы попытаемся ее оценить.

Согласно (8), в пренебрежении взаимодейтвием гармоник спектр $|F(\omega)|^2$ представляется в виде линейной комбинации функций $g^2(\omega - \omega_s)$, форма которых заранее известна. Проверка соотношения (8) представлена на Рис.6,а, где частоты ω_s определялись по положениям максимумов на Рис.3, а амплитуды $|A_s|$ — по высоте этих максимумов; в отношении формы $g^2(\omega - \omega_s)$ никакой подгонки не делалось. Согласие выглядит удовлетворительным, но не является полным: ширина линий отличается от теоретической то в большую, то в меньшую сторону, а наблюдаемая форма линий не всегда симметрична.

Естественно предположить, что это связано с наличием непрерывной компоненты спектра. Считая последнюю медленно меняющейся и отсчитывая ω от центра линии, можно положить

$$F(\omega) = Ag(\omega) + B \tag{14}$$

и считать B постоянным в пределах ширины линии. Тогда

$$|F(\omega)|^2 = c_1 g^2(\omega) + c_2 g(\omega) + c_3, \qquad (15)$$

где

$$c_1 = |A|^2$$
, $c_2 = 2|A||B|\cos\chi$, $c_3 = |B|^2$ (16)

и χ определяется разностью фаз A и B. Счита $g(\omega)$ нормированной на единицу при $\omega = 0$, нетрудно понять, что функция $g^2(\omega)$ соответствует более узкому максимуму, чем $g(\omega)$; поэтому линия уширяется при $c_2 > 0$ и сужается при $c_2 < 0$, оказываясь несимметричной в случае существенного изменения B вблизи максимума. Согласно $(15), |F(\omega)|^2$ определяется суперпозицией трех базисных функций $g^2(\omega), g(\omega)$ и 1, коэффициенты которой можно установить из условия минимизации среднеквадратичного отклонения. Это стандартная процедура обработки [12], которая является линейной и однозначной. Однако, практически она приводит к нефизическим результатам ввиду нарушения услови

$$|c_2| \le 2\sqrt{|c_1||c_3|}, \tag{17}$$

следующего из (16). По-видимому, оптимальная подгонка соответствует предельным значениям ± 1 для $\cos \chi$; в этом случае параметры A и B можно считать действительными³, полага

$$|F(\omega)|^{2} = [(F_{0} - B)g(\omega) + B]^{2} , \qquad (18)$$

где $F_0 = |F(0)|$. Здесь учтено, что используемая процедура оправдана вблизи максимума $|F(\omega)|^2$, поэтому его положение естественно держать фиксированным. Подгонка по формуле (18) отдельно для каждой линии приводит к Рис.6,6: для больпинства линий согласие практически идеально, а отсутствие такового для некоторых из них повидимому связано с наличием второстепенных гармоник, которые "прячутся" на фоне основных линий.

После того, как коэффициенты c_1, c_2, c_3 определены, можно исключить из $|F(\omega)|^2$ вклады, пропорциональные $g^2(\omega)$ и $g(\omega)$. Производя такую процедуру для всех линий, получим "остаточный"спектр, приведенный на Рис.7. Резкие максимумы в этом

³ Подчеркнем, что действительность параметров A и B является эффективной. Фактически их фазы оказывается скоррелированными, либо совпадая друг с другом, либо отличаясь на π . По-видимому, фазы дискретных гармоник подстраиваются под конкретную реализацию непрерывной компоненты; механизм этого явления нам не известен и его нужно рассматривать как экспериментальный факт.

Рис. 7: Остаточная часть спектра, полученная путем исключения вкладов основных дискретных частот. Резкие максимумы по-видимому связаны со второстепенными гармониками, которые "прятались"на фоне основных спектральных линий, тогда как остальное естественно приписать непрерывной компоненте спектра.

спектре по-видимому связаны со второстепенными дискретными гармониками, тогда как все осталь-так как при нулевой длине системы ее сопротивное естественно приписать непрерывной компоненте; она составляюет 10 – 15% от амплитуды основных линий, и причина ее малости обсуждается в разд.5. Спектр непрерывной компоненты приблизительно соответствует белому шуму для $\omega \lesssim 2\pi/\xi_B$, но предположенная медленность ее изменения не имеет места; поэтому полученный результат следует считать лишь грубой оценкой. 4

Строго говоря, величина В в (15) представляет не только непрерывную компоненту, но и вклады соседних дискретных линий. Это не влияет на правильность определения амплитуды А, что подтверждается аналогичным вычислением для сглаживающей функции с $\mu = 2, T = 0.5$: "хвосты"последней существенно отличны от таковых для функции (11), но результат не слишком отличается от Рис.7.

Заметим, что спектр $|F(\omega)|^2$ на Рис.3 выглядит "более дискретным чем он есть на самом деле: дело в том, что величина В, оказываясь приблизительно постоянной в окрестностях максимумов, меняет знак в промежутках между некоторыми линиями. Остаточный спектр на Рис.7 не сводитс к величине В, но содержит также погрешности обработки и эффекты интерференции между соседними линиями.

5. Почему спектр практически дискретный?

Обсудим причины малости непрерывной компоненты спектра. Согласно [14]-[19] эволюция распределения $P(\rho)$ в одномерных системах описывается уравнением диффузионного типа

$$\frac{\partial P(\rho)}{\partial L} = \alpha \frac{\partial}{\partial \rho} \left[\rho(1+\rho) \frac{\partial P(\rho)}{\partial \rho} \right], \qquad (19)$$

в котором αL играет роль времени. Это уравнение получено в приближении случайных фаз, которое хорошо работает в квазиметаллическом режиме, т.е. в глубине разрешенной зоны при слабом беспорядке [8]. Естественным начальным условием для (19) являетс

$$P(\rho) = \delta(\rho)$$
 for $L = 0$, (20)

ление равно нулю независимо от реализации случайного потенциала. Такое начальное условие приводит к распределению

$$P(\rho) = (\alpha L)^{-1} \exp\left\{-\rho/\alpha L\right\}$$
(21)

при малых L (когда типичные ρ малы) и логнормальному распределению при больших L (когда типичные ρ велики). Для распределения (21) среднее значение $\langle \rho \rangle$ совпадает со среднеквадратичным отклонением σ , тогда как в логнормальном режиме σ растет быстрее, чем $\langle \rho \rangle$.

Рассмотрим более общее начальное условие, смысл которого обсуждается ниже:

$$P(\rho) = \delta(\rho - \rho_0) \qquad \text{при} \quad L = L_0.$$
 (22)

Решение уравнения (19) с начальным условием (22) близко к гауссовскому при L, близких к L₀ (см. Приложение 1), тогда как при больших Lвосстанавливаетс распределение (21) или логнормальное распределение, так как конечность ρ_0 и L₀ становится несущественной. В условиях близости $P(\rho)$ к гауссовскому распределению оно адекватно характеризуется двумя первыми моментами, эволюцию которых легко исследовать (см. Приложение 1): типичная ситуаци представлена на Рис.8. Нетрудно видеть, что $\langle \rho \rangle$ существенно превышает σ в окрестности L_0 шириной порядка L_0 .

Обсудим смысл начального условия (22). Будем измерять сопротивление ρ системы на длине L_0 , создава различные примесные конфигурации ⁵; при достаточно большом числе конфигураций мы

⁴ Для несимметричных линий обработка неоднозначна ввиду возможности подгонки их правого или левого склона. Эта неоднозначность использована для того, чтобы избежать появления нефизических отрицательных значений дл $|F(\omega)|^2_{res}$.

⁵ Это можно делать практически путем отогрева образца до достаточно высокой температуры.

Рис. 8: Поведение $\langle \rho \rangle$ и σ в металлическом режиме для начального условия (22). При выборе $\rho_0=\langle\rho\rangle,$ принятом на рисунке, зависимость $\langle \rho \rangle$ от L остается такой же, как для начального условия (20). Качественная картина не меняется, если для ρ_0 выбрано типичное значение из распределени (21).

воспроизведем распределение (21). Теперь изменим процедуру и будем отбирать только конфигурации, для которых ρ попадает в малый интервал вокруг ρ_0 : тем самым искусственно создается ансамбль с узким распределением типа (22), эволюция которого приводит к картине, представленной на Рис.8. Теперь возьмем один образец, сопротивление которого равно ρ_0 на длине L_0 . Зависимость $\rho(L)$ для такого образца может быть получена теоретически, если известны все детали примесной конфигурации. Обычно такая информация отсутствует и известны лишь общие статистические свойства случайного потенциала. В этом случае можно установить лишь приблизительный коридор возможностей дл зависимости $\rho(L)$, который и иллюстрируется на Рис.8.

Уравнение (19) получено в приближении случайных фаз, которое устраняет все осцилляционные эффекты. Однако, эволюцию $\langle \rho \rangle$ можно исследовать точно, не прибегая ни к каким предположениям (см. Приложение 2). В квазиметаллическом режиме для естественных идеальных контактов [8] справедлив результат

$$\langle \rho \rangle = \rho_0 + \frac{1+2\rho_0}{2} \left(e^{2\epsilon^2 l} - 1 \right) +$$
 (23)

$$+\frac{\epsilon^2}{\delta}\sqrt{\rho_0(1+\rho_0)}\left[e^{2\epsilon^2 l}\sin\psi - e^{-\epsilon^2 l}\sin\left(2\delta l+\psi\right)\right],$$

полученный для дискретной модели Андерсона; здесь $\delta = k_F a_0, \epsilon^2 = W^2/4\delta^2, l = (L-L_0)/a_0, k_F - \delta = k_F a_0$ фермиевский импульс, a_0 — постоянная решетки, W — амплитуда случайного потенциала, ψ опрезаданную на масштабе L_0 . Нетрудно видеть существование осцилляций, период которых определяется дебройлевской длиной волны ($2\delta l = 2k_F L$ при $L_0 = 0$; их амплитуда может быть сравнима с $\rho_0 \ll 1$ несмотря на наличие малого параметра ϵ^2/δ . В приближении случайных фаз величина ψ полностью стохастизирована, и усреднение по ней устраняет осцилляции, восстанавливая результат, следующий из уравнения (19) (см. (A.6) в Приложении 1). За пределами металлического режима $(\epsilon^2 \gtrsim \delta)$ амплитуда осцилляций заведомо превышает ρ_0 ,

$$\langle \rho \rangle = \rho_0 + \frac{1}{3} \left(\frac{\epsilon^2}{\delta} \right)^{2/3} \left(\frac{1 + 2\rho_0}{2} - \cos \psi \sqrt{\rho_0 (1 + \rho_0)} \right) \cdot \left[e^{x_1 l} - 2 e^{-x_1 l/2} \cos \left(\frac{\sqrt{3} x_1 l}{2} + \frac{\pi}{3} \right) \right], \quad (24)$$

и они не исчезают при усреднении по ψ ввиду принципиальной неприменимости приближения случайных фаз [8] (здесь $x_1 = (8\epsilon^2\delta^2)^{1/3}$). Амплитуда осцилляций в металлическом режиме возрастает при наличии чужеродных контактов

$$\langle \rho \rangle = \rho_0 + \frac{1+2\rho_0}{2} \left[-1 + \Delta_2^2 e^{2\epsilon^2 l} - \Delta_1^2 e^{-\epsilon^2 l} \cos 2\delta l \right] + \Delta_1 \sqrt{\rho_0 (1+\rho_0)} \cdot \left\{ e^{2\epsilon^2 l} \Delta_2 \cos \psi - (25) - e^{-\epsilon^2 l} \left[(\Delta_2 - 1) \cos \psi \cos 2\delta l + \cos (2\delta l + \psi) \right] \right\},$$

где параметры Δ_1 и Δ_2 определены в Приложении 2 и могут быть велики.

Таким образом, при достаточно общих условиях амплитуда осцилляций $\langle \rho \rangle$ сравнима с ρ_0 , и в окрестности L₀ заведомо превышает σ . Для высших моментов возможность получения результатов типа (23–25) выглядит практически нереальной из-за громоздкости вычислений, и можно привести лишь общие соображения. Для второго момента $\langle \rho^2 \rangle$ естественно ожидать, что амплитуда осцилляций сравнима с ρ_0^2 и существенно превышает величину σ^2 . Поэтому изменение ширины распределения за счет систематических изменений $P(\rho)$ существенно превышает ширину распределения в отсутствие осцилляций. Поэтому и осцилляции высших моментов также оказываются существенными.

Применимость проведенного анализа к рассматриваемой ситуации определяется тем, что для сглаживающей функции с $\mu = 2, \beta = 2$, использоделяетс разностью фаз, входящих в трансфер-матриванной в [11], эффективно задействован интервал

Рис. 9: (а) Поведение действительной и мнимой части $F(\omega)$ свидетельствует о наличии сдвиговых осцилляций $e^{i\omega a}$ с a = 4.3. (б) Поведение $\operatorname{Re}F(\omega)$ и $\operatorname{Im}F(\omega)$ после исключени сдвиговых осцилляций; пунктиром отмечены положения максимумов для $|F(\omega)|^2$.

 $B = 2 \div 6$ Тл, соответствующий изменению поля в 3 раза. Ввиду $L \propto B^{-1/2}$, это соответствует изменению L в 1.7 раза⁶, а при выборе L_0 в середине интервала отклонения от L_0 оказываются на уровне 30%. Для сглаживающей функции с $\mu = T \ln 2$, приводящей к (11), это отклонение еще меньше. Заметим, что ситуация не изменится при увеличении экспериментального диапазона используемых полей, так как соображения по выбору сглаживающей функции остаются прежними: изменяется лишь значение μ_0 при сохранении всех пропорций на Рис.2.

6. Сдвиговые осцилляции

Возвращаясь к формулам раздела 2, нетрудно заметить, что выражение (7) является более обоснованным, чем (8): если первое является точным следствием (6), то второе предполагает слабое перекрытие спектральных линий. Можно ожидать, что обработка на основе (7) с использованием представления (14) и подгонкой по отдельности действительной и мнимой части $F(\omega)$ приведет к более плавной зависимости для $|F(\omega)|^2_{res}$. К сожалению. эти ожидания не подтверждаются: получаемая картина не слишком отличается от Рис.7 и не оправдывает более сложной обработки. Однако, изучение действительной и мнимой части $F(\omega)$ выявляет много интересного, что определяет содержание этого и последующих разделов.

Зависимости $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$ оказываются быстро осциллирующими (см. Рис.9,а). Причину осцилляций легко понять: если $F(\omega)$ есть Фурьеобраз f(x), то сдвиг начала отсчета x приводит к соответствию

$$f(x-a) \iff e^{i\omega a}F(\omega)$$
 (26)

и при больших *а* появляются быстрые осцилляции. В связи с этим возникает вопрос о "естественном" выборе начала отсчета, для которого Фурьеобраз меняется медленно. По среднему периоду осцилляций на Рис.9, а можно установить, что *a* = 4.3 и исключение множителя $\exp(i\omega a)$ приводит к тому, что $\text{Re}F(\omega)$ и $\text{Im}F(\omega)$ изменяются на том же масштабе, что и $|F(\omega)|$ (Рис.9,6). Естественное начало отсчета определяется условием $x = B - \mu_0 = a$ и соответствует магнитному полю $B_0 = 8.3$ Тл, лежащему за верхней границей экспериментального диапазона полей. Учитывая, что большие поля соответствуют малым размерам системы, можно предложить следующую интерпретацию.

При изучении эволюции $P(\rho)$ по мере изменения длины L одномерной системы естественным началом отсчета является L = 0. Однако, если эволюция начинается с конечного масштаба L_0 , то при больших L возникает такое же распределение, как и в случае $L_0 = 0$. Поэтому, изучая ситуацию при больших L и экстраполируя к начальной стадии эволюции, невозможно установить, с какого масштаба она начинается ⁷: можно лишь утверждать, что этот масштаб мал по сравнению с рассматриваемыми. В терминах магнитного поля это оэначает, что эволюция начинается с неко-

⁶ Масштаб L оценивается как значение координаты x, при котором квадратичный потенциал $m\omega_B^2 x^2$ [9] сравнивается с энергией Ферми ϵ_F , так что $L \propto B^{-1}$. Однако, если энергия ϵ_F сравнима с первым уровнем Ландау, то ее нужно заменить на $\hbar\omega_B = \hbar eB/mc$, что дает зависимость $L \propto B^{-1/2}$. Как ясно из разд.10, вблизи середины экспериментального интервала полей вторая оценка более алекватна.

 $^{^7}$ Такая экстраполяция осложняется тем, что существуют факторы, сдвигающие начало отсчета L (см. разд.5 в [8]).

торого большого поля B_0 . Однако, ввиду нелинейного характера зависимости $L \propto B^{-1/2}$ значение B_0 , получаемое в результате линейной экстраполяции⁸ оказывается не слишком большим.

Предложенная интерпретация представляется логичной и являетс косвенным подтверждением аналогии с одномерными системами. Формальные аргументы в отношении выбора начала отсчета представлены в Приложении 3.

7. Распределение фаз

После того, как установлено естественное начало отсчета аргумента f(x), результаты для действительной и мнимой части $F(\omega)$ могут быть использованы для дальнейшего анализа. Оценивая значения $\text{Re}F(\omega)$ и $\text{Im}F(\omega)$ в точках максимума $|F(\omega)|^2$, можно установить комплексные фазы коэффициентов A_s в (6 – 8). Их распределение иллюстрируется на Рис.10.

Рис. 10: Распределение фазовых множителей $e^{i\varphi_s}$ на единичном круге; цифры у точек указывают значение *s*.

Как обсуждалось в разд.2, дискретный белый шум оказываетс аналогичным непрерывному, если фазы A_s полностью случайны. Согласно Рис.10,

их распределение достаточно равномерно и не противоречит ожидаемой стохастизации. Было бы интересно проверить, как меняется распределение фаз при переходе к другим примесным конфигурациям.

8. Проявления экспоненциального роста

Согласно формуле (7), вклады дискретных гармоник в $F(\omega)$ пропорциональны $g(\omega - \omega_s)$ и в пренебрежении их взаимодействием должны приводить к экстремумам $\operatorname{Re}F(\omega)$ и $\operatorname{Im}F(\omega)$ в точках ω_s . Однако, Рис.9,6 демонстрирует, что экстремумы $\operatorname{Re}F(\omega)$ и $\operatorname{Im}F(\omega)$ находятся в разных точках, не совпадающих с максимумами $|F(\omega)|^2$. Это указывает на несправедливость формулы (7) и ставит под сомнение исходное выражение (6), следствием которого она является.

Вспомним, что согласно (2) амплитуды осцилляций не являютс постоянными, а подвержены экспоненциальному росту. С учетом последнего вместо (6) нужно использовать выражение

$$f(x) = \frac{1}{2} \sum_{s} \left[A_s \mathrm{e}^{i\omega_s x + \alpha_s x} + A_s^* \mathrm{e}^{-i\omega_s x + \alpha_s x} \right] G(x) \,, \tag{27}$$

что вместо (7) приводит к результату

$$F(\omega) = \frac{1}{2} \sum_{s} \left[A_s g(\omega + \omega_s - i\alpha_s) + A_s^* g(\omega - \omega_s - i\alpha_s) \right]$$
(28)

Сосредоточимся на вкладе одной гармоники ω_s и, изменяя начало отсчета ω , положим

$$A = A' + iA'' = |A|e^{i\varphi}, \qquad g(\omega - i\alpha) = g_1(\omega) + ig_2(\omega)$$
(29)

Если ω_1 и ω_2 — положения экстремумов $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$, то справедливы соотношени

$$A'g'_{1}(\omega_{1}) - A''g'_{2}(\omega_{1}) = 0,$$

$$A'g'_{2}(\omega_{2}) + A''g'_{1}(\omega_{2}) = 0,$$
(30)

и фаза φ коэффициента A определяется условием

$$\operatorname{tg} \varphi = \frac{g_1'(\omega_1)}{g_2'(\omega_1)} = -\frac{g_2'(\omega_2)}{g_1'(\omega_2)}.$$
 (31)

Если экспериментальные значения ω_1 и ω_2 известны, то алгоритм определени φ и α состоит в следующем. Согласно (29), $g_1(\omega)$ и $g_2(\omega)$ зависят от α , причем $g_2(\omega) \to 0$ при $\alpha \to 0$; поэтому при малых α первая дробь в (31) велика, а вторая мала

⁸ Эффективна линейность экстраполяции связана с тем, что главный вклад в $F(\omega)$ происходит от середины экспериментального интервала полей (см. разд.5), где связь L и B практически линейна.

по абсолютной величине. Увеличивая α , можно добитьс равенства (31), что определяет значения tg φ и α . Поскольку по известной величине тангенса можно определить φ с точностью до аддитивных вкладов, кратных π , то выбор правильного квадранта для φ осуществляется с помощью соотношений

$$A'g_1(\omega_1) - A''g_2(\omega_1) = F_1,$$

$$A'g_2(\omega_2) + A''g_1(\omega_2) = F_2,$$
(32)

где F_1 и F_2 — значени $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$ в точках экстремума.

Если функция $g(\omega)$ в (11) нормирована на единицу при $\omega = 0$, то полага

$$z = \pi T \omega, \qquad \gamma = \pi T \alpha, \qquad (33)$$

имеем

$$g_1(\omega) = \frac{\cos\gamma z \operatorname{sh} z + \gamma \sin\gamma \operatorname{ch} z}{\operatorname{sh}^2 z + \sin^2\gamma},$$

$$g_2(\omega) = \frac{\sin\gamma z \operatorname{ch} z - \gamma \cos\gamma \operatorname{sh} z}{\operatorname{sh}^2 z + \sin^2\gamma},$$
(34)

$$|g(\omega + i\alpha)|^2 = \frac{z^2 + \gamma^2}{\operatorname{sh}^2 z + \operatorname{sin}^2 \gamma}.$$

Нетрудно видеть, что экстремумы $g_1(\omega)$ и $|g(\omega + i\alpha)|$ имеют место при $\omega = 0$, т.е. конечность α не влияет на их положение; соответственно частоты ω_1 и ω_2 естественно отсчитывать от нуля. Функция $g_2(\omega)$ является нечетной и ее мала добавка к $g_1(\omega)$ сдвигает экстремум в ту или другую сторону, в зависимости от знака добавки. Для функций $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$ добавки к $g_1(\omega)$, пропорциональные $g_2(\omega)$, имеют противоположные знаки, что обеспечивает разные знаки для ω_1 и ω_2 . При малых α можно ограничиться в (34) первым порядком по γ и с учетом малости ω_1 и ω_2 получить

$$\operatorname{tg}\varphi = -\frac{\omega_1}{\alpha} = \frac{\alpha}{\omega_2}, \qquad \alpha^2 = -\omega_1\omega_2.$$
 (35)

При этом из (32) следует $A' \approx F_1$, $A'' \approx F_2$, что позволяет установить знак α и выбрать правильный квадрант для фазы φ , считая, что она находится в интервале $(-\pi, \pi)$:

$$\alpha = \sqrt{-\omega_1 \omega_2} \operatorname{sign}(\omega_2 F_1 F_2),$$

$$\varphi = -\operatorname{arctg}(\omega_1/\alpha) + \pi \operatorname{sign} F_2 (1 - \operatorname{sign} F_1)/2.$$
(36)

Заметим, что $|tg\varphi|$ определяется лишь значениями ω_1 и ω_2 , а F_1 и F_2 требуются лишь для выбора правильного квадранта. Эта оценка φ принципиально отличается от использованной в предыдущем разделе и совпадает с ней лишь в случае, если сдвиги экстремумов $\operatorname{Re} F(\omega)$ и $\operatorname{Im} F(\omega)$ действительно являются проявлениями экспоненциального роста.

Сравнение двух оценок φ (см. Таблицу) показывает их приближенное совпадение для всех гармоник и подтверждает правильность выявления механизма сдвига экстремумов. Небольшие различия могут быть связаны как с приближенностью оценки по формуле (36), так и с наличием осложняющих факторов: взаимного влияния гармоник, наличия непрерывного спектра, экспериментальных погрешностей и пр.

Таблица. Оценки фаз, полученные согласно разд.7 (φ_s) и по формуле (36) ($\tilde{\varphi}_s$).

s	φ_s	$ ilde{arphi}_s$	s	φ_s	$ ilde{arphi}_s$
1	170°	161°	10	37°	37°
2	-88°	-84°	11	155°	145°
3	125°	120°	12	-15°	-20°
4	-172°	-162°	13	111°	121°
5	-78°	-67°	14	-96°	-106°
6	47°	40°	15	-81°	-72°
7	144°	153°	16	87°	84°
8	59°	49°	17	-144°	-140°
9	-124°	-153°			

9. Распределение показателей и разностей частот

Приведем сводку теоретических результатов для эволюции моментов. Принимая для $\langle \rho^n \rangle$ экспоненциальную зависимость от L, получим для показателя экспоненциального роста x алгебраическое уравнение (2n + 1)-го порядка. Для n = 1 и n = 2 такие уравнени выписываются в явном виде [8]

$$x (x^{2} + 4\mathcal{E}) = 2W^{2},$$

(x² + 4\mathcal{E}) (x² + 16\mathcal{E}) = 42W^{2}x^{2} + 96W^{2}\mathcal{E}, (37)

где \mathcal{E} —энергия, отсчитанная от нижнего края зоны, W — амплитуда случайного потенциала.

Структура уравнений для произвольного *n*-го

x

Рис. 11: Распределение разностей соседних частот $\Delta_s = \omega_{s+1} - \omega_s$; значение s указано у соответствующих линий. Разности Δ_s разбиваются на две группы I и II, локализованные вблизи $\bar{\Delta}$ и $2\bar{\Delta}$.

момента может быть установлена на основе аргументации раздела 4 работы [8]. В глубине разрешенной и запрещенной зон можно ограничитьс диагональными элементами в матрицах (42), (47)

Рис. 12: Распределение показателей экспоненциального роста α_s и их сопоставление с последовательностью (41) при надлежащем выборе ϵ^2 . Значение *s* указано у соответствующих линий.

это приводит к уравнению

$$\prod_{k=0}^{2n} \left[x - 2(n-k)\delta - B_n^k \epsilon^2 \right] = O(\epsilon^4 \delta^{2n-1}), \quad (38)$$

где $\epsilon^2 = W^2/4\mathcal{E},\, \delta^2 = -\mathcal{E},\, B^k_n = n(2n-1) + 3k(k-1)$

2n). Аналогичное уравнение вблизи края зоны

$$x^{2n+1} = \sum_{k=0}^{k_{max}} C_k W^{2k} x^{2n+1-3k}, \quad k_{max} = \left[\frac{2n+1}{3}\right]$$
(39)

следует из того, что при $x \sim \delta \sim \epsilon^2$ все члены уравнения имеют один порядок величины, и допустимы лишь комбинации $\delta^{2n} \epsilon^{2m}$ с $n \geq m$, из которых конечными при $\delta \to 0$ остаются лишь $\delta^{2n} \epsilon^{2n} \sim W^{2n}$. Нетривиальные корни уравнения (39) имеют порядок $W^{2/3}$ и приводят к несоизмеримым частотам в осцилляциях (2).

В глубине разрешенной зоны параметры δ и ϵ комплексны и для перехода к действительным величинам нужно сделать замену $\delta \rightarrow i\delta$, $\epsilon \rightarrow -i\epsilon$. Тогда уравнение (38) дает полный набор показателей для предельно металлического режима ($\epsilon^2 \ll \delta$)

$$x_n^k = 2i(n-k)\delta - B_n^k \epsilon^2 + O(\epsilon^4/\delta), \quad k = 0, 1, \dots, 2n.$$
(40)

Нетрудно видеть, что все частоты осцилляций в (2) являются целыми кратными величины $\bar{\Delta} = 2\delta$, т.е. их несоизмеримость исчезает. В идеальном случае все разности соседних частот $\Delta_s = \omega_{s+1} - \omega_s$ должны быть равными $\bar{\Delta}$; однако, практически некоторые гармоники не проявляются из-за слабой интенсивности, так что разности Δ_s "квантуются т.е. могут быть равными $\bar{\Delta}$, $2\bar{\Delta}$, $3\bar{\Delta}$ и т.д.

Распределение разностей Δ_s для 17 гармоник, очевидных из Рис.3, представлено на Рис.11. Нетрудно видеть, что они распадаются на две группы Iи II, локализованные вблизи значений $\overline{\Delta}$ и $2\overline{\Delta}$, где $\overline{\Delta}$ выбрано из лучшего согласия. Отсутствие точного квантования не должно вызывать беспокойства, т.к. последнее реализуется лишь в предельно металлическом режиме. В реальности металлический режим не является экстремальным, и к нему возникают поправки, указанные в (40).

Показатели экспоненциального роста α_s определяютс действительной частью выражения (40) и являются целыми кратными величины ϵ^2 . Перебирая всевозможные значения n и k, получим бесконечную последовательность показателей, отрезок который вблизи начала координат имеет вид

$$\dots, -3\epsilon^2, -\epsilon^2, 0, 2\epsilon^2, 3\epsilon^2, 6\epsilon^2, 8\epsilon^2, \dots$$
 (41)

Показатели, полученные в результате обработки экспериментальных данных по формуле (36), представлены на Рис.12 с противоположным знаком⁹

 $^{^9\,\}Pi$ оказатели α_s меняют знак при переходе от магнит-

и хорошо воспроизводят эту последовательность при подходящем выборе ϵ^2 . Единственным исключением являетс отсутствие значения $3\epsilon^2$, что повидимому связано с низкой интенсивностью соответствующих линий. Тот факт, что проявляются только показатели в окрестности начала координат, естественно объясняется тем, что гармоники с большими (по модулю) показателями локализуются вблизи краев рабочего интервала магнитных полей и не видны в его середине.

Заметим, что максимальный показатель для момента $\langle \rho^n \rangle$ в запрещенной зоне реализуется при k = 2n,

$$x_n^{max} = 2n\delta + n(2n-1)\epsilon^2, \qquad (42)$$

а в разрешенной зоне — при k = n,

$$x_n^{max} = n(n+1)\epsilon^2.$$
(43)

Эти результаты согласуются с функциональной формой дл логнормального режима

$$x_n^{max} = an + bn^2/2 \tag{44}$$

с параметрами *a* и *b*, полученными в [8]: $a = 2\delta - \epsilon^2$, $b = 4\epsilon^2$ в запрещенной зоне и $a = \epsilon^2$, $b = 2\epsilon^2$ в разрешенной зоне.

10. Микроскопическая картина

Нетрудно видеть, что для показателей роста α_s (Рис.12) квантование оказывается более четким, чем для разностей частот Δ_s (Рис.11). Этот факт имеет простое объяснение.

Тонкая проволочка является квазиодномерной системой, в которой поперечное движение заквантовано, что приводит к возникновению N_0 дискретных уровней ϵ_s^0 ; с учетом продольного движения вдоль оси x они превращаются в одномерные подзоны со спектрами

$$\epsilon_s(k_x) = \epsilon_s^0 + k_x^2/2m \,, \tag{45}$$

состояния которых заполнены ниже уровня Ферми E_F (Рис.13). Магнитное поле B наиболее сильно влияет на верхнюю заполненную подзону с минимальной энергией Ферми ϵ_F , ограничива движение в ней на длине L, определяемоей условием

$$m\omega_B^2 L^2 \sim \epsilon_F \sim E_0/N_0 \,, \tag{46}$$

Рис. 13: Для тонкой проволочки поперечное движение заквантовано, что приводит к возникновению N₀ дискретных уровней, которые при учете продольного движения превращаются в одномерные подзоны. Главный вклад в осцилляции кондактанса дает верхняя заполненна подзона.

так что

$$L \sim a \frac{B_0}{B\sqrt{N_0}},\tag{47}$$

где $E_0 = \hbar^2/ma^2$ и $B_0 = \phi_0/a^2$ — атомные единицы энергии и магнитного поля ($\phi_0 = \pi \hbar c/e$ квант потока). Кондактанс системы определяется суммой кондактансов одномерных подзон, осцилляции которых экспоненциально затухают при увеличении L (см. ниже). Поэтому главный вклад в осцилляции дает верхняя подзона, для которой длина L минимальна; однако, и соседние подзоны оказывают некоторое влияние. Для разностей частот Δ_s это влияние существенно уширяет распределение (Рис.11), так как частота осцилляций определяется фермиевским импульсом k_F , значение которого различно в разных подзонах. Для показателей роста α_s (Рис.12) ситуация совершенно другая. Фермиевские импульсы дл верхних подзон малы, и для рассеяния на примесях справедливо приближение медленных частиц¹⁰, так что амплитуда рассеяния не зави-

ного поля B к эффективной длине системы L (меняются местами правое и левое направление). При переходе от кондактанса к сопротивлению изменения знаков α_s не происходит, так как малые флуктуации двух величин пропорциональны друг другу.

¹⁰ Здесь существенно отличие реальной системы от модели Андерсона, рассматриваемой в [8]. В модели Андерсона металлический режим соответствует большой концентрации слабых примесей, которые можно рассматривать по теории возмущений. В реальной системе слабый беспорядок создается малой концентрацией сильных примесей, для которых справедливо приближение медленных частиц. Это различие не влияет на результаты для показателей, так как на масштабе длины волны конфигурацию случайного потенциала можно изменять в широких пределах, не влияя на крупномасштабные свойства волновых функций.

сит от импульса. Показатели роста прямо связаны с амплитудой рассеяния и не зависят от фермиевских импульсов одномерных подзон. Поэтому влияние соседних подзон не нарушает точного квантования, и фактически Рис.12 соответствует строго одномерной системе. Отклонения от точного квантования связаны лишь с неэкстремальностью металлического режима и экспериментальными погрешностями.

Минимальная дискретная гармоника на Рис.3 соответствует приблизительно 4 периодам осцилляций в интервале полей 1 ÷ 10 Тл. Ее частота определяется дебройлевской длиной волны $\lambda \sim a\sqrt{N_0}$ в верхней подзоне, и число осцилляций при изменении поля от B_{min} до $10B_{min}$ в силу (47) дается оценкой

$$N_{osc} \sim B_0 / N_0 B_{min} , \qquad (48)$$

что для $B_0 \sim 10^4 \,\mathrm{Tr}$, $B_{min} = 1 \,\mathrm{Tr}$, $N_{osc} = 4$ дает

$$N_0 \sim 2.5 \cdot 10^3$$
. (49)

Это примерно в 2 раза меньше, чем число атомов в поперечном сечении проволочки диаметром 25 нм [5] и соответствует наполовину заполненной трехмерной зоне. При этом $\lambda \sim 50a$ и актуальный диапазон длин

$$L = 20 \div 200a \tag{50}$$

оказывается в пределах длины проволочки 310 нм [5].

Выше мы предполагали условие $\hbar\omega_B \ll \epsilon_F$, которое фактически нарушается в середине экспериментального интервала полей. При больших полях более адекватна оценка $L \sim a(B_0/B)^{1/2}$, следующая из (46) в результате замены ϵ_F на $\hbar\omega_B$. В результате нижн граница в (50) сдвигается с 20*a* до 30*a*, что несущественно для приведенных оценок.

Как ясно из (23,25), выражение для $\langle \rho \rangle$ содержит растущую экспоненту $e^{2\epsilon^2 l}$ и осциллирующие члены, убывающие как $e^{-\epsilon^2 l}$. Аналогичная картина справедлива для высших моментов: максимальный показатель (43) в металлическом режиме являетс действительным и не приводит к осцилляциям, тогда как осциллирующие члены растут более медленно и относительно малы даже при положительных α_s . Поэтому для типичного значения ρ ситуация такая же, как для моментов, и при переходе к безразмерному кондактансу $g = 1/\rho$ осцилляции оказываются затухающими. При типичных значениях $\Delta_1 \sim \Delta_2 \sim 1$ дл чужеродных контактов осцилляции g в области $\epsilon^2 l \lesssim 1$ оказываются порядка единицы, что дает флуктуации порядка e^2/h для размерного кондактанса (Рис.1). Согласно этой картине, универсальным является лишь порядок величины флуктуаций, тогда как на их амплитуду можно существенно влиять, изменяя уровень Ферми или свойства идеальных контактов.

11. Заключение

В работе представлен аккуратный Фурье-анализ апериодических осцилляций кондактанса (Рис.1), обнаруженных в классических экспериментах Вебба и Вашбурна [5]. Полученные результаты фактически примиряют два альтернативных сценария, указанные в начале работы. С одной стороны Фурье-спектр практически дискретный, подтверждая концепцию работы [8], согласно которой апериодические осцилляции кондактанса определяются суперпозицией несоизмеримых гармоник. С другой стороны, форма спектра напоминает дискретный белоый шум, свойства которого близки к непрерывному. Более подробный анализ обнаруживает наличие непрерывной компоненты, малость которой объясняется в разд.5.

В работе обнаружено множество качественных моментов, подтверждающих правильность представленной интерпретации. Частоты дискретных линий слабо зависят от способа обработки, что доказывает их объективное происхождение. "Естественное "начало отсчета f(x), обнаруженное при исключении сдвиговых осцилляций подтверждает правильность аналогии с одномерными системами. О том же свидетельствуют проявления экспоненциального роста амплитуды гармоник. Распределение фаз коэффициентов A_s согласуется с их предполагаемой случайностью. Распределение показателей роста и разностей частот согласуются с теоретическими результатами дл металлического режима. Микроскопические оценки подтверждают представленную картину.

Универсальные флуктуации кондактанса обсуждаются во многих работах (см. напр. [20]–[40] и ссылки там), и было бы интересно обработать результаты других экспериментов в духе настоящей работы.

Автор признателен В.В.Бражкину, по инициативе которого выполнена работа [11].

Приложение 1. Решение уравнения (19)

Ограничимся анализом металлической области, когда типичные значения ρ малы. Рассматривая задачу на собственные значения для оператора в правой части уравнения (19) и ограничиваясь низшим порядком по ρ , имеем уравнение

$$-\lambda P = P'_{\rho} + \rho P''_{\rho\rho} \,. \tag{A.1}$$

Считая, что ρ меняется в интервале от нуля до R, наложим условие конечности при $\rho = 0$ и нулевое граничное условие при $\rho = R$. Тогда собственные значения и собственные функции имеют вид

$$\lambda_s = \mu_s^2 / 4R, \qquad e_s(\rho) = J_0\left(\mu_s \sqrt{\rho/R}\right), \quad (A.2)$$

где μ_s — корни функции Бесселя $J_0(x)$. Решая уравнение (19) с начальным условием (22) путем разложения $P(\rho)$ по собственным функциям (A.2), имеем

$$P(\rho, t) = \int_{0}^{\infty} 2\mu d\mu \,\mathrm{e}^{-\mu^{2}t} \,J_{0}(2\mu\sqrt{\rho_{0}}) \,J_{0}(2\mu\sqrt{\rho})\,,$$
(A.3)

где $t = \alpha(L - L_0)$ и учтено, что при больших R спектр собственных значений μ_s становится квазинепрерывным и суммирование по s можно заменить интегрированием по μ , используя асимптотику $\mu_s = \pi s + const$ при больших s. Вычисляя интеграл в (A.3), получим

$$P(\rho, t) = \frac{1}{t} \exp\left\{-\frac{\rho + \rho_0}{t}\right\} I_0\left(\frac{2\sqrt{\rho\rho_0}}{t}\right) , \quad (A.4)$$

где $I_0(x) = J_0(ix)$. При $\rho \lesssim t$ и $t \gg \rho_0$ распределение (A.4) переходит в (21), а при $\rho \approx \rho_0$ и $t \ll \rho_0$ становится гауссовским

$$P(\rho, t) = \left(\frac{1}{4\pi\rho_0 t}\right)^{1/2} \exp\left\{-\frac{(\rho - \rho_0)^2}{4\rho_0 t}\right\}.$$
 (A.5)

Ввиду близости распределения (A.4) к гауссовскому оно адекватно характеризуется двумя первыми моментами. Умножая (19) на ρ^n и интегрируя по ρ , получим уравнения эволюции моментов распределения $P(\rho)$; их решение для начального условия (22) имеет вид

$$\langle \rho \rangle = -\frac{1}{2} + \frac{1+2\rho_0}{2} e^{2t}, \qquad (A.6)$$

$$\left\langle \rho^2 \right\rangle = \frac{1}{3} - \frac{1+2\rho_0}{2} e^{2t} + \left[\rho_0^2 + \frac{1+2\rho_0}{2} - \frac{1}{3} \right] e^{6t}.$$

При малых ρ выражения упрощаются,

$$\langle \rho \rangle = \rho_0 + t ,$$

$$\langle \rho^2 \rangle = \rho_0^2 + 4\rho_0 t + 2t^2 ,$$

$$\sigma^2 = 2\rho_0 t + t^2 , \qquad (A.7)$$

и соответствуют распределению (A.4). Эти результаты справедливы при $L > L_0$. Описание эволюции в интервале $0 < L < L_0$ затрудняется необходимостью удовлетворить двум условиям (20) и (22), что возможно лишь при наложении ограничений на реализацию случайного потенциала. Эти ограничения накладываются на интервал $(0, L_0)$ в целом и не существенны при малых L и L, близких к L_0 . В первом случае имеем $\langle \rho \rangle = \sigma$ в соответствии с распределением (21). Во втором случае ситуация определяется тем, что уширение распределения происходит симметрично¹¹ при отклонении L вправо или влево от L_0 . Для величины $\langle \rho \rangle$ условия (20) и (22) выполняются автоматически, если ρ_0 выбрано равным среднему значению для распределения (21) при $L = L_0$. В результате сказанного приходим к картине, представленной на Рис.8.

Приложение 2. Эволюция $\langle \rho \rangle$ дл начального условия (22)

Вычисление $\langle \rho \rangle$ технически сводится к исследованию эволюции вторых моментов для трансферматрицы с комплексными элементами T_{ij} [8]

$$z_{1}^{(l)} = \left\langle \left| T_{11}^{(l)} \right|^{2} \right\rangle, \quad z_{2}^{(l)} = \left\langle T_{11}^{(l)} T_{12}^{(l)*} \right\rangle,$$
$$z_{3}^{(l)} = \left\langle T_{11}^{(l)*} T_{12}^{(l)} \right\rangle, \quad z_{4}^{(l)} = \left\langle \left| T_{12}^{(l)} \right|^{2} \right\rangle, \quad (A.8)$$

Они удовлетворяют системе разностных уравнений, общее решение которой имеет вид [8]

$$\begin{pmatrix} z_1^{(l)} \\ z_2^{(l)} \\ z_3^{(l)} \\ z_4^{(l)} \end{pmatrix} = C_0 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \sum_{i=1}^3 C_i \begin{pmatrix} 1 \\ e_2(x_i) \\ e_3(x_i) \\ 1 \end{pmatrix} e^{x_i l} ,$$
(A.9)

¹¹ Уравнение (19) имеет одинаковый вид, если положить $L = L_0 + l$ или $L = L_0 - l$ и рассматривать эволюцию по l. Это ясно из схемы вывода подобных уравнений (см. Приложение A в [41]).

где x_1, x_2, x_3 — корни первого уравнени (37) и

$$e_2(x) = \frac{\mathcal{A}x + \mathcal{B}}{p(x)}, \qquad e_3(x) = \frac{\mathcal{A}^* x + \mathcal{B}^*}{p(x)},$$
$$\mathcal{A} = 2\epsilon^2 - 2i\Delta, \qquad \mathcal{B} = 4\alpha\Delta + 4i\epsilon^2(\alpha - \Delta),$$
$$p(x) = x^2 + 2\epsilon^2 x + 4\alpha^2. \qquad (A.10)$$

Здесь $\alpha = -\Delta_2 \delta$, $\Delta = \Delta_1 \delta$, δ и ϵ^2 определены после (23),

$$\Delta_1 = \frac{1}{2} \left(\frac{k}{\bar{k}} - \frac{\bar{k}}{\bar{k}} \right), \quad \Delta_2 = \frac{1}{2} \left(\frac{k}{\bar{k}} + \frac{\bar{k}}{\bar{k}} \right). \quad (A.11)$$

где \bar{k} и k — фармиевские импульсы в изучаемой системе и присоединенных к ней идеальных контактах. В отличие от [8], в качестве начального условия принимается не единичная матрица, а трансфер-матрица общего вида

$$T = \begin{pmatrix} \sqrt{\rho+1} e^{i\varphi} & \sqrt{\rho} e^{i\theta} \\ \sqrt{\rho} e^{-i\theta} & \sqrt{\rho+1} e^{-i\varphi} \end{pmatrix}, \qquad (A.12)$$

с $\rho=\rho_0$
и $\psi=\theta-\varphi.$ Величина $z_4^{(n)}$ непосредственно определяет
 $\langle\rho\rangle,$ что дает общее выражение для последней

$$\langle \rho \rangle = C_0 + C_1 e^{x_1 l} + C_2 e^{x_2 l} + C_3 e^{x_3 l}, \quad (A.13)$$

где

$$C_0 = -\frac{1}{2}, \qquad C_i = (-1)^{i+1} \left[(1+2\rho_0) \frac{Q_i}{2Q} + K_1 \frac{R_i}{Q} + K_2 \frac{S_i}{Q} \right], \quad i = 1, 2, 3 \qquad (A.14)$$

И

$$\begin{aligned} Q_1 &= (x_2 - x_3) \, p(x_1) \,, \quad Q_2 &= (x_1 - x_3) \, p(x_2) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ Q_3 &= (x_1 - x_2) \, p(x_3) \,, & \text{Tr} \\ R_1 &= [x_2 p(x_3) - x_3 p(x_2)] \, p(x_1) \,, & \text{Tr} \\ R_2 &= [x_1 p(x_3) - x_3 p(x_2)] \, p(x_1) \,, & \text{Tr} \\ R_3 &= [x_1 p(x_2) - x_2 p(x_1)] \, p(x_2) \,, & \text{Tr} \\ R_3 &= [x_1 p(x_2) - x_2 p(x_1)] \, p(x_3) \,, & \text{Tr} \\ S_2 &= [p(x_3) - p(x_2)] \, p(x_1) \,, & \text{Tr} \\ S_2 &= [p(x_3) - p(x_2)] \, p(x_1) \,, & \text{Tr} \\ S_3 &= [p(x_2) - p(x_1)] \, p(x_2) \,, & \text{Tr} \\ S_3 &= [p(x_2) - p(x_1)] \, p(x_3) \,, & \text{Tr} \\ K_1 &= \frac{\epsilon^2 \sin \psi - \Delta \cos \psi}{4 \left[\alpha \Delta^2 + \epsilon^4 (\alpha - \Delta) \right]} \, \sqrt{\rho_0 (1 + \rho_0)} \,, & (A.15) \quad \text{Tr} \end{aligned}$$

$$K_2 = \frac{\epsilon^2(\alpha - \Delta)\cos\psi + \alpha\Delta\sin\psi}{2\left[\alpha\Delta^2 + \epsilon^4(\alpha - \Delta)\right]}\sqrt{\rho_0(1 + \rho_0)}.$$

Используя асимптотики для корней x_1, x_2, x_3 в металлической режиме [8], придем к результатам (23) и (25). Первый из них справедлив для "естественных "идеальных контактов¹², которые отличаются от изучаемой системы лишь отсутствием в них случайного потенциала; при этом k = k, $\Delta_1 = 0$ и осцилляции возникают в первом порядке по малому параметру ϵ^2/δ . Результат (25) справедлив дл чужеродных контактов, когда $\Delta_1 \neq 0$ и осцилляции имеют место уже в нулевом порядке по ϵ^2/δ . Использование асимптотики x_1, x_2, x_3 в "критической" области [8] приводит к результату (24), справедливому вблизи края исходной зоны; он приведен дл "естественных"контактов, так как ситуация для чужеродных контактов в достаточной мере характеризуется формулами работы [8].

Приложение 3. О выборе естественного начала отсчета

Согласно соотношениям Онсагера, кондактанс является четной функцией магнитного поля В и при выборе x = B функция f(x) в (3) является четной. Выберем сглаживающую функцию в виде G(x-a) + G(x+a) с четной G(x), т.е. в симметризованной по x форме. Тогда Фурье-образ является действительным и с точностью до знака совпадает со своим модулем, а потому не содержит сдвиговых осцилляций. Теперь устраним функцию G(x + a). Возникающий Фурье-образ $F(\omega)$ функции f(x)G(x-a) будет комплексным; его действительна часть уменьшается в 2 раза по сравнению с предыдущим¹³ и не содержит сдвиговых осцилляций. Последние отсутствуют и в Im $F(\omega)$, так как они в равной мере влияют на действительную и мнимую часть. После сдвига $x \to x + a$ Фурье-образ принимает вид

$$F(\omega) = e^{i\omega a} \int f(x+a)G(x)e^{i\omega x}dx$$

и возникающий интеграл при $a = \mu_0$ соответстует тому, который рассматривался в разд.2, тогда как множитель $e^{i\omega a}$ отвечаеи за сдвиговые осцилляции. Однако получаемый при этом знак *a* не соответствует найденному эмпирически.

 $^{^{12}}$ В этом случае для $x_1,~x_2,~x_3$ требуются разложения по ϵ^2/δ более высокого порядка, чем приведены в [8].

¹³ Легко проверить, что Фурье образы функций f(x)G(x + a) и f(x)G(x - a) имеют одинаковые действительные и противоположные мнимые части.

Причина противоречия состоит в том, что симметрия Онсагера выделяет не только значение B = 0, но и $B = \infty$; именно последнее соответствует эмпирической ситуации. При выборе x = 1/B можно повторить все предыдущие рассуждения; однако, приращения B и x имеют противоположные знаки и дл качественного соответствия с разд.2 нужно изменить знак ω . Это и приведет к появлению множителя $e^{i\omega a}$ с правильным знаком a.

Список литературы

- Б. Л. Альтшулер, Письма в ЖЭТФ 41, 530 (1985).
- [2] Б. Л. Альтшулер, Д. Е. Хмельницкий, Письма в ЖЭТФ 42, 291 (1985).
- [3] P. A. Lee, A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
- [4] P. A. Lee, A. D. Stone, Y.Fukuyama, Phys. Rev. B 35, 1039 (1987).
- [5] S. Washburn, R. A. Webb, Adv. Phys. 35, 375 (1986).
- [6] B. L Altshuler, P. A. Lee, R. A. Webb (Eds), Mesoscopic Phenomena in Solids, North-Holland, Amsterdam, 1991.
- [7] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
- [8] И. М. Суслов, ЖЭТФ **156**, 950 (2019).
- [9] Л. Д. Ландау, Е. М. Лифшиц, Квантовая механика, Москва, Наука, 1974.
- [10] D. Mailly, M. Sanquer, J. Phys. (France) I 2, 357 (1992).
- [11] V. V. Brazhkin, I. M. Suslov, J. Phys.: Condensed Matter (in print); arXiv: 1911.10441.
- [12] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes in Fortran, Cambridge University Press, 1992.
- [13] А. Б. Мигдал, Качественные методы в квантовой теории, Москва, Наука, 1975.
- [14] В. И. Мельников, ФТТ **23**, 782 (1981).
- [15] A. A. Abrikosov, Sol. St. Comm. **37**, 997 (1981).

- [16] N. Kumar, Phys. Rev. B **31**, 5513 (1985).
- [17] B. Shapiro, Phys. Rev. B 34, 4394 (1986).
- [18] P. Mello, Phys. Rev. B **35**, 1082 (1987).
- [19] B. Shapiro, Phil. Mag. 56, 1031 (1987).
- [20] K. M. D. Hals, A. K. Nguyen, X. Waintal, A. Brataas, Phys. Rev. Lett. **105**, 207204 (2010).
- [21] A. S. Lien, L. Y. Wang, C. S. Chu, J. J. Lin, Phys. Rev. B 84, 155432 (2011).
- [22] J. G. G. S. Ramos, D. Bazeia, M. S. Hussein, C. H. Lewenkopf, Phys. Rev. Lett. **107**, 176807 (2011).
- [23] Z. Li, T. Chen, H. Pan, et al, Sci. Rep. 2, 595 (2012).
- [24] E. Rossi, J. H. Bardarson, M. S. Fuhrer, S. D. Sarma, Phys. Rev. Lett. **109**, 096801 (2012).
- [25] P. Y. Yang, L. Y. Wang, Y. W. Hsu, J. J. Lin, Phys. Rev. B 85, 085423 (2012).
- [26] S. Minke, J. Bundesmann, D. Weiss, J. Eroms, Phys. Rev. B 86, 155403 (2012).
- [27] S. Gustavsson, J. Bylander, W. D. Oliver, Phys. Rev. Lett. **110**, 016603 (2013).
- [28] A. L. R. Barbosa, M. S. Hussein, J. G. G. S. Ramos, Phys. Rev. E 88, 010901(R) (2013).
- [29] Ph. Jacquod and I. Adagideli, Phys. Rev. B 88, 041305(R) (2013).
- [30] J. Bundesmann, M. H. Liu, I. Adagideli, K. Richter, Phys. Rev. B 88, 195406 (2013).
- [31] C. L. Richardson, S. D. Edkins, G. R. Berdiyorov, et al, Phys. Rev. B 91, 245418 (2015).
- [32] T. C. Vasconcelos, J. G. G. S. Ramos, A. L. R. Barbosa, Phys. Rev. B 93, 115120 (2016).
- [33] C. C. Kalmbach, F. J. Ahlers, J. Schurr, et al, Phys. Rev. B 94, 205430 (2016).
- [34] J. G. G. S. Ramos, A. L. R. Barbosa, B. V. Carlson, et al, Phys. Rev. E 93, 012210 (2016).
- [35] Y. Hu, H. Liu, H. Jiang, X. C. Xie, Phys. Rev. B 96, 134201 (2017).

- [36] H. C. Hsu, I. Kleftogiannis, G. Y. Guo, V. A. Gopar, J. Phys. Soc. Jpn 87, 034701 (2018).
- [37] M. A. Aamir, P. Karnatak, A. Jayaraman, et al, Phys. Rev. Lett. **121(13)**, 136806 (2018).
- [38] S. Islam, S. Bhattacharyya, H. Nhalil, et al, Phys. Rev. B 97, 241412R (2018).
- [39] T. Vercosa, Y. J. Doh, J. G. G. S. Ramos, A. L.
 R. Barbosa, Phys. Rev. B 98, 155407 (2018).
- [40] F. Hajiloo, F. Hassler, J. Splettstoesser, Phys. Rev. B 99, 235422 (2019).
- [41] И. М. Суслов, ЖЭТФ 151, 897 (2017).