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It has been commonly believed that a critical wet-
ting transition must occur when two superconductors
characterized by different critical temperatures are
brought into contact: as the critical magnetic field
strength is approached, the proximity-induced super-
conducting layer gradually expands into the bulk of the
weaker superconductor [1]. However, it was found that
the normal state of aluminum brought into contact with
tin or tantalum can be substantially overcooled [2].

To resolve the controversy, we have analyzed the
proximity effect by applying the Ginzburg–Landau the-
ory. We have found that a first-order phase transition
can occur in the proximity-induced superconducting
layer, with a jump in the wetting-layer thickness, and
that wetting can take place only in the phase character-
ized by the larger thickness.

The possibility of diverse junction behavior can be
demonstrated under quite general assumptions. Sup-
pose that the wetting-layer thickness 

 

L

 

 increases indef-
initely as the magnetic field 

 

H

 

 approaches the critical
value 

 

H

 

c

 

. Then, the system can be described by a mac-
roscopic model.

The order parameter has the equilibrium bulk value
almost everywhere in the thicker layer, deviating from
it only within a distance on the order of the coherence
length 

 

ξ

 

 from the layer boundaries. Owing to exponen-
tial decay of these deviations into the bulk of the layer,
the NS interface interacts with the junction. Thus, the
energy of the proximity-induced superconducting layer
can be represented as (cf. [3])

(1)

where  = 

 

ξ

 

 (in conventional notation [4]), 

 

σ

 

NS

 

 is
the energy of the NS interface, and 

 

σ

 

SS

 

 is the junction
energy. Note that, if the Ginzburg–Landau parameter 

 

κ

 

is close to 1/ , then the term proportional to
exp(

 

−

 

L

 

/

 

δ

 

) must also be included to allow for magnetic
field penetration.
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When the NS interface is repelled from the junction
(

 

β

 

 > 0), the following wetting law is obtained by mini-
mizing the energy given by (1): 

(2)

When the NS interface is attracted to the junction
(

 

β

 

 < 0), the wetting-layer thickness remains finite as the
field strength approaches the critical value. This state
can be described only by microscopic theory.

Suppose that, in addition to the “long” state, there
exists a locally stable proximity-induced superconduc-
tive state characterized by a finite thickness. A first-
order phase transition between these states of the prox-
imity-induced superconducting layer can occur across a
curve 

 

H

 

s

 

(

 

T

 

) > 

 

H

 

c

 

(

 

T

 

). Since both phases have the same
symmetry, the curve 

 

H

 

s

 

(

 

T

 

) can terminate at some criti-
cal point, as is common for first-order transitions. How-
ever, when the curves 

 

H

 

s

 

(

 

T

 

) and 

 

H

 

c

 

(

 

T

 

) meet at some
point (wetting point) (

 

H

 

WT

 

, 

 

T

 

WT

 

), the system exhibits
an uncommon behavior that can also be analyzed in the
framework of a macroscopic model.

On the phase-transition curve, the energy of the
“long” (wetting) solution given by (1) equals the energy

 

σ

 

 of the “short” (nonwetting) one. In the vicinity of the
wetting transition point, the linear magnetic-field
dependence of 

 

σ

 

 can be neglected as compared to the
stronger dependence expressed by (1). The temperature
dependence can also be neglected by setting 

 

T 

 

= 

 

T

 

WT

 

everywhere except for

(3)

where the constant 

 

C

 

 > 0, in agreement with the phase
diagram obtained by computing the Ginzburg–Landau
equation (see below). Minimizing (1) with respect to 

 

L

L ξ
Hc
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and matching the energy of both states, we obtain the
following expression describing the behavior of the
phase equilibrium curve in the neighborhood of 

 

T

 

WT

 

:

(4)

Now, we analyze the proximity effect and explore
the applicability of the Ginzburg–Landau theory to the
phase transition. We consider the simplest case of states
that are uniform in the junction plane. Then, the Gin-
zburg–Landau equations reduce to two equations for
the 

 

ψ

 

-function and the vector potential 

 

A

 

 (Eqs. (46.8)
and (46.9) in [4]).

To formulate boundary conditions at the junction,
we must take into account only the term linear in the
order parameter 

 

ψ

 

 of the weaker superconductor,

(5)

Here, 

 

λ

 

 represents the coupling between the supercon-
ductors, and 

 

α

 

 is the value of the order-parameter phase
for the stronger superconductor near the junction.

When 

 

λ

 

 < 0, the order-parameter phases are equal at
the boundary; when 

 

λ

 

 > 0, they differ by 

 

π

 

 (this case is
known as 

 

π

 

-junction [5]). We note here that the Gin-
zburg–Landau theory does not make any qualitative
distinction between these states. The only observable
distinction is the presence of a ubiquitous vortex carry-
ing one-half of the magnetic-flux quantum near the
curve where 

 

λ

 

 changes sign in inhomogeneous struc-
tures.

By virtue of gauge invariance at field strengths that are
low for the stronger superconductor, we can set 

 

α

 

 = 0.
Furthermore, near the bulk phase transition point,

H Hc –
T TWT–
T TWT–( )ln

------------------------------.∝–

λ ψ*eiα ψe iα–+( ).

 

where all characteristic lengths in the weaker supercon-
ductor increase, the finiteness of the magnetic penetra-
tion depth can be ignored. Then, the boundary condi-
tion naturally derived by varying the energy reduces to

(6)

The 

 

x

 

 axis is directed along the normal to the boundary
into the weaker superconductor. Note that the 

 

ψ

 

-func-
tion and its derivative at the boundary have opposite
signs. In dimensionless quantities (see [4]), the bound-
ary condition is rewritten as

(7)

The structure of the boundary between the super-
conductors is readily calculated in the absence of mag-
netic field:

(8)

(it is assumed that 

 

λ

 

 > 0). The constant 

 

c 

 

is determined
by using the boundary condition. The corresponding
SS-junction energy contained in (1) is

(9)

where 

 

ψ

 

0

 

 is the value of the 

 

ψ

 

-function at the boundary.

We have performed a numerical analysis of the
proximity effect and determined the domain of stability
for the solutions obtained. Depending on 

 

κ

 

, magnetic
field, and temperature, there exist either one or two
(locally) stable solutions, and a phase transition
between them can occur.

Figure 1 shows the phase diagram for proximity-
induced superconductivity in aluminum calculated for

 

κ

 

 = 0.02 in the case when the wetting transition occurs
in the neighborhood of the critical point 

 

T

 

c

 

. The phase
diagram is universal in the coordinates 

 

h

 

 = 

 

H

 

/

 

H

 

WT

 

 and

 

τ

 

 = (

 

T

 

 – 

 

T

 

c

 

)/(

 

T

 

c

 

 – 

 

TWT). The equilibrium solution below
the transition curve hs(τ) corresponds to wetting.

Figure 2 shows the effective thickness of the surface
solution

plotted versus magnetic field strength at a temperature
above the wetting transition point TWT τ = –0.38.
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At field strengths above the curve hs(τ), the equilib-
rium solution remains its finite thickness. When the sta-
bility boundary for the “short” solution hs– lies below
hc , superconductivity can penetrate into the bulk of the
weaker superconductor only after a critical nucleus
forms either in the bulk or at the junction under the so-
called incomplete wetting conditions.

When the Ginzburg–Landau parameter is small,
both short and long solutions obtained in the neighbor-
hood of the transition point admit analytical descrip-
tion. In particular, the coordinates of the point (HWT,
TWT) can be found. The short solution is characterized

by the thickness , and the corresponding ψ-func-

tion amplitude is small (∝ , see the considerations
that follow after Eq. (46.14) in [4]). The energy of the
short solution is small as compared to that of the SS-
junction energy σSS given by (9) and the NS-interface
energy given by (9) with ψ0 = 0 (see [4, Eq. (46.14)]).
Therefore, the wetting transition occurs at the point
defined by the condition σSS + σNS = 0, which yields the
value of the ψ-function at the SS junction for the long
solution at the wetting transition point, |ψ0| = 21/3, and
Λ = 21/6 – 2–1/2.

The parameter Λ increases as (Tc – T)–1 toward the
critical temperature, and wetting must always be
observed in the neighborhood of the superconducting
transition, in agreement with [1]. The wetting transition
can occur in the close neighborhood of the critical tem-
perature, where it can be described by the Ginzburg–
Landau theory, only if the parameter λ is small, i.e.,
when the superconductors are weakly coupled. If λ is
too small, (the domain of equilibrium wetting lies too

close to Tc and ξ(T) is on the order of /a, where a is
an atomic distance), then the term linear in the ψ-func-
tion must be retained in boundary condition (6)
(see [6]). In this case, the phase diagram may not con-
tain the domain of wetting solution.

A numerical analysis shows that the wetting transi-
tion discussed here can occur only in type I supercon-
ductors, whereas there exists only one surface solution

ξδ

κ

ξ0
2

for type II superconductors, which has a finite thickness
until Hc2 is reached.
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